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On Fluid Queueing Systems with Strict Priority

Yong Liu, Member, IEEE, and Weibo Gong, Fellow, |IEEE

Abstract— We consider priority fluid queueing systems where
high priority class has strict priority access to service. Sample
path analysis tools, such as Poisson Counter Driven Stochastic
Differential Equation, are employed to study system queueing
behavior in steady state. We are able to obtain various analytical
results for different fluid traffic models and system configura-
tions. Those results can be used as a general rule of thumb in
buffer dimensioning and other traffic engineering issues.

Index Terms— Priority Fluid Queue, Poisson Counter Driven
Stochastic Differential Equation, Tandem Fluid System, Traffic
Autocorrelation.

I. INTRODUCTION

Fluid models are becoming increasingly important in sev-
eral areas, including communication networks, manufacturing
systems, transportation systems and other networks. They have
been widely used as burst scale models for high speed commu-
nication networks [1], [2], [3], [4]. In a fluid model, discrete
packets and cells within bursts are modeled as continuous
fluid. Unlike classical queueing models, which assume renewal
arrivals, fluid models can capture autocorrelation in arrival
processes. The continuous nature of fluid also makes fluid
queueing model more tractable analytically. Many results have
been obtained for a variety of fluid queueing systems [2], [5],
[6], [7]. In this paper, we use priority fluid queueing model
to study the performance of routers with priority service. We
employ various sample path description techniques to analyt-
ically characterize the queueing behavior of both high and
low priority buffers under different traffic patterns and system
configurations. This is in contrast to the tendency to move
as quickly as possible away from flow equations to problem
descriptions in terms of probabilities. As our results indicate,
it is often more informative and effective to formulate and
solve a problem of interest using sample path methods. Sample
path approaches looks carefully into the dynamic behavior of
the system, and naturally lead to differential equation based
descriptions. Although in queuing systems most closed form
solutions can only be obtained for steady state, the derivations
are often started with the sample path dynamic evolution. We
also hope that the differential equation based approach in this
paper would bring the subject of controlling queues in closer
contact with other branches of control theory [8], [9].

Traditionally, the Internet provides applications with a single
class of best-effort service. With the increase of link bandwidth
and processing power of routers and end hosts, it is possible for
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the Internet to support a large variety of applications with dif-
ferent quality of service requirements. Some applications, such
as real audio and real video applications, are delay sensitive. It
is crucial for the data to be delivered in time. At the same time,
they can tolerate some loss. Some applications, like HTTP,
FTP, Email, are loss sensitive. They require reliable and delay
tolerant data delivery. The diversity in network applications’
quality of service requirements calls for a network architecture
that supports Differentiated Services (DiffServ [10]) for the
end users. In such an architecture, routers at the network edge
and core routers cooperate with each other to provide service
differentiation. Edge routers classify packets into different
service classes. They also monitor users’ traffic and mark
those packets falling out of users’ traffic profiles. Core routers
schedule packets according to their service classes and marks
put on them. The simplest priority scheduling scheme is strict
priority scheduling. Basically, there are two classes of services:
high priority service and low priority service. Low priority
traffic can only be served when there is no demand from the
high priority traffic. High priority traffic has stringent quality
of service requirements, e.g., delay, delay jitter, etc. Quality
of service received by high priority traffic is independent
of the existence of low priority traffic. It is possible to
meet high priority traffic’s stringent service requirements by
admission control [11]. Low priority traffic has much looser
requirement. It receives the “Best Effort Service”. However,
for the purposes of resource provisioning and dimensioning,
performance analysis is still needed for low priority traffic.

In our priority fluid queueing model, high priority traf-
fic consists of multiple ON-OFF processes with generally
distributed ON-periods and exponentially distributed OFF-
periods. On the other hand, the low priority traffic is modeled
as a constant bit rate (CBR) flow. Various analytical results are
obtained for different system configurations. For single node
priority queue, we explicitly solve the stationary distribution
for the low priority buffer. For the high priority buffer, we ob-
tain its content distribution when either there is only one high
priority flow or there are multiple flows whose active periods
are exponentially distributed. We also investigate priority fluid
queueing system with multiple nodes in tandem. At each node,
we obtain buffer content’s first order statistics for each priority
class. Stationary distributions of individual high priority buffer
and aggregated low priority buffers are also derived.

