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Abstract—We study interactive video calls between two
users, where at least one of the users is connected over
a cellular network. It is known that cellular links present
highly varying network bandwidth and packet delays. If
the sending rate of the video call exceeds the available
bandwidth, the video frames may be excessively delayed,
destroying the interactivity of video call. In this paper,
we present Rebera, a joint cross-layer design of proactive
congestion control, video encoding and rate adaptation
to maximize the video transmission rate while keeping
the one-way frame delays sufficiently low. Rebera ac-
tively measures the available bandwidth in real-time by
employing the video frames as packet trains. Using an
online linear adaptive filter, Rebera makes a history-
based prediction of the future capacity, and determines
a rate budget for the video rate adaptation. Rebera uses
the hierarchical-P encoding to provide error resilience
and easy rate adaptation, while maintaining low encoding
complexity and delay. Furthermore, Rebera decides in
real-time whether to send or discard an encoded frame,
according to the budget, thereby preventing self-congestion
and minimizing the packet delays. Our experiments with
real cellular link traces demonstrate Rebera can deliver
higher bandwidth utilization and shorter packet delays
than Apple’s FaceTime.

I. INTRODUCTION

Advances in networking and video encoding tech-
nologies in the last decade have made the real-time
video delivery applications, including video calls and
conferencing [1][2][3], an integral part of our lives. De-
spite their popularity in wired and Wi-Fi networks, real-
time video delivery applications have not found much
use over cellular networks. The fundamental challenge
for delivering real-time video in cellular networks is to
simultaneously achieve high-rate and low-delay video
transmission over the highly volatile cellular links with
fast-changing available bandwidth, packet delay and loss.
On a cellular link, increasing the video sending rate
beyond the available bandwidth leads to self-congestion,
and intolerable packet delays, and consequently frame
delays. Overly delayed frames will have to be treated
as lost. On the other hand, a conservative sending rate
clearly leads to the under-utilization of the cellular
channel and consequently a lower quality than what is
possible.

The extremely tight design space calls for a joint
cross-layer design of realtime video encoding, and bitrate
control at the application layer, and sending rate adjust-
ment, and error control at the transport layer. Ideally,
one would like the transmitted video rate closely keep
track of the capacities on cellular links. However, the
traditional reactive congestion control algorithms [4],
[5] that adjust sending rate based on congestion feed-
backs, in forms of packet loss and/or packet delay, are
too slow to adapt to the changes in capacity, leading
to either bandwidth under-utilization or long packet
delays [6]. It is more preferable to design proactive
congestion control algorithms that calculate sending rate
based on forecasting cellular link capacities. Meanwhile,
for video adaptation, video encoder can adjust various
video encoding parameters, so that the resulting video
bitrate matches the target sending rate determined by
the congestion control algorithm. However, accurate rate
control is very challenging for low-delay encoding, and
significant rate mismatch is often still present with the
state-of-the-art video encoders. In addition, what makes
the problem even more challenging is that lost and late
packets can render not only their corresponding frames
but also other frames non-decodable at the receiver. The
encoder and the transport layer should be designed to be
error resilient so that lost and late packets have minimal
impact on the decoded video.

In this study, we propose a new real-time video de-
livery system, Rebera, designed for cellular networks,
where we aim to maximize the sending rate of the
video source and error resilience, while keeping the one-
way frame delays sufficiently small. Our system consists
of a proactive congestion control module, a temporal
layered encoder, and a dynamic frame selection mod-
ule. Our proactive congestion control module uses the
video frames themselves to actively measure the current
available bandwidth in real-time, and then use the well-
known linear adaptive filtering methods [7] to predict the
future capacity, based on the past and present capacity
measurements. For error resilience, we resort to layered
encoding, which enables unequal error protection (UEP).
However spatial and quality layering incurs significant



encoding complexity, making them unattractive for prac-
tical employments. Thus we consider only temporal lay-
ering, which provides a certain level of error resilience
even without using explicit UEP. To minimize the delays
for real-time delivery, we use hierarchical-P (hP) coding
structure for temporal layering. To address the rate
control inaccuracy of the encoder, we propose a dynamic
frame selection algorithm for hP, where the goal is to
select in real-time which encoded frames to send, subject
to a bitrate budget determined by the predicted capacity
value. Our frame selection algorithm takes into account
quality implications and decoding dependency between
frames, and the smoothness of frame inter-arrivals to
maximize the delivered video quality under the bitrate
budget. We implement the complete system, which we
call Rebera for real-time bandwidth estimation and rate
adaptation, on a testbed and we evaluate the performance
of the system and compare it with Apple’s FaceTime
video call application. Our current implementation relies
on a off-line encoder that produces a fixed average rate
video. Our experiments show that, even in the absence of
a real-time encoder that can directly control the encoded
video rate according to the measured capacity, Rebera is
able to achieve higher bandwidth utilization and lower
frame delays than FaceTime. The current study has not
considered UEP among the temporal layers and the
error resilience aspect of the system. These will be
investigated in future studies.

