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Abstract— Routers handle data packets from sources un-
responsive to TCP’s congestion avoidance feedback. We are
interested in the impact these sources have on AQM’s control
of long-lived TCP traffic. In this paper, we combine models
of TCP/AQM dynamics with models of unresponsive traffic to
analyze the effects on AQM performance.

I. INTRODUCTION

ACTIVE queue management (AQM) schemes are meant
to regulate TCP traffic in response to router congestion.

This is accomplished by dropping (or marking) packets as a
function of queue length. This dropping amounts to feedback,
wherein sources are instructed to modify their sending rates.
However, this arrival stream may contain packets from sources
that are unresponsive to this feedback. For example, while
some TCP sources are long-lived and in congestion avoidance
phase, other TCP flows, with shorter lifetimes, either never
experience loss or in the case of ECN are unresponsive to
dropping. Also, by design, UDP flows do not respond to loss
unless an application layer congestion control mechanism is
built. Consequently, some congesting flows are uncontrolled
by AQM, and, this motivates us to analyze the effects and
tradeoffs these unresponsive flows have on AQM performance.

A. Impact on Transient Behavior

A good starting point is to ask whether unresponsive flows
impact AQM performance to a degree that warrants scrutiny.
Recent studies [1] show that unresponsive sources, while
contributing to about 70 − 80% of the Internet flows, account
for only 10 − 20% of its byte volume. Can this small volume
of unresponsive flows significantly impact AQM? We believe
so, and our focus is trained on transient response, as opposed
to mean behavior, as in [2], where unresponsive flows were
studied under high levels of aggregation.

To substantiate this belief concerning network transients,
let’s do some back-of-the-envelope computations and consider
a single bottle-neck link handling both short-lived and long-
lived TCP flows. For simplicity, assume homogeneous flows
of which Ns are short-lived, and N� are long-lived flows. The
long-lived flows are in congestion-avoidance phase, while the
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short-lived flows never escape slow start.1 Let Ws and W�

be the congestion window sizes for the short and long flows
respectively. Take κ to be the byte-volume ratio between long
and short-lived traffic. For example, κ = 4 means that 80% of
total byte-volume is contributed by long-lived flows. In steady
state, κ is the ratio of arrival rates, which, in terms of window
size is expressed by NsWsκ = N�W�, or

Ns =
N�W�

κWs
.

Now let’s consider the dynamic of “traffic-increase” in an
uncongested network. If the loss probability p is small, the
back-off probability of a TCP connection, with window size
w, is approximately wp. Thus, for each round-trip time,
Ns(1 − Wsp) short-lived flows double their window sizes,
while N�(1−W�p) long-lived flows increase their congestion
windows by 1. In other words,

∆↑Ws

∆↑W�
=
Ns(1 −Wsp)Ws

N�(1 −W�p)
≈ W�

κ
.

Since W� ∝
√

1
p , the above shows that short-lived TCP flows

can dominate the dynamic of traffic-increase when congestion
is low. For the case of decreasing traffic, the window back-off
is either w− 1 (for TO loss) or w/2 (TD loss). We then have

∆↓Ws

∆↓W�
≤ NsWs pWs

N�W� pW�/2
=

2Ws

κW�

showing that long-lived TCP flows dominate the dynamic of
traffic-decrease.

B. Impact on AQM Design

Fluid models for describing the dynamics of long-lived TCP
flows have proven useful in studying AQM performance [3],
[4], [5], [6], differentiated services [7] and adaptive AQM [8].
In this paper we use them to study the interaction between
unresponsive flows and an AQM’s ability to control long-
lived TCP flows. To accomplish this we modify this fluid
model to account for unresponsive flows, and utilize models
for various types of unresponsive traffic. We develop a new
model for short-lived TCP flows and also include existing
ON-OFF UDP and long-range dependent traffic models in our
family of unresponsive flows. These models will help describe
both the mean and correlation behavior of unresponsive flows,
from which we can analyze effects on AQM performance such
as responsiveness and (stability) robustness.2 Responsiveness

1Throughout this paper, short-lived TCP flows are defined as never leaving
the slow-start phase of TCP.