The paper is organized as follows. In Section 11, we briefly
introduce previous work on priority fluid queue. We then
describe the mathematical model of the our priority queue-
ing system and discuss its validation in real communication
networks in Section I11. In Section 1V, we study single node
priority fluid queue under different traffic models. In Section
V, we extend our model to investigate priority fluid queues in
tandem. The paper concludes in Section VI.
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Il. RELATED WORK

Most previous work of priority fluid queue focused on
Markov Modulated Fluid Flow (MMFF) model for both high
priority and low priority traffic. Zhang [12] studied a Markov
modulated fluid queueing system with strict priority. The
sending rates of high priority and low priority flows are
regulated by a Markov chain. For two states Markov chain
model, he obtained closed form buffer content distributions of
both priorities. Elwalid and Mitra [13] investigated the same
problem. By approximating the distribution of the non-empty
period of high priority buffer with exponential distribution,
they were able to develop analytical approximations for queue
length distributions in two buffers. They studied the admission
control problem based on that approximation. Choi [14] de-
rived the Laplace transform of the stationary joint distribution
of two buffers when the underlying Markov Chain has any
finite number of states. Knessl and Tier [15] used another fluid
model with one Markov ON-OFF high priority flow and one
Constant Bit Rate low priority flow. They explicitly solved
the joint distribution of two buffer contents and constructed
approximation for its tail behavior. In contrast to these models,
our model allows more general statistic behavior for high
priority traffic. We model high priority flows as multiple ON-
OFF processes with generally distributed ON periods and
exponentially distributed OFF periods. This model is very
flexible to capture a variety of traffic autocorrelation structures,
from short range dependence to long range dependence. Based
on this model, various analytical results are established. We
will describe our model in details in the next section. Some
of our work has been presented in [16].

I1l. MATHEMATICAL MODEL

In this section, we describe our model for a single node
priority fluid queue. In Section V, we will extend it to multiple
priority fluid queues in tandem.

We model high priority flows as ON-OFF processes with
generally distributed ON periods and exponentially distributed
OFF periods. The reason for choosing ON-OFF flow model
for high priority traffic is that in communication network many
real time applications exhibit ON-OFF traffic pattern. ON-OFF
model captures traffic autocorrelation structure which will be
shown in following sections to have linear impact on high
priority queue. On the other hand, the queueing behavior of
low priority buffer is determined by the variations in both
arrival rate of low priority traffic and service rate left over
by high priority traffic. Low priority flows are typically less
bursty than high priority flows. We choose a simple constant
bit rate (CBR) flow model for low priority traffic to focus on
high priority traffic’s impact on low priority buffer. The CBR
flow model is a good approximation of low priority traffic
whenever the variance in its aggregate rate is much smaller
than the variance in its service rate. For example, if the low
priority traffic comes from one upstream bottle-neck node,
it can be well approximated by a CBR flow. Our model is
abstract in nature and it is not our intention to model the details
of real queues in the routers and switches. The purpose of
this analysis is to exhibit the impact of traffic statistics on the

buffer contents. For example, the mean buffer content of both
the high priority buffer and the low priority buffer is shown to
be proportional to the autocorrelation time constants of higher
priority flows when they are Markov ON-OFF sources.
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Fig. 1. Fluid queueing system with two priorities

Let’s consider the fluid queue with strict priority as in
Figure 1. We assume infinite capacity for both high and low
priority buffer. The maximum outflow rate of the fluid server is
normalized to 1. The high priority buffer is fed by A ON-OFF
sources. The sending rate of source ¢, i = 1, .., M, is regulated
by an ON-OFF process x;(t). When z;(¢) = 1, source i sends
traffic to the buffer at rate r; > 1. Let A;,,, Sin be z;(¢)’s nth
active period and silent period respectively. {4;,} and {S;,}
are two sets of mutually independent i.i.d random variables.
A;n has general distribution with mean E[A;,] = a;; Sin is
exponentially distributed with mean 1/);. Low priority buffer
is fed by a constant bit rate (CBR) flow with rate »; < 1. High
priority traffic has strict priority access to service: when the
high priority buffer is non-empty, it is drained out at rate 1.
Low priority traffic is served only when there is no backlog in
the high priority buffer. In order for the system to be stable,
we enforce