A. Related Work

Authors of [6] proposed a proactive congestion control
scheme for realtime video delivery in cellular networks.
They model cellular links as single-server queues emp-
tied out by a doubly-stochastic service process. For
the available bandwidth estimation, we, unlike [6], we
assume no particular time-evolution model for the link
capacity. Furthermore, [6] only focused on congestion
control without considering video adaptation. As will be
shown in our work, joint design of video adaptation and
congestion control is crucial to achieve high quality in
video delivery in cellualr networks.

II. PROPOSED SYSTEM OVERVIEW

We examine a real-time video delivery scenario be-
tween a sender and a receiver, where at least one user
is connected to a cellular network (Fig. 1). We denote
the source device by S, the destination device by D, and
the corresponding base stations by BS and BD, respec-
tively. We assume that the in-network path (BS , BD)
that connects the base stations have higher available
bandwidth, and constant queuing and propagation delay.
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Fig. 1. Cellular links between the mobile devices and their respective
base stations are in red. ISPs are mobile operators.

Therefore, the overall available bandwidth along the
path (S,BS , BD, D) is equal to the minimum of the
bandwidths along the cellular links (S,BS) and BD, D).

According to the queuing model of [6], all packets
destined to or sent from a given mobile device that is
connected to a base station are queued up in isolated
buffers, which are located on the mobile device for the
uplink and in the base station for the downlink. These
buffers are not shared by any other flow to or from other
users; that is, there is no cross-traffic in these queues. The
backlogged packets leave their respective buffers once
they are successfully transmitted over the link. Thus, how
fast these buffers are emptied out directly reflects the
capacity of the cellular links, and consequently the end-
to-end (e2e) available bandwidth.

As for the video stream, we assume that the sender
uses a layered encoder so that it can easily adjust the
sending rate by adjusting the number of video layers
transmitted. Layered coding also enables unequal error
protection; i.e., a basic level of quality can be guaranteed
with high likelihood by providing more protection to
the base layer. We consider only temporal scalability
to keep the encoding complexity and overhead at a
minimum. In order to minimize the encoding delay, we
further assume that the hP structure (Fig. 3) is used to
achieve temporal scalability. Starting with the highest
temporal layer, the frames can be discarded to reduce the
video rate. In the example shown in Fig. 3, each Group
of Picture (GoP) consists of 4 frames, which leads to
three temporal layers (TLs). We assume that the encoder
inserts an I-frame every N frames, and we denote the
time duration covering all N frames from an I-frame up
to but excluding the next one by an intra-period. Then,
the time duration T for an intra-period is equal to N/f ,
where f is the frame rate of the captured video.

We can now summarize the operation of the pro-
posed system. Since rate control is usually performed
once per intra-period in conventional video encoders,
we predict the average cellular capacity for each new
intra-period. The prediction is based on the measured
average capacities for the past intra-periods, which are
measured and fed back to the sender by the receiver. In
order to circumvent the uncertainty about the possible
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feedback delay, the receiver periodically measures (every
∆ seconds, ∆� T ) the available bandwidth within the
last T seconds using the arriving video frames and feeds
these measurements back to the sender. The sender, in
turn, keeps the most recent capacity measurement, and
updates its value with the arrival of each new measure-
ment. Then, at the beginning of the next intra-period k,
the value of the most recent capacity measurement is
taken as the available bandwidth c̃k−1 measured during
the last intra-period k − 1. This value is input to an
adaptive linear prediction filter, which then updates its
prediction ĉk regarding the available bandwidth during
the new intra-period k using the past bandwidth values
c̃k−1, . . . , c̃k−M+1. Using this prediction, the sender
calculates the rate budget bk, which is the maximum
number of bytes that the sender is allowed to send during
this intra-period so that all the data sent make it to the
receiver with a high probability at the end of the intra-
period. The components of our design can be seen in
Fig. 2.
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Fig. 2. Proposed real-time video delivery system over cellular networks