2Hereafter, we simply use robustness.



refers to the speed to which a system converges to an equi-
librium, while robustness refers to a system remaining stable
under network parameter variations. For example, in Section
IV we will show that the mean sending rate of unresponsive
flows reduces the bandwidth available to long-lived TCP
traffic, which, in turn makes the AQM more robust, but less
responsive. Another performance issue deals with an AQM’s
response to variations in unresponsive traffic. We will analyze
the resulting variations in queue length, loss probability and
long-lived TCP sending rate. This will open a door to study a
long-standing question of ours; namely,

What role does queue-averaging play in AQM?

It has been our contention, see [4], that introduction of queue-
averaging within an AQM feedback loop has questionable
benefit, and, that a well-tuned AQM would opt for an av-
eraging time constant much less than round-trip times. The
opposing viewpoint has been that queue averaging plays a role
in the presence of bursty and short-lived traffic and traditional
greedy flow analysis does not capture this reality. By virtue
of the unresponsive flow models we develop in this paper,
we are in a position to conduct a more realistic analysis and
provide insights into the problem. In Section IV, we show
that queue averaging results in a trade-off between AQM
responsiveness, robustness and response to the uncontrolled
flows. Our conclusion is threefold:

(i) For robustness, the queue averaging time constant should
be chosen outside the range (R, R

2C
2N ) where R stands

for round-trip time, C the link capacity and N the
number of long-lived TCP flows; see Figure 8.

(ii) AQM responsiveness is inversely related to the queue
averaging time constant; see Figure 8.

(iii) It is impossible, via selection of the averaging time
constant, to sufficiently and simultaneously smooth the
variations in queue length and loss probability (or con-
versely, to both the queue length and long-lived TCP
sending rate) due to variations in unresponsive flows;
see Figure 9.

The last point is particularly important as it implies that
while averaging results in a smooth or stable congestion feed-
back, it also introduces (considerable) jitter in the queueing
delay. That trade-off should be noted in AQM design.

The remainder of the paper is organized as follows. In
the next section we incorporate unresponsive traffic into the
existing fluid model of the TCP/AQM dynamic. In Section III
we develop models for different types of unresponsive flows,
and use them in Section IV to analyze the trade-offs involved
when one introduces queue-averaging in an AQM loop. We
support this analysis in Section V with both fluid and ns
simulations.

II. INCORPORATING UNRESPONSIVE FLOWS INTO THE

TCP/AQM DYNAMIC

In this section, we modify the fluid model for the TCP/AQM
dynamic introduced in [3] to include unresponsive flows.
We consider a single bottle-neck queue fed by long-lived,

homogeneous TCP connections � and some unresponsive flows
u as shown in Figure 1. This diagram highlights the fact that
long-lived flows � are under AQM control while unresponsive
flows are not.

TCP Window
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u

q

p

l

Fig. 1. Block diagram of an AQM system including unresponsive flows u
as well as long-lived TCP flows �.

A stochastic differential equation describing the sample path
of each long-lived TCP connection is, from [3]:

dW�(t) =
dt

R(q(t))
− W�(t)

2
dη(t)

where W� is the congestion window size in packets, R =
q
C + Tp the round-trip time and η the packet loss modeled
by a Poisson process. Here, q, C and Tp denote the queue
length (packets), link capacity (packets/sec) and propagation
delay (in seconds) respectively. Suppose the number of long-
lived TCP connections N is large. The aggregate rate of all
long-lived TCP connections is NW̄�(t)/R(q(t)), where W̄�(t)
is TCP connections’ average window size. As in [3], W̄�(t) is
described by

dW̄�

dt
=

1
R(q(t))

− W̄�W̄�(t−R0)
2R(q(t−R0))

p(q(t−R0)) (1)

The sample path of the bottle-neck queue length is:

dq(t)
dt

= −1q(t)C +
N

R(q(t))
W̄�(t) + u(t),

which, in assuming q(t) > 0 a.s., becomes

dq(t)
dt

= −C +
N

R(q(t))
W̄�(t) + u(t). (2)

In the above equation, the dynamics of W̄�(t) is on the time
scale of long-lived TCP connections’ round trip time. It will
be shown in the following section that depending on the
characteristics of unresponsive traffic, the variations of u(t)
could be on a range of time scales. If we are only interested
in the average behavior of the queue on a time scale which is
coarser than time scales of u(t)’s variations, we can replace
u(t) in equation (2) by its mean u0. Then,

dq̄(t)
dt

= −(C − u0) +
N

R(q̄(t))
W̄� (3)



where it is clear that the link bandwidth is diminished from C
to C − u0 � Ceff . This has interesting consequences which
we will discuss later, but, we are also interested in how time-
variations in the unresponsive traffic affects the management of
long-lived flows. To study this we will carry out a linearization
on (1) and (2) about the equilibrium (W�0, p0, q0, u0) defined
by

W 2
�0p0 = 2;

NW�0

R0
= Ceff ; R0 =

q0
C

+ Tp.