M Oé)\T
17\t 1 l
;1+ai)\i+rl< ()

Denote by H (t) and L(t) the high priority buffer and low pri-
ority buffer content respectively. The sample path description
of the system is :

M
d
EH(t) = Z rixi(t) — Tr) )
=1
d
aL(t) =1y + (= 1)1 = Igw)Ioe, 3)

where Iy, stands for the indicator function 1(f(t) > 0). We
will also use this notation in following sections.

IV. SINGLE BUFFER SYSTEM

In this section we study priority fluid queue at a single node.
We start with presenting some previous results of single class
fluid queue with both single and multiple ON-OFF sources. In
Section 1V-B, we briefly introduce Poisson Driven Stochastic
Differential Equation and its application in fluid queue study.
In Section IV-C, we study priority fluid queue fed by one
high priority flow and one low priority flow. Various results
are established for both high priority and low priority buffer.
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Priority fluid queue fed by multiple ON-OFF high priority
flows are considered in Section IV-E.

A. Results for Fluid Queue without Priorities

A fluid queue fed by single ON-OFF source has been
studied thoroughly in [5], [17], [18], [19]. It is converted to an
equivalent M/G/1 queue to get analytical results. Assume the
sending rate of the source is regulated by a ON-OFF process
x(t). When z(t) = 1, the source injects fluid into the buffer at
rate h. The service rate of the server is ¢, which is smaller than
the source peak rate h. Let A, S,, be the length of x(¢)’s nth
active period and silent period respectively. {A,} and {S,}
are two sets of mutually independent i.i.d random variables.
A, has a general distribution with Laplace-Stieltjes transform
G(0) and mean E[A,] = «. Silent periods are exponentially
distributed, with mean 1/\. Let Z be the stationary buffer
content. The following Lemma is due to Corollary 3 in [19]
and Lemma 3.2 in [20], which relate the buffer content of a
fluid queue to the workload of a M/G/1 queue.

Lemma 1: Let W denote the stationary workload of a
M/G/1 queue with arrival rate A/c and service time distribu-
tion with Laplace-Stieltjes transform G((h — ¢)8). The queue
is stable if and only if p = aAh/(c + alc) < 1. When the
queue is stable,

P{Z >z} =yP{W > z},V2>0 (4)
E[eer] =1—7 +’YE[679W], (5)

where v = h/((h — ¢)(1 + Aa)).

It can also be derived by the generalized distributional Little’s
law derived in [21]. With this Lemma, we can obtain the
stationary distribution of fluid buffer content Z.

The server’s output process O(t) is another ON-OFF pro-
cess: when the buffer is non-empty, O(t) = 1; when the buffer
is empty, O(t) = 0. After the buffer drains, it remains empty
until the source turns on again. Because the OFF periods of
the source are exponentially distributed, the silent periods of
O(t) are also exponentially distributed with mean 1/X. The
following Lemma characterizes the busy period of the server.
It is due to Proposition 1 in [5].

Lemma 2: Let B be a typical busy period of the server, (or
equivalently typical active period of O(t)),

(i) B has the same distribution as that of a busy period in a
M/G/1 queue with arrival rate A\(1 — ¢/h) and service time
distribution G(cx/h);

(i) P{iB< oo} =1ifandonly if p < 1

(iii) E[B] < ccifand only if p < 1, and E[B] = p/(A(1—p))

For the case when there are M (M > 1) ON-OFF
sources, to our knowledge, there is no analytical formula for
the stationary distribution of buffer content. The stochastic
characteristics of the output process O(t) have been studied
by Kaspi and Rubinovitch [22], Aalto [5] and Boxma [2].
Input and service rates are normalized such that the service
rate is 1 and input rate of source ¢ is r; > 1. Denote by
Ay the typical active period of source i, F;() = E[e~%4],
E[AE]=al®, i=1,2,.,M and k = 1,2, ... The following
Lemma regarding the output process O(t) of the server is a
consequence of Theorem 5.2 in [2].