III. CAPACITY MEASUREMENT & PREDICTION AND
DETERMINATION OF THE SENDING RATE

A. Measuring the End-to-End Available Bandwidth

Packet pair/train methods [8] are well-known active
capacity measurement schemes for finding the minimum
capacity along a network path. The performance of these
methods improve if there is no cross-traffic on the links,
making them suitable to measure the cellular link capac-
ity according to our model. In our system, we propose
measuring the average available bandwidth c(t1, t2) ac-
tively at the destination, using the video frames received
in (t1, t2] as packet trains. Using the video frames as
packet trains enables us to directly exploit the video data
flow for capacity measurements and to avoid sending
additional measurement traffic. Specifically, at the sender
side, we first packetize each frame regardless of its size
into p ≥ 2 packets , and then send them together in a
burst. The resulting instantaneous sending rate is likely
to be higher than the instantaneous capacity of the link.
As a result, packets queue up in the bottleneck; i.e.
the base station buffer for the downlink or the cellular
device buffer for the uplink, where they are transmitted
one by one. Then, at the receiver side, we take capacity

measurements {mn}, where the sample mn is obtained
by using the arriving video frame n as a packet train.
Let us denote the inter-arrival time between packet i−1
and i by ai, and the size of the packet i by zi. Then, we
can calculate the capacity sampled by frame n as:

mn ,
z2 + · · ·+ zp
a2 + · · ·+ ap

,
Zn

An
. (1)

For any time period (t1, t2], we can estimate the average
capacity c(t1, t2) over this time simply by

c̃(t1, t2) =

∑
n∈N Zn∑
n∈N An

, (2)

where N is the set of all frames that arrived in (t1, t2].
Note that Eq. (2) is equivalent to taking a weighted
average of all the capacity samples in {mn}, where the
sample mn is weighted in proportion to its measurement
duration An with weight wn = An/

∑
n∈N An. Having

completed the average capacity measurement regarding
(t1, t2], the receiver prepares a small feedback packet
and sends it back to the source. Note that we are ulti-
mately interested in measuring the available bandwidth
ck during (Tk, Tk+1], where Tk denotes the start of the
intra-period k. However, since the sender and receiver
have different clock times in general, the receiver cannot
know when exactly an intra-period starts. Furthermore,
the feedback packets are subject to time-varying delays
in the network. In short, we cannot guarantee that the
feedback packets will arrive at the sender on time for
predicting the capacity of the next intra period. To
address this issue, the receiver measures the average
capacity within the last T seconds every ∆ seconds,
where ∆� T . Each of these measurements are immedi-
ately sent back to the sender. Specifically, a measurement
generated at time t is the average capacity in (t− T, t],
while the next measurement that is generated at t + ∆
is the average bandwidth in (t − T + ∆, t + ∆]. The
sender then uses the latest feedback received before Tk to
predict the available bandwidth in the next intra-period
(Tk, Tk+1]. Lastly, assuming we keep the sending rate
below the capacity, our measurement accuracy depends
on the difference between the sending rate and the
capacity of the link. If the sending rate equals, or by any
chance, exceeds the capacity, we would have very high
measurement accuracy, but this may lead to saturated
links and long queueing delays, which are detrimental
to video call quality.

B. Predicting the End-to-End Available Bandwidth

History-based forecast is a popular method for pre-
diction [9], where the past measurement values are used
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to determine an estimate of the future. In this study, we
perform linear prediction for history-based forecast. In
particular, we chose a well-known online linear adaptive
filter called the Recursive Least Squares (RLS) [7]. With
each new capacity measurement regarding the last intra-
period, RLS recursively updates its filter taps of length
M , and makes a prediction for the capacity during the
next intra-period. One of the advantages of the RLS
algorithm is that it does not require a model for its
input signal, and performs the minimum least-squares
regression [10]. Furthermore, it can adapt to the time-
varying signal statistics through its forgetting factor λ,
which serves to exponentially discount the weight of the
past observations, without any need for a time-evolution
model.

Robustness against bursts: It is known that the cellular
links occasionally experience channel outages that may
last for up to several seconds, during which the capacity
essentially drops to zero, and the packets in transit are
backlogged in the respective buffers. As a result, the
sender should stop sending any more packets as soon
as an outage is detected. When the outage ends, all the
packets queued up in the buffer are usually transmitted
and arrive at the receiver as a burst. If the receiver uses
these packets for capacity measurement, the burst rate,
which is on the order of several Mbps, can severely
disrupt the learning process of the predictor. In order to
protect our system against these bursty measurements,
we simply detect them through the sample measurement
duration An. In our system, we consider a measurement
bursty if An < 10 ms. Bursty measurements are simply
discarded.