Linearizing about this equilibrium gives3:

W�(s) = −Pwin(s)e−sR0p(s);

�(s) =
N

R0
W�(s);

q(s) = Pque(s)(�(s) + u(s));

where W�(s), p(s), q(s), �(s) and u(s) refer to the Laplace
transforms of the associated time-domain variables4, and
where the window and queue transfer functions are:

Pwin(s) =
R0C

2
eff

2N2

s+ 2N
R2

0Ceff

; Pque(s) =
1

s+ Ceff

C
1
R0

. (4)

Figure 2 is a block diagram of the linearized AQM feedback
system where Caqm(s) denotes the transfer function of an
AQM controller. In the next section we turn to the modelling
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Fig. 2. Linearization of AQM with long-lived TCP traffic � and unresponsive
traffic u.

of the unresponsive traffic u.

III. MODELS OF UNRESPONSIVE FLOWS

Now that we have accounted for unresponsive traffic in the
TCP/AQM dynamic, see Figure 2, our present objective is
to develop appropriate traffic models that will allow us to
evaluate their impact on queue length q, loss probability p
and long-lived arrival rate �. We will consider three types of
unresponsive flows: short-lived TCP flows, Markov ON-OFF

3As shown in [4], a good approximation to (1) is dW̄
dt

= 1
R(q) −

W̄W̄ (t)
2R(t) p(q(t − R0)). We also adopt this approximation when linearizing.

4To be precise, these time-domain variables represent perturbations from
their equilibrium values. To avoid an expanding notation, we retain the original
symbol for the perturbed variable.

UDP sources, and, traffic with long-range dependence. For
each class we are interested in computing their mean sending
rate u0 and correlation function, or, its Fourier transform, the
power spectral density. We have already seen that u0 reduces
the link capacity seen by long-lived flows, and in Section
IV we will study how the TCP/AQM dynamic responds to
the variations in unresponsive traffic, as captured by their
correlation functions.

A. Short-lived TCP Flows

Assuming short-lived TCP traffic never escape the slow-
start phase of TCP, their dynamics can be described by their
window sizes increasing exponentially, rather than linearly as
experienced in TCP’s congestion-control phase. We can model
a single short-lived TCP flow with sending rate x by the
differential equation:

Ẇx(t) =
Wx(t)
R(q(t))

− Wx(t)Wx(t−R0)
2R(q(t−R0))

p(q(t−R0));

x(t) =
Wx(t)
R(q(t))

; Wx(0) = 1

where the first term in the Ẇx equation models an exponential
increase with time constant R0. The second term models
multiplicative decrease, and, since we assume short-lived flows
terminate before receiving a congestion signal, we drop this
loss-dependent term. The growth of this flow is illustrated
in Figure 3 where the window size Wx grows exponentially
and terminates after a few round-trip times. An approximation

R

Wx

Fig. 3. Exponential growth of a short-lived flow.

of this behavior is can be approximated by an exponential
pulse of the form x(t) = 1

R0
e(t−ti)/R0ρτ (t, ti) where ρτ (t, ti)

denotes the (unit) pulse function with arrival time ti and
duration of τ secs. The duration is typically bounded by
several round-trip times and for simplicity we take it to be
constant and let M be the flow rate at cessation. The aggregate
short-lived traffic u(t) is then the sum of such exponential
pulses, each characterized by its arrival time ti; see Figure 4.
Suppose the inter-arrival times of these short-lived flows is
exponentially distributed with mean 1

λ . One way to describe
the statistics of this process is to consider its time reversal.
This reversal preserves the statistics of u and can be modelled
as a shot noise process. Shot noise (see [9]) is the response



t

ti

R

1

ti+τ

M

u(t)

Fig. 4. Aggregate short-lived TCP flows u as a sum of exponential pulses.

of a linear, time-invariant (LTI) system excited by Poisson
impulses z(t) with arrival intensity λ; z(t) =

∑
i δ(t− ti). If

the impulse response of the LTI system is h(t), the shot-noise
process is simply u(t) =