Lemma 3: O(t) is an ON-OFF process. The typical silent
period S, is exponentially distributed with rate A = S° . \;;
the typical active period A, has general distribution, which
has Laplace-Stieltjes transform

M

Ai
- ; A T (9)7

where {7;(0)}1<i< is the unique solution in [0, 1] of the

equations:
m:(0) = )+ > Ami(l (6)))
J#i

7(0) = E[e~%4°]

Ei(rif 4+ X\i(r;

)1 —m (0

B. Poisson Driven Stochastic Differential Equation

In [6], [23], Poisson Driven Stochastic Differential Equa-
tion (PDSDE) has been introduced to study fluid queueing
systems when sources” ON and OFF periods are exponentially
distributed,

Consider the following stochastic integral equation

/f dT+/Ot (2(r), 7)dN~  (6)

where {N,} is a Poisson counting process.

Definition 1: z(-) is a solution of (6) in the 1td sense if, on
an interval where N is constant, « satisfies & = f(x,t) and
if, when N jumps at ¢1, = changes according to

lim x(t) = g( lim 2(t), 1) + lim (t)

t—»t1 t—t, t—t;

and z(-) is taken to be left-continuous.
When this definition is in force, it is common to rewrite
equation (6) as

dx(t) = f(z,t)dt + g(a, t)dN (¢)

More generally, a stochastic differential equation can be driven
by multiple Poisson Counting processes:

= f@,t)dt + Y gi(z, t)dN; (t) (7)
=1
It is called Poisson Driven Stochastic Differential Equation
(PDSDE). Some important properties of PDSDE are listed
below:
e« If ¢ : R™ — R is a differentiable function, then the
random process (t) = (z(t)) is described by the

dx(t)

following S.D.E
0
a(t) = <a—f,f<sc>>dt

+3 bt

where < z,y > stands for the dot inner-product of vector

)+ 9i(2(t)) — ¥ (x(t))]dN;,

x and y
o Because {N;(¢)} are independent of {x(7),7 < t}, we
have
d oY
ZE[(0)] = B3, f(@)]
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o If 2(t) has a smooth density function p(t, z), it satisfies

WD) 2 (o, )
m 1
3N <p<t,g;1<x>> det(1+ 22— p(t,m)
=1

where ); is the rate of Poisson Counter N;, §;(z) =« +
gi(x) [23]. This equation is the counterpart of the Fokker-
Planck equation for the Wiener process driven systems.

A Markov ON-OFF process «(t) can be described by a
simple PDSDE:

dz(t) = (1 — 2(t))dN1(t) — 2(t)dNa(t)  2(0) € {0,1}

(®)

where Nj(t) is a Poisson Counter with rate A, Ny(t) is a
Poisson Counter with rate . Take the expectation on both
sides of (8),

iE[I(t)] = (1= Efz(t))A = Elz(t)]p

7 ©)

In steady state, E[z] = A/(A + p). In order to compute the
temporal correlation of x(¢), consider

dxz(t)x(0) = (1 — z(t))z(0)dN (¢t) — z(¢)x(0)dN2(t) (10)
Taking the expectation on both sides of equation (10):

a

dt

together with initial condition E[z(0)z(0)] = FE[z(0)] =
A/(A + ). We can solve for the correlation function of the
source

E[z(0)2(t)] = —=(A+ p) Elz(0)z(8)] + AE[x(0)]

& Ble(0)e(r)] =

The correlation of Markov ON-OFF traffic decays exponen-
tially with time constant 1/(\ + ).
The sample path description of the buffer content Z(¢) is