C. Determining the Sending Rate

Our ultimate goal is to ensure that all the frames sent
during an intra-period finish their transmission before the
start of the next one. In other words, we aim to have each
I-frame encounter empty buffers with high probability.
Let us denote our sending rate in the intra-period k + 1
by rk+1. We determine rk+1 such that the probability to
exceed the capacity ck+1 is low; that is,

Pr(ck+1 < rk+1) = δ, (3)

where δ is a small confidence parameter. Let εk+1 denote
the capacity prediction error obtained from the RLS
algorithm, i.e, ck+1 = ĉk+1 + εk+1, we can rewrite Eq.
(3) as

Pr (εk+1 < rk+1 − ĉk+1) = Pr (εk+1 < uk+1) = δ,
(4)

where uk+1 , rk+1 − ĉk+1 is referred to as safety
margin. This means that, for a given δ value, rk+1 should
be set as the sum of ĉk+1 and uk+1, the δ-quantile of
εk+1. In Rebera, we set δ = 0.05, and calculate the
running 5-percentile of εk+1 with a moving window [11].

Handling backlogged and lost packets: Note that
sending at a rate always less than the available bandwidth
cannot be guaranteed, even with the safety margin uk.
Left unaddressed, the number of bytes backlogged in
the buffers may grow indefinitely. In order to address
this issue, we could measure the number qk of bytes
backlogged in the buffers at the end of intra-period k
by subtracting the total number of bytes received at the
receiver from the total number of bytes sent at the sender.
However, in case of packet losses, since lost packets will
never be seen by the receiver, qk would keep growing
in time. In order to account for the losses, we assume
that the packets arrive at the destination in the order of
their sequence numbers. To detect the number of lost
bytes, we insert in each packet header the total number
of bytes sent so far. Then, upon receiving a new packet,
the receiver simply subtracts the number of bytes it
has received so far from this number. The result is the
number of bytes lost, which is fed back to the sender,
along with the number of bytes received. The sender
then determines qk by taking the difference between the
total number of bytes sent and the total number of bytes
received and lost.1

Combining all, we set the bandwidth budget bk+1 for
the intra-period k + 1 as

bk+1 = (ĉk+1 + uk+1)T − qk, (5)

where T is the intra-period duration. This way, we expect
the network not only can finish the transmission of all
video frames in intra-period k + 1, but also can clean
up the currently backlogged packets qk by the end of
intra-period k + 1.

IV. FRAME SELECTION FOR HIERARCHICAL-P VIDEO

Video rate control is crucial for real-time applications
over networks with time-varying bandwidth. However,
accurate rate control is very challenging, especially in the
very low-delay scenarios, where look-ahead and multi-
pass encoding are not suitable. In spite of the extensive
research in this area [12], significant mismatch between
the target and actual bitrate over an intra-period can still
occur [12]. In case of rate mismatch, if the video is coded
with the IPPP structure, all remaining frames will be

1Out-of-order packet deliveries will introduce only temporary errors
to our estimates: after the delayed packets arrive at the receiver, our
algorithm will automatically correct these errors in the next estimate.
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Fig. 3. hP prediction. Blue arrows indicate the reference frames used
to predict the frames being coded. In this example, N = 8, G = 4,
TL0: (I0,P4); TL1: (P2,P6); TL2: (P1, P3, P5, P7).

discarded once the target budget for an intra-period is
used up. When this happens early in the intra-period,
the receiver will experience a relatively long freeze.

To remedy this problem, we propose to use a temporal
layered encoder with the hP coding structure, so that
the sending rate can be adjusted by skipping the higher
layer frames, without incurring the additional encoding
delay or complexity. Fig. 3 shows an example predic-
tion structure for the hP encoding, which yields three
temporal layers: I-frame and P4 form the base layer, P2
and P6 form the second layer, and P1, P3, P5, P7 form
the third layer. We propose a frame selection scheme
that either discards or sends each encoded frame, subject
to the given rate budget bk and frame dependencies.
Note that here we assume that video encoder runs its
own rate control algorithm, but may not meet the rate
budget per intra-period accurately. When the encoded
bitrate exceeds the budget, an encoded frame may be
dropped by the frame selection scheme so that the actual
sending rate never exceeds the predicted bandwidth for
an intra-period. The benefit of using the hP structure is
that the delivered video has more evenly-spread frames,
whereas the IPPP structure can lead to a very jittery
video when some frames are dropped. With the frame
selection module outside the encoder, the encoder rate
control can be less conservative. This, in turn, can lead
to higher bandwidth utilization.