∑
i h(t − ti). It can be shown that

this process has mean and power spectral density

u0 = λH(0); Suu(ω) = 2πλ2H2(0)δ(ω) + λ|H(jω)|2

where H(jω) is the Fourier transform of h(t). For our model
of short-lived flows, h(t) is the exponentially decaying pulse
h(t) = Me−t/R0ρτ (t, 0) having Fourier transform

H(jω) =
M

jω + 1
R0

(
1 − e−jωτ

MR0

)

Consequently, u0 = λ(MR0 − 1) and

Sûû(ω) =
λM2

ω2 + 1
R2

0

∣∣∣∣1 − e−jωτ

MR0

∣∣∣∣
2

(5)

where û(t) = u(t) − u0. We will use the mean and power
spectral density computations in (5) later in Section IV to
analyze the effect of unresponsive flows on the TCP/AQM
dynamic.

B. Markov ON-OFF Model of UDP Traffic

We now consider unresponsive UDP traffic modelled by
Markov ON-OFF processes. For a Markov ON-OFF process
x(t) (with both ON and OFF periods exponentially dis-
tributed), a Poisson-driven stochastic differential equation can
be used to describe a sample path [10]:

dx(t) = (1 − x(t))dN1(t) − x(t)dN2(t) x(0) ∈ {0, 1}

where N1 and N2 are Poisson counters with rates λ and µ
respectively. Taking the expectation on both sides gives

d

dt
E[x(t)] = (1 − E[x(t)])λ− E[x(t)]µ.

In steady state, x0 = E[x] = λ/(λ + µ). To compute the
correlation, consider

dx(t)x(0) = (1 − x(t))x(0)dN1(t) − x(t)x(0)dN2(t).

Taking the expectation on both sides gives the differential
equation

d

dt
E[x(0)x(t)] = −(λ+ µ)E[x(0)x(t)] + λE[x(0)]

with initial condition E[x(0)x(0)] = E[x(0)] = λ/(λ + µ).
Its solution is

E[x(0)x(τ)] =
λ

(λ+ µ)2
(µe−(λ+µ)τ + λ), τ > 0.

The autocorrelation function of its rate variation x̂(t) = x(t)−
x0 is:

Rx̂x̂(τ) = E[x̂(0)x̂(|τ |)] =
λµ

(λ+ µ)2
e−(λ+µ)|τ |

If we have n independent homogeneous Markov ON-OFF
flows with peak rate r, the mean of their aggregate rate u is
u0 = nrλ/(λ + µ). The autocorrelation function for the rate
variation û(t) = u(t) − u0 is then

Rûû(τ) = E[û(0)û(|τ |)] =
nr2λµ

(λ+ µ)2
e−(λ+µ)|τ |

with power spectral density

Sûû(ω) =
2nr2λµ

(λ+ µ)(ω2 + (λ+ µ)2)
. (6)

C. M/G/∞ Model of UDP Traffic

The autocorrelation of a Markov ON-OFF processes can
only represent short-range dependent traffic. However, network
traffic has been shown to exhibit long-range dependence [11],
[12], and an M/G/∞ model possesses general autocorrelation
structure that captures both short and long-range dependencies;
see [13]. An M/G/∞ input process b(k) is a busy server
process consisting of a discrete-time, infinite server system fed
by a Poisson process with rate λ and generic service time σ
distributed according to F . For different distributions F , both
short-range and long-range dependent traffic can be generated.
The auto-covariance of b(k) has been established to be:

cov[b(k + h), b(k)] = λ
∞∑

i=h+1

P [σ ≥ i] (7)

To model UDP traffic u using this M/G/∞ process, we
first assume that UDP sessions arrive according to a Poisson
process with rate λ. Let s denote the lifetime of a UDP session.
To generate strict-sense long-range dependent traffic, s must
have a Pareto distribution. However, as shown in [14], there
is little evidence that session lifetime-distributions exhibit a
power law in their extreme tails. Therefore, we will consider
a truncated Pareto distribution with exponential tail for s as
suggested in [14]. The resulting complementary cumulative
distribution function (CCDF) for s is then

G(t) � P (s > t) =






1 t < t0

( t0t )α t0 ≤ t < t1

ce−βt t ≥ t1

, (8)



where 1 < α < 2 and c = tα0 e
βt1/tα1 . Let r denote the sending

rate of each UDP session and note that the aggregate sending
rate of UDP traffic u is proportional to the number of active
UDP sessions N(t). If we discretize the system with time step
δ, then, the number of active sessions at each time step forms
a M/G/∞ process b(k) with arrival rate λδ and service time
σ with CCDF

P [σ ≥ i] = P [s > iδ] = G(iδ).