Rya(7) (pe” TR 1) (12)

dZ(t) = —¢ X Izdt + h x z(t)dt (12)
The moments of Z can be obtained from sample paths of
quantities of the form Z(t) x x7(t), where i = 1,2,--- and
j € {0, 1} [6]. For the first order moment

B7 - (h —c)hA " L h—c y 1 (13)
Atcp—hA Ap gEpm -1 At
From equation (13) we can see that the auto-correlation
constant of the Markov ON-OFF source, 1/(\ + ), has a
linear impact on the average queue length.
The nth moments of steady state Z can be obtained quite
similarly and the result is

en(h —¢)

EZ" = —————
cA+ cu — hA

x BEZ" 1, n>1. (14)

C. Single High Priority Flow and Single Low Priority Flow

For a priority fluid queue with only one high priority flow,
we can simplify notations in Section Ill: denote by Ay and
So the typical active and silent period of x(t). Ao has general
distribution F'(x) and its Laplace-Stieltjes transform F(6) =
E[e=%40]. The kth moment of Ag is E[A%] = a®), k > 1. S,
has exponential distribution and E[Sy] = 1/\. When z(¢) = 1,
the rate of high priority flow is r > 1.

Because high priority traffic has strict service priority, the
evolution of the high priority queue is independent of low
priority traffic. It can be treated as a normal fluid queue driven
by one ON-OFF source. Based on Lemma 1 and Lemma 2,
we are ready to present the results for priority queue fed by
single high priority source and single low priority source.

Theorem 4: As long as o \r/(1 +aM\) + 7, < 1, both
the high priority and low priority queues are stable. Let H
and L be the stationary buffer content of high priority and
low priority buffer respectively, then:

(i) For the high priority buffer H(t),

(1—(r—DrxaM)g

Ele %] =1- T AT AR (= 1)) (15)
B a@ (= 1)pp
EH] = 50m0+ 2a®) (1 pn) (16)
B a®(r—1)%p,
P = 5+ 31— )
(@ pn)*(r — 1)° (17)

2r(1 4+ AaMW)(aM (1 = pp))?’

where p, = aW r/(1+aDN), v =7/((r—1) x (1+ aM));
(if) For the low priority buffer L(t),

(1 — T — m/\ﬁ(l))é‘

Ele%"] = 1—77+77(1_Tl)9_/\+/\3<n9) (18)
E[L] = 2300 (1 f(;)g(lf;l)(l — o) (19)
3),2
)= S e e
T e 20

where B(6) is the Laplace-Stieltjes transform of typical busy
period of a M/G/1 queue with arrival rate A(1 — 1/r) and
service time distribution F(z/r); 8*) is the kth moment of
the busy period; p; = AW /(1—7)(14+XBM)); n = 1/(r %
(1+A5D)).

Proof: If aMAr/(1 +a®X) +r < 1, for the high
priority queue, the average load oM Ar/(1 + oV N) is less
than available service rate 1, therefore it is stable. Low priority
queue is also stable since the input rate r; is less than average
available service rate 1 — aMXr/(1 + aMN).

(i) Buffer content of high priority flow is independent of low
priority traffic. Let 1¥ denote the stationary buffer content of a
M/G/1 queue with arrival rate A and service time distribution
with Laplace-Stieltjes transform F'((r—1)#). From Pollaczek-
Khintchine formula, we know

_ (1 =(r— DiaM)e
Bl = e E = 1)
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Then from Lemma 1,
Ele™] =1~y 4+ yE[e™Y]

Based on equation (4), we have E[H*] = vE[W¥*]. Then
the first two moments of H can be derived directly from E[IV]
and E[W?2].

(i) Let Y'(¢) be the high priority buffer ’s output process.
Y (¢) is another ON-OFF process. Silent periods of Y(¢) are
exponentially distributed with rate A. From Lemma 2, we
can calculate the Laplace-Stieltjes transform of Y (¢)’s active
period distribution as B(6).