A. Dynamic Frame Selection

Frame selection is ultimately about allocating the bud-
get for more important, i.e., lower layer frames. Higher
layer frames can be sent only if there is available rate
budget after sending the lower layer frames, depending
on the budget. However, to minimize the delays, the
decision to either send or discard a given frame must be
made right after it is encoded, without knowing future
frame sizes. For example, in Fig. 3, we cannot wait to
see if we can send P4 first, followed by P2 and then
P1. Rather, we have to determine whether we send P1
as soon as P1 arrives. If the future frames from lower
layers are large, sending frames from a current higher
layer may preclude the sending of upcoming lower layer

frames. On the other hand, dropping frames from higher
temporal layers when the future lower layer frames are
small would clearly underutilize the available bandwidth.

Given an intra-period, let us label each frame with its
appearance order, and denote the size and the temporal
layer of the frame n by sn and `n, respectively. Our goal
is to decide, for each encoded frame n, to either send or
discard it, such that the total number of frames sent at the
end of the intra-period is maximized, while the mean and
the variance of the time gap between the selected frames
are kept small. We start our frame selection procedure
by estimating frame size for each temporal layer, in
order to make decisions considering the future frames.
We then continue by ordering the frames in this intra-
period based on their layer numbers, starting with the
lowest layer, since the higher layer frames cannot be
decoded with the lower layers. We denote this priority
order by an ordered list π. For each newly arriving frame
n, we trim π into πn by excluding the past frames for
which a decision has already been made, and the future
frames that cannot be decoded at the receiver due to the
previously discarded frames. πn is basically the priority
order among the eligible frames left. Next, we update
the frame size estimations, as well as our estimation for
the remaining rate budget. Then, we create a set En of
frames that we expect to send according to our frame size
and the remaining rate budget estimations, by greedily
picking frames starting from the first frame in πn. We
stop picking the frames when the total estimated size
of the frames picked reaches the estimated rate budget.
Finally, if frame n is in the set En, we send it; otherwise
it is discarded.

For frame size estimation, we assume that the frame
sizes within the same temporal layer will be similar.
Therefore, we keep a frame size estimate ŝ` for each
temporal layer `. In this study, we simply use the
exponentially weighted moving average (EWMA) filter
with parameter 0 < γ ≤ 1 for estimating the size
of future frames in layer l using actual sizes of the
past coded frames in this layer. Note that for the base
layer, we apply the above method only to the successive
P-frames as the I-frame size is much larger than P-
frames. We do not need to estimate the I-frame size,
as we always send the I-frames. The overall algorithm
is summarized in Algorithm 1.

B. Rate Budget Update

The rate budget bk is the estimation of the total
number of bytes that the sender can transmit during the
intra-period k without causing buffer build-up. Here, we
assume that, at any time t since the start of the intra-
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period, t
T bk bytes can be transmitted on average, with a

mean rate of bk/T . Thus, if the sender sends less than
this amount, the unused bandwidth is wasted. In order
to account for these missed transmission opportunities,
we update the remaining rate budget at each step n by

b̂k(n) = bk −max
(
Sn,

n

N
bk

)
, (6)

where Sn is the total number of bytes sent before
selecting frame n. Without updating the budget, the
sender may end up sending large frames close to the
end of the intra-period, which would then backlog in
the buffer, and potentially delay all the packets in the
next intra-period.

Algorithm 1 Dynamic Frame Selection
1: S0 = 0, π0 = π, intra-period k, rate budget bk
2: for all frames n = {0, . . . , N − 1} do
3: ŝj ← γsn + (1− γ)ŝj , for each frame j ∈ `n
4: b̂k(n) = bk −max(Sn,

n
N bk)

5: Create En from πn, based on ŝ and b̂k(n)
6: if n ∈ En then
7: Sn+1 = Sn + sn and send frame n
8: else
9: πn+1 = πn − {frames depending on n}