Together with (7), we then have:

cov[u(t+ τ), u(t)] ≈ r2λ

∫ ∞

τ

G(t)dt

for sufficiently small δ. For UDP flows with service time dis-
tribution specified by (8), the auto-covariance of the aggregate
rate is then:

cov[u(t+ τ), u(t)] =






k1 − r2λτ 0 < τ < t0
r2λtα0

(α−1)τα−1 + k2 t0 ≤ τ < t1
r2λc
β e−βτ τ ≥ t1

where

k1 = r2λt0 +
r2λtα0

(α− 1)
(

1
tα−1
0

− 1
tα−1
1

) +
r2λc

β
e−βt1 ;

k2 =
r2λc

β
e−βt1 − r2λtα0

(α− 1)tα−1
1

.

Then the autocorrelation of the rate variation û(t) is Rûû(τ) =
cov[u(t+ |τ |), u(t)] and its power spectral density is

Sûû(ω) = F{Rûû(τ)}. (9)

Because of the power decay of its autocorrelation, M/G/∞
traffic has so called self-similarity. Its impact on queue dynam-
ics is on a wide range of time scales. Therefore u(t) should
not be replaced by u0 in (3). Instead, we should have

dq̄(t)
dt

= −C + u′
0(t) +

N

R(q̄(t))
W̄�,

where u′
0(t) has all of the fine time scale behavior of u(t)

smoothed out. In Section V, we will see from simulations that
M/G/∞ process has bigger impact on AQM performance
than short-range dependent traffic like Markov ON-OFF flows.

D. Power Spectral Density Comparison

We have introduce three different models for unresponsive
traffic, characterized by their power spectral densities (5), (6)
and (9). All the power spectral densities are low-pass in nature
as illustrated in Figure 5, for the parameter settings:

Short-lived TCP: R0 = 0.1;MR0 = 8;λ = 70
Markov ON-OFF: n = 25; r = 40;λ = µ = 5
M/G/∞: t0 = 0.1; t1 = 100;α = 1.5;

β = 1;λ = 62.5; r = 40.

The parameters for short-lived TCP traffic and the Markov
ON-OFF flows are intentionally chosen to show near-identical
low-pass structure. The corner frequencies are 1/R0 and
λ + µ respectively which means that short-lived TCP flows

are correlated on a time scale greater than the round-trip time,
while the ON-OFF model has correlation on the order of
1/(λ+µ). As seen from (5) and (6), these models have similar
power spectral densities when the window size of short-lived
TCP flows MR0 is much larger than 1; in this example,
MR0 = 8. Now, compare these power spectral densities to the
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Fig. 5. Power spectral density comparison: (a) short-lived TCP traffic, (b)
Markov ON-OFF UDP flows, (c) M/G/∞ UDP traffic.

M/G/∞ traffic model in Figure 5. Since, the autocorrelation
structure of the M/G/∞ traffic model is composed of a power
body, then, its power spectral density has an overall lower
decay rate. This is bore out in Section V.C, where simulations
show that the M/G/∞ traffic model produces larger variations
in queue length and dropping probability.

IV. LINEAR ANALYSIS

In the previous section we characterized several models of
unresponsive flows by their mean sending rates u0 and power
spectral density functions Sûû. Accordingly, we now analyze
their impact on the TCP/AQM dynamic. We begin by studying
the effect of mean.

A. Effect of mean sending rate

The mean sending rate u0 of unresponsive traffic has the
effect of reducing available bandwidth so that long-lived TCP
flows experience a diminished (effective) link capacity of

Ceff = C − u0. As discussed in [4], the AQM’s gain
C2

eff

2N
would then decrease, making the AQM more robust but less
responsive. To study this impact quantitatively, consider the
feedback system in Figure 2 with transfer functions Pwin and
Pque given in (4). The resulting closed-loop transfer function