The sample path description of L(¢) based on Y (¢) is:

J T Y(it)=1
%L(t) ={rn—1 Y@#)=0,L(t) >0 (21)
0 Y(t)=0,L(t) =0

Let’s consider a single source fluid queue with service rate
1 —ry. If the source is regulated by Y'(¢) and source peak rate
is 1, it has exactly the same sample path as (21). Then the
stationary distribution of L(¢) can be solved as a single class
fluid queue. According to Lemma 1, we can get E[e~%], E[L]
and E[L?] by setting h =1,c=1—r; and F(§) = B(/). m

The sample path description of the combined buffer content
is:

r+r—1 zt)=1
rp—1 x(t) =0,H(t)+ L(t) > 0
0 (t) =0, H(t) + L(t) = 0

d
S(H(E) + L(1) =

It is exactly the sample path of the buffer content of a fluid
queue with service rate 1 —r; and fed by an ON-OFF source
regulated by x(t) with peak rate ». Another way to explain this
is that the combined buffer content is independent of service
discipline as long as server is work conservative. If we invert
the service priority, the ON-OFF flow is served by residual
service rate (1 — r;) left by the CBR flow. Denote by (t)
and L(t) the buffer content of the ON-OFF flow and the CBR
flow respectively in the new priority queue. Now the CBR
flow has service priority and its rate is less than its service
rate. Therefore L(t) = 0. Then we have

H(t) + L(t) = H(t) + L(t) = H(¢).

Using Lemma 1, we can obtain the distribution of F(¢). Then
the correlation between H(¢) and L(t) can be derived as:

EIHT] = (B[(H + L) ~ E[H?] - B[1?)),

where E[H?] and E[L?] have been calculated in (17) and (20),
a®(r+r —1)%p
3aM(1 + daM)(1 - )
(@@ p)2(r +r —1)3
2r(1 + 2a) (@D (1 = )
where g = ar/((1+ aX)(1 —r)).

E[(H + L)?] =

A

(a) First Moment of High Priority Buffer

A

(b) First Moment of Low Priority Buffer

Fig. 2. Priority Queue with Single Markov ON-OFF High Priority Flow

D. Example

For the special case when the high priority flow is a Markov
ON-OFF source with mean length of ON period 1/, the first
moment of both high and low priority buffer can be calculated
directly from equation (13)

(r—1)rA y 1

E[H]:/\+u—m A+ p (22)
B r+r—1 r—1 rA
E[L]_(()\—i-u)(l—n)—r)\_/\—i-u—r)\)x A
(23)

In Figure 2, we plot the first moment of high and low priority
buffer. The parameters are: » = 1.5, r; = 0.4, A € [0.4,1] and
u € [1.5,3.6]. When system utilization increases, the average
queue length of both high and low priority buffer grow. The
low priority buffer grows dramatically when system utilization
approaches 1.

E. Multiple High Priority Flows and Single Low Priority Flow

When M > 1, let A,o be the typical active period of
high priority flow i, F,(6) = Ele—%4n], E[A%] = P,
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i=1,2,..,Mand k = 1,2, .... The following Theorem solves
the stationary distribution for low priority buffer.

Theorem 5: For low priority traffic,

(1 —r — Tl)\ﬂ(l))e

-0
E[e L]_1_§+C(1—Tl)9—)\+)\ﬂ(7“19) (24)
E[L] = mOrip (25)
2rM (1 4+ Ar(M)(1 = p)
> T&rip
B = s o a = p)
+ (n®p)*ry (26)

2(1 4 Ar(W) (D (1 = p))?

where 7(6) is defined in Lemma 3, 7(¥) is the kth moment
of O(t)’s active period. ¢ = 1/(r; x (1 4+ Ar™M)) and p =
M /(1 =) (1 4+ M)

Proof: As in the single high priority flow case, the high
priority queue evolves independently of low priority traffic.
It is equivalent to a single fluid queue with multiple ON-
OFF sources. Unfortunately, to our knowledge, there is no
analytical formula for the stationary distribution of its buffer
content. However, according to Lemma 3, the output process
O(t) of high priority buffer can be characterized by an ON-
OFF process. Following the same procedure as the proof of
Theorem 4(ii), we can solve stationary distribution of low
priority buffer. ]