10: end if
11: πn+1 = πn − n
12: end for

V. SIMULATIONS AND EXPERIMENTS

A. Adaptive Filtering vs. Exponential Smoothing for
Bandwidth Prediction

We start our evaluations by motivating the use of the
RLS linear adaptive filter for capacity prediction. We
compare the prediction performance of the RLS with
the simple and popular EWMA predictor [9]. In our
experience, the filter length and the forgetting factor
parameters do not significantly affect the prediction
errors provided that we choose M < 10 and λ > 0.99.
Therefore, we have selected M = 5, λ = 0.999,
θ = 0.001 and fixed this configuration for the rest of the
evaluations. We collected eight real cellular link capacity
traces (Fig. 7) following the methodology in [6], using
3G and HSPA access technologies, during different times
of the day and in different campus locations. Each of
these is 1, 066 seconds long and their statistics can be
found in Table I. As expected, the capacity traces are
very dynamic, posing significant challenge to capacity
estimation. Over these traces, in Matlab, we perform
time-series forecasting using RLS with parameters men-
tioned above, and the EWMA filter, where the smoothing

TABLE I
STATISTICS OF CELLULAR TRACES USED IN THE EXPERIMENTS.

Mean (kbps) Std (kbps) Coeff. of Var. Outage %
Tr1 176 115 0.654 2.0
Tr2 388 165 0.425 0.5
Tr3 392 202 0.514 5.2
Tr4 634 262 0.413 0.0
Tr5 735 264 0.359 0.2
Tr6 937 356 0.379 1.2
Tr7 1055 501 0.475 0.1
Tr8 1564 893 0.571 5.1

TABLE II
COMPARING PREDICTION ERROR RMS OF RLS WITH EWMA

RLS (kbps) αB Best (kbps) αW Worst (kbps)
Tr1 53 0.55 55 0.05 87
Tr2 88 0.7 90 0.05 120
Tr3 87 0.65 86 0.05 132
Tr4 158 0.55 157 0.05 209
Tr5 186 0.4 178 0.05 211
Tr6 250 0.2 235 1 293
Tr7 244 0.4 242 0.05 291
Tr8 894 0.1 858 1 1212

parameter α is varied from 0 to 1. We assume that
we know the past capacity values exactly. The results
can be seen in Table II, where “Best” and “Worst”
represent the minimum and maximum prediction error
root-mean square (RMS) values obtained with EWMA
with different smoothing parameters, respectively. We
see that for all traces, prediction performance of RLS
is very close to that of the best EWMA predictor, if not
better, as it adapts to the statistics of the capacity time
series.

B. Dynamic Frame Selection Simulations

We now compare the performance of our dynamic
frame selection (DFS) algorithm against the layer-push
(LP) and frame-push (FP) algorithms. LP also estimates
the frame size in each temporal layer using the same
approach as in DFS, but then decides on the highest layer
lmax that may be sent. In other words, only the frames
in layers up to lmax are eligible for sending. Among
these frames, following the encoding order, the algorithm
sends as many frames as possible until the rate budget
is exhausted. FP, on the other hand, does not consider
layer information and sends as many frames as possible
following their encoding order, until the rate budget is
exhausted.

For each algorithm, we consider the total number of
frames sent, the mean and standard deviation values of
the resulting frame intervals, and finally the fraction of
the unused rate budget. To calculate the statistics of the
frame intervals, we use the fractions of time that the
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receiver will observe the frame intervals. We use the
JM encoder [13] to encode the video sequence “Crew”
[14] with a hP structure having three temporal layers
(GoP length=4) and intra-period of 32 frames. We used
a fixed quantization parameter (QP) of 36, yielding the
average bitrate of 415 kbps when all frames are included.
The resulting video sequence has a frame rate of 30 fps
and comprises 9 intra-periods, with an intra-period of
T = 32/30 seconds. For the proposed algorithm, we
used γ = 0.75, which was found to perform the best,
and the frame priority order is π = (0, 4, 8, 12, 16, 20,
24, 28, 30, 14, 6, 22, 26, 18, 10, 2, 31, 15, 7, 23, 27, 19,
11, 3, 1, 5, 9, 13, 17, 21, 25, 29). In these simulations,
we assume that the rate budget bk is constant for each
intra-period k of the video and we want to compare
the performance of algorithms described above under
different bk values, from 10 kB to 80 kB. In Figure
4, we see that FP sends the most frames by sending
as many frames as possible. However, it also has the
highest mean frame interval and frame interval variation,
making the displayed video jittery. On the other hand,
the LP algorithm sends the lowest number of frames but
also with lower mean frame interval and frame interval
variance. The proposed DFS algorithm achieves a good
compromise between sending more frames, consequently
utilizing available bandwidth more closely, and reducing
the frame distance variation. In fact, DFS outperforms
both methods in terms of the mean and standard de-
viation of the frame intervals, while sending almost as
many frames as the FP. Finally, the plot in the upper
right shows the fraction of the unused bandwidth for
each method, where we see that the performance of DFS
is very similar to FP, whereas LP is not as efficient.