S � 1
1 + N

R0
PwinCaqmPquee−sR0

(10)

is commonly referred to as the closed-loop sensitivity function,
and, stability and responsiveness of the TCP/AQM dynamic



can be deduced from its frequency response. Roughly speak-
ing, robustness is inversely proportional to the peak frequency
response ‖S‖∞ � supω |S(jω)|, while responsiveness is
proportional to S’s unity-gain crossover frequency ωg defined
by |S(jωg)| = 1. To show how responsiveness and robustness
are affected by the mean sending rate, consider network
parameters C = 3750 packets/sec, R0 = 250ms and N = 60
TCP sessions, and, a proportional AQM controller Caqm =
5.8624 × 10−5. This controller roughly corresponds to RED
with the time constant of queue averaging taken much less
than the round-trip time. For a target queue length of 50
packets, we plot in Figure 6 the responsiveness and robustness
as a function of the mean sending rate u0 ∈ (0, C). As
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Fig. 6. This figure shows how AQM robustness increases (top figure)
while responsiveness decreases (bottom figure) when the mean send rate u0
increases.

we can see, AQM robustness increases (top figure) while
responsiveness decreases (bottom figure) when the mean send
rate u0 increases (Ceff decreases). Therefore, an effect of the
unresponsive traffic’s mean sending rate is to make AQM less
responsive, but more robust.

B. Effect of variation in the unresponsive flows

Now we consider how variation in unresponsive flows
affects AQM performance. We will use the autocorrelation
functions in (5), (6) and (9) to evaluate performance. We
take the AQM dynamic Caqm(s) to be the RED controller
as modeled by the low-pass filter:

q̇avg = −Kredqavg +Kredq;
p = Lredqavg

with associated transfer function Caqm(s) = LredKred

s+Kred
. A

discrete-time implementation of RED is described by the
exponential moving-average filter:

qavg(k + 1) = (1 − wq)qavg(k) + wqq(k);

p(k) =
maxp

maxth −minth
qavg(k)

where 1−wq = e−Kred/C ; Lred = maxp

maxth−minth
. Intuitively,

this queue-averaging (or low-pass filtering) should impact the
degree to which variations in the unresponsive flows affect
longer-lived TCP flows. Indeed, if variations in unresponsive
flows exist at time scales much faster than that which AQM
loop operates, then, queue-averaging could filter-out those
higher-frequency queue-components, which otherwise could
communicate, via the AQM, misleading congestion signals.
We now analyze this claim.

1) Closed-loop responses: To evaluate the variations in
queue length q, loss probability p and the arrival rate �, due
to variations in the unresponsive flows û, we use the defining
relationship:

Syy(ω) = |Tyx(jω)|2Sxx(ω) (11)

where (x, y) is the input-output pair of a linear system
with transfer function Tyx(s), and (Sxx, Syy) their power
spectral densities. Referring to the TCP/AQM block-diagram
in Figure 2, we can form the following closed-loop transfer
functions:

Tqû = PqueS;
Tpû = CaqmPqueS;

T�û =
N

R0
PwinCaqmPqueSe

−sR0 (12)

where the sensitivity S is given in (10). As an example, the
power spectral density for the queue length is computed from:
Sqq(ω) = |Tqû(jω)|2Sûû(ω) where Sûû(ω) is taken from (5),
(6) or (9). Before we do these computations we consider a
trade-off between robustness and responsiveness induced by
queue-averaging.

2) Trade-off between robustness and responsiveness:
Queue-averaging in an AQM creates a robust-
ness/responsiveness trade-off. For example, let’s consider
TCP/AQM dynamics for two values of the averaging
parameter: Kred = 0.09, 100 (or wg = 2.5 × 10−5, 0.0267)
as shown in Figure 7. The network parameters are C = 3750
packets/sec, R0 = 250ms, N = 60 TCP sessions and
Lred = 5.8624 × 10−5. The dashed curve (corresponding
to more queue-averaging Kred = 0.09) exhibits less
responsiveness and more robustness.5 In Figure 8, we plot
robustness and responsiveness against queue-averaging Kred.
The bottom plot confirms intuition that AQM responsiveness
is inversely related to averaging. On the other hand, the
top plot indicates that robustness is not monotonic. This
can be explained: For small amounts of queue-averaging
(large values of Kred), the low-pass filter contributes little
additional phase delay to the feedback loop - hence, the loop
is relatively stable. However, when Kred is comparable to
the poles of Pwin and Pque in (4), or, equivalently, when
the time constant of averaging ( 1

Kred
) is near the interval

( R0C
Ceff

,
R0C

2
eff

2N ) = (0.35, 2.38), stability margins decrease;

5Recall that robustness is inversely proportional to the peak in |S(jω)|,
while responsiveness is proportional to the frequency ωg for which
|S(jωg)| = 1
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Fig. 7. Comparison of sensitivity functions S for two values of queue-
averaging parameter, illustrating the trade-off between responsiveness and
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this interval is marked in Figure 8. Further queue-averaging
makes the TCP/AQM dynamic more stable, but sluggish.
With these trade-offs in hand, we now return to analyzing the
effects of the variations in unresponsive flows.
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Fig. 8. Trade-off between robustness (top figure) and AQM responsiveness
(bottom figure) as a function of queue averaging.

3) Variance in unresponsive flows: We now analyze how
variations in unresponsive flows distributes across queue
length q, loss probability p and TCP arrival rate �. Specifically,
we use (11) and (12) to compute the variance of these
responses. For example, the variance of the queue response

is

varq
�
= Rqq(0) =

1
2π

∫ ∞

−∞
|Tqû(jω)|2Sûû(ω)dω

where Rqq(τ) is q’s autocorrelation function. Using the above
we can compute variances varq, varp and var� in response
to 10 Markov ON-OFF (UDP) sources having peak rate
r = 450kbps, as a function of the queue-averaging parameter
Kred; see Figure 9. We use the same parameters C = 3750
packets/sec, R0 = 250ms, N = 60 TCP sessions, Lred =
5.8624×10−5 and λ+µ = 10; see Figure 9. In the case of the
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Fig. 9. Variance in queue length q (top), loss probability p (middle) and
long-lived TCP arrival rate � (bottom) as a function of queue-averaging

queue and arrival rate, the variance is not a monotonic function
of the queue-averaging parameter. The variance peaks for

values of time constant 1
Kred

near the range ( R0C
Ceff

,
R0C

2
eff

2N ) =
(0.35, 2.38), where robustness dips in Figure (8). We notice
that the variance in the queue does not go to zero as Kred → 0
(wq → 0). This occurs since limKred→0 |S(jω)| = 1 so that

varq → 1
2π

∫ ∞

−∞
|Pque(jω)|2Sss(ω)dω �= 0

as Kred → 0. On the other hand, varp and var� tend to zero
as Kred → 0 since Tps and T�s depend explicitly on Caqm
and ∫ ∞

−∞
|Caqm(jω)|2dω → 0.

This illustrates the property that it is impossible, via selection
of the averaging time constant Kred (or wq), to sufficiently
and simultaneously smooth the variations in queue length and
loss probability (or conversely, to both the queue length and
long-lived TCP sending rate) due to variations in unresponsive
flows;



V. SIMULATIONS

To verify results established in previous sections, we con-
ducted both fluid and packet level simulations with different
unresponsive traffic models: short-lived TCP flows, Markov
ON-OFF flows, M/G/∞ flows and CBR flows. For fluid
simulations, we use Matlab’s Simulink tool to simulate the
nonlinear fluid-flow model of TCP/AQM dynamics in (1) and
(2). UDP traffic rate u(t) is imported from trace files generated
according to different unresponsive traffic models. Packet level
simulations were done in ns to compare with Simulink results.
Due to space limit, we only present simulation results for
Markov ON-OFF flows and M/G/∞ flows here. Interested
readers can contact us for more results.

A. Simulation Configuration

We consider a simple network topology as in Figure 10.
There are two groups of flows sharing the bottle-neck link

S1

B1 B2

R1

R2S2

Unresponsive Flows

Long Lived TCP Flows

Fig. 10. Simulation Topology

between B1 and B2. One group is TCP flows sending data
from S1 to R1. The other is composed of unresponsive
flows originating at S2 and destined for R2. The one-way
propagation delay is 123ms for both groups and the packet
size is set to 500 bytes. The bottle-neck link’s capacity is 3750
packets/sec and the router is managed by RED with param-
eters: maxthresh = 1800, thresh = 100, linterm = 10
and gentle = 1. We vary the queue averaging parameter (wq)
from 1 to 0.00001 (equivalently, Kred from 3750 to 0.0375)
to study the performance of the RED.

All simulations begin with 60 long-lived TCP flows. After
the network stabilizes, we introduce unresponsive flows at
time 50 seconds. Unresponsive flows are shut up at time 150
seconds. In order to test AQM responsiveness, we increased
the network load level at time 150 seconds by introducing 15
new long-lived TCP flows.