C. Evaluation of Rebera and FaceTime on Testbed

For system evaluation, we developed a testbed to
compare Rebera with popular video call applications.
On this testbed (Fig. 5), S and D are the source and
destination end-points running the video call application
under test, while the nodes CS and CD are cellular link
emulators running the CellSim software [6], respectively.
The emulators are connected to each other through the
campus network, and to their respective end-points via
Ethernet. For cellular link emulation, we use the uplink
and downlink capacity traces collected as described in
Table I. For evaluation, we use the available bandwidth
utilization and the 95-percentile one-way packet queuing
delays as the performance metrics. In order to calculate
the bandwidth utilization, we count how many bytes
were sent out by the video call application under test and
and compare it with the minimum of the capacities of the
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Fig. 4. Comparison of DFS with FP and LP with respect to number
of frames sent (upper left), unused budget (upper right), mean and
standard deviation of the frame distance (lower left and lower right)

sender link and the receiver link. The queuing delays are
collected through CellSim for Rebera experiments, and
by sniffing the video packets on the emulator machines
for FaceTime. This is because FaceTime sends voice
packets even after the voice is muted, and we would
like to measure the delays regarding the video packets,
only. In each test, we use the same video sequence
“Crew” by looping it periodically. While testing Rebera,
we transmit a pre-encoded video stream using the JM
encoder [13] as described earlier, since we lack a video
encoder capable of producing a hP stream in real-time.
The result is that the frame sizes are fixed for Rebera,
whereas the commercial products can further adapt the
encoding parameters to tune the frame sizes according
to the capacity. The video and RLS parameters used are
the same as in Sections V-B and V-A. The initial sending
rate is set to 120 kbps. In each experiment, we evaluate
the sending rate over consecutive periods of T seconds.
Please note that FaceTime may not be using a constant
intra-period, let alone the same intra-period T as Rebera.
Furthermore, FaceTime’s sending rate is, in general, the
sum of FEC and the video data rates. In order to feed
the same looped test video into FaceTime, we used the
ManyCam [15] virtual webcam on Mac OS 10.10.4.

1) Evaluation under Piecewise Constant Bandwidth:
In this experiment, we use a piecewise constant band-
width trace, with steps of 100 kbps lasting 100 seconds,
between 300 and 600 kbps. In Fig. 6, we can see
Rebera’s predicted bandwidth, overall budget and its
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Fig. 6. Bandwidth utilization under staircase bandwidth

sending rate, along with FaceTime’s sending rate. On
average, the bandwidth utilization of Rebera is 83.32%,
while FaceTime achieves a utilization of 77.67%. The
periodic negative peaks in Rebera’s sending rate, seen
clearly when the bandwidth is high, correspond to
the intra-period with the smallest rate: for these intra-
periods, the budget is higher than the video rate, and
Rebera ends up sending all the frames, but still cannot
use up most of the budget. As a result, our bandwidth
utilization is reduced. Had the encoder adaptively con-
trolled the QP, higher bandwidth utilization would have
been expected. But Rebera still achieves a higher average
utilization than FaceTime.

2) Evaluation with Cellular Capacity Traces: In this
set of experiments, we use cellular bandwidth traces (Fig.
7) to emulate the cellular links. Each experiment lasts for
1000 intra-periods. We first present the results involving
a single cellular link along the end-to-end path. We
employ traces 2, 4, 5 and 6 as the forward, and traces 1
and 7 for the backward end-to-end available bandwidth.
Results are summarized as bandwidth utilization and 95-
percentile packet queuing delay tuples in Tables IV and
V. Specifically, when trace 1 is used for the backward
path, the information fed back to the sender side undergo
a longer delay for both Rebera and FaceTime, degrading
the performance of both systems. As an example, in
Fig. 8, we present Rebera’s and FaceTime’s sending
rates with Trace 2 for forward and Trace 7 for back-
ward available bandwidth, respectively. We can see from
Table IV and V, in all experiments, Rebera achieves
a higher utilization of the forward available bandwidth
with shorter packet delays. Specifically, Rebera provides
an average utilization of 1.2015 times more than Face-
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Fig. 7. Traces used in the experiments. Vertical axis is the capacity in
Mbps, horizontal axis is the intra-period index. Traces 2, 4, 5 and 6 are
used as forward capacities, 1 and 7 are used as backward capacities.