B. Simulations for Markov ON-OFF Flows

We use 10 Markov ON-OFF flows to generate unresponsive
traffic. The average ON and OFF periods for UDP flows is
200ms. When a UDP flow is ON, it generates traffic at rate
of 450kbps. On average, the UDP traffic takes away 15% of
the available bandwidth at the bottle-neck link.

1) Simulink Fluid Simulation: Figures 11 and 12 show the
UDP traffic’s impact on queue length and loss probability
under different queue averaging parameters.

Oscillations in both queue length and loss probability are
composed of two parts: high frequency part and low fre-
quency part. The high frequency part is contribution from rate
variation in Markov ON-OFF flows. The low frequency part
is determined by the responsiveness of the control loop. It
happens whenever the system is driven away from its operation
point, both at the beginning of the simulation, and, when
the load level changed at time 50, 100 and 150 seconds.
When the queue averaging parameter wq gets smaller (more
averaging), the magnitude of high frequency oscillation in both
queue and loss probability gets smaller. This is because system
robustness increases. At the same time, we see more and more
low frequency oscillations. It takes the system longer to reach
its operating point after being perturbed. This is because the
AQM dynamic becomes less responsive. Both behaviors are
consistent with the analysis in Figure 8.

Finally we measure the variance in queue length q, loss
probability p and long-lived TCP arrival rate � when the UDP
traffic is ON. Figure 13 shows these variances as a function of
Kred and the averaging parameter wq . In comparing with the
linear analysis of Figure 9 we see that the trends are similar,
but that there are differences. First, for the nonlinear fluid
simulation, the effects of averaging occur for larger values
of Kred (or wq). It’s as if the nonlinear fluid model was
operating at smaller round-trip times. Second, the absolute
values of the variances differ. Third, the variance in TCP
arrival rate, see var� in Figure 13, does not got to zero as
Kred → 0. The linear analysis in Figure 9 predicts var� → 0.
This occurs since the linear analysis does not account for the
hard constraint on the loss probability: p ∈ [0, 1].

2) ns Simulation: We repeated previous simulations in ns.
We constructed a topology as in Figure 10 and used ns’s
Exponential ON/OFF traffic generator to generate Markov
ON-OFF flows. Figure 14 shows the evolution of the bottle-
neck queue. Figure 15 depicts the RED’s dropping probability.
Both of them agree with results from fluid simulations in
Simulink. Again, we can see the system’s trade-off between
stability and responsiveness.

C. Simulations for M/G/∞ Traffic

For M/G/∞ model, we set the arrival rate of UDP sessions
to be λ = 25 sessions/sec. The duration of each session
assumes the distribution in (8), with t0 = 73ms, α = 1.5,
β = 1, t1 = 100s. The average length of generated UDP
sessions is again 200ms. On average we have 5 sessions
active simultaneously. The sending rate of an active UDP
session is r = 430kbps. The average rate of M/G/∞ traffic
is 15% of the bottle-neck bandwidth. All these first order
traffic statistics are set close to previous Markov ON-OFF
experiments. Figures 16 and 17 show the results from ns.
Although the trends remain the same as in the previous
experiments, we can see much bigger oscillations in both
queue length and dropping probability. This is because the
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(a) wq = 1 (Kred = 3750)
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(b) wq = 0.001 (Kred = 3.75)
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(c) wq = 0.00001 (Kred = 0.0375)

Fig. 11. Simulink: Queue evolution with 15% UDP Traffic. Queue-averaging
increases with smaller wg or Kred.

power in M/G/∞ traffic is bigger than Markov ON-OFF
traffic as shown in Figure 5. It tells us that we really need
to model long-range dependent unresponsive traffic carefully
when studying AQM performance.

VI. CONCLUSIONS

This paper has made four contributions. First, it has incorpo-
rated unresponsive traffic into fluid models of the TCP/AQM
dynamic. Second, the paper has introduced a shot noise model
for short-lived TCP flows and power spectral analysis has
been carried out for different unresponsive traffic models,
namely, short-lived TCP model, Markov ON-OFF model, and
M/G/∞ model. Third, through linear analysis, fluid-model
simulation and ns simulations, this paper evaluated the impact
unresponsive traffic had on AQM performance. Finally, the
paper offerd insight into the tradeoffs between queue averaging
and various AQM performance criteria.
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(c) wq = 0.00001 (Kred = 0.0375)

Fig. 16. ns: Queue Evolution with 15% M/G/∞ Traffic.
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Fig. 17. ns: RED Loss Probability with 15% M/G/∞ Traffic.