Time, and an average reduction of 113 ms in the 95-
percentile packet queueing delays. Furthermore, having
a more challenging backward capacity (trace 1 in Table
IV) decreases the bandwidth utilization of both Rebera
and Facetime. FaceTime’s packet delay performance also
degrades, however, Rebera is still able to provide similar
packet delays. Finally, we have tested both systems
assuming both users are connected over different cellular
links. We have used trace 2 and 7 for the cellular link
capacities on the forward end-to-end path, and assumed
the backward path has infinite capacity with only a
constant delay of 40 ms, to be able to measure the one-
way packet delays. The results can be seen in Table III.

TABLE III
EVALUATION OVER TWO CELLULAR LINKS, USING TRACE 2 AND 7
AS THE FORWARD CAPACITY AND INFINITE BACKWARD CAPACITY

Rebera FaceTime
utilization (%) 56.44%, 46.52%

delay (ms) 387 558

TABLE IV
EVALUATION OVER SINGLE CELLULAR LINK, USING TRACE 1 AS

THE BACKWARD CAPACITY

Fwd Cap. Rebera FaceTime
Tr2 63.44%, 325 ms 55.81%, 428 ms
Tr4 59.67%, 352 ms 31.38%, 631 ms
Tr5 65.11%, 160 ms 60.45%, 364 ms
Tr6 61.85%, 219 ms 56.42%, 298 ms

3) Effect of Confidence Parameter: Next, we investi-
gate the effect of the confidence parameter δ in Section
III-C on Rebera. We vary δ from 0.05 up to 0.5, and
record the utilization and 95-percentile packet delays in
Table VI. Having a larger δ value means the sender can
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TABLE V
EVALUATION OVER SINGLE CELLULAR LINK, USING TRACE 7 AS

THE BACKWARD CAPACITY

Fwd Cap. Rebera FaceTime
Tr2 67.18%, 347 ms 56.86%, 407 ms
Tr4 64.89%, 287 ms 59.63%, 322 ms
Tr5 70.97%, 163 ms 67.90%, 257 ms
Tr6 68.08%, 239 ms 62.73%, 288 ms

tolerate larger bandwidth prediction errors, and hence
larger packet delays, in exchange for more bandwidth
utilization, which could be the case for less interactive
video streaming applications.

TABLE VI
EFFECT OF THE CONFIDENCE PARAMETER ON REBERA OVER

SINGLE CELLULAR LINK. FORWARD CAPACITY TRACE 2,
BACKWARD CAPACITY TRACE 7

δ 0.05 0.1 0.2 0.5
utilization (%) 67.18, 69.63, 74.18 79.77

delay (ms) 347 364 404 468

4) Loss Resilience: To examine the performance of
Rebera in presence of packet loss, we employ CellSim
to introduce random losses. We have tested Rebera when
the packet loss rate is 5% and 10%, and the results are
given in Table VII. Although not significantly, the band-
width utilization drops with the loss rate as expected.
However, the delays experienced by the received frames
reduce, since there is less backlog in the buffers.

TABLE VII
EFFECT OF PACKET LOSS ON REBERA OVER SINGLE CELLULAR

LINK. FORWARD-BACKWARD CAPACITY: TRACES 5-7
loss rate 0 0.05 0.1

utilization (%) 70.97 67.60 64.33
delay (ms) 163 141 129

VI. CONCLUSION

Video calls over cellular links have to adapt to fast-
changing network bandwidth and packet delay. In this
study, we proposed a new real-time video delivery sys-
tem, Rebera, designed for cellular networks. Rebera’s
proactive congestion control module uses the video
frames themselves to actively measure the capacity of

cellular links, and uses these measurements to make a
safe forecast for future capacities, using the well-known
adaptive filtering techniques. Through its dynamic frame
selection module designed for temporal layered streams,
Rebera ensures that its video sending rate never violates
the forecast by discarding higher layer frames, thereby
preventing self-congestion, and minimizing the packet
delays. Our experiments showed that Rebera is indeed
able to deliver higher bandwidth utilization and shorter
packet delays compared with Apple’s FaceTime. In the
future work, we are eager to consider UEP among
temporal layers, along with incorporating an adaptive
video encoder with low-delay rate control into Rebera,
which would help to achieve even shorter delays and
higher utilization.
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