If Ao are all exponentially distributed, we can explicitly solve
H(t)’s stationary distribution by constructing the generator
matrix of the underlying Markov chain which regulates the
aggregate sending rate of ON-OFF sources. Based on that, we
can get ordinary differential equations to obtain the stationary
distribution of H (¢). We are not going to present the procedure
here. Interested readers can check for details in [1], [6], [13]
If we are only interested in the first few moments of the buffer
content, we can use PDSDE technique introduced in Section
IV-B to get the moments of H (¢) directly. Let {NNV;1, N;2} be
the pair of Poisson Counters which drive source . Their rates
are \; and 1/« respectively. Then the sample path description
of the system is :

dH (t) = —Iggydt + S0 i (t)dt
It follows that
M
i (;)2] (0t + 3 rH(b)i(t)dt 28)
i=1
d[H (t)z;(8)] = H(t)(1 — z;(£))dNyy (£) — H(8)a()d N ()
+ai(t) Y reag(t)dt — () Iy dt (29)

k=1

By taking expectation on both sides of (28), (29) and let ¢t —
00, We have:

M
H] =Y rE[Hz] (30)
=1
NE[H] = (A + &)E[H:ci]
M
+(ri—14+ Y mE[x))Ex] (31
k=1,k#i

There are M 41 equations for M 41 unknowns, we can solve
it for E[H] and E[Hz;] as

M
E[H] ZVsz Vk) (32)
z 1 Vi i=1 k:l,k;éi
E[Hz;) = N (E[H] 4+ 75(r; — 1 + Z ")) (33)

k=1,k+i

where Ti = Oéz/(l + O[ZAZ) v, =i Ex; = i .

Similarly, from the S.D.E.s for H (t)x;(t)x;(t), H(t)%z;(t),
H(t)3, we can get:

(34)

11
N+ A+ —+—)—

o

E[Hmil'.]] )\ZE[Hmj]

=(ri+r,—1+ Z Elz;] + N\, E[Hux;]

k=1,k#1,j
(35)

i)E[HQxi]

Q;

(N +
M
DE[Hz]|+2 Y E[Hwzx;] + ME[H?] (36)
J=1,j#i

= 2(T1 —

In (35), E[Hz;z;] can be directly solved based on (33). Then,
there are M + 1 equations with M 41 unknowns in equations
(34) and (36). We can get E[H?] and E[H?w;].

Following the similar procedure, all the moments of H can be
obtained from sample paths of H"(t) x Hi]\il 2™ (t), where
n=1,2,--- and m; € {0,1}.

Use the same argument as in Section IV-C, the combined
buffer content H (t) + L(t) is equivalent to the buffer content
H(t) of a single class fluid queue with service rate (1 — r;)
and fed by multiple Markov ON-OFF flows {r;,z;(¢)}. Then
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we have
R 1 M M
E[H] = —MZum(m —14+r+ Z Vi)
L—r =300 Vi i k=1 ki
(37)
E|L] = E[H + L] — E|H] = E|H] — E[H]
=—Zm 4 Z V)
1 = z 11/1 =1 k=1,k#1
Yo Y W
1_21 1Vii=1 k=1,k#1i
(38)

From (32) and (38), we can see the high priority traffic
autocorrelation constants {;} have linear impact on the queue
length of both high priority and low priority buffer. We verify
our results for both high priority and low priority buffer on
a priority fluid queue feeded by two Markov ON-OFF high
priority flows and one CBR low priority flow. The capacity
of the server is scaled to 1. The rate of the low priority flow,
71, IS Set to be 0.25. The parameters for the first high priority
flow are: r; = 1.5, \y = 0.5, u; = 3. For the second high
priority flow, we fix ro = 1.5, Ao = 0.5 and vary the average
length of its ON periods, 6§ = 1/ from 0.4 to 0.8 with step
size 0.01. For each 6, we run 100 simulations with different
random sequences. Each simulation simulate the priority fluid
queue for 2500 seconds. Averages are taken for the mean
queue lengths of both the high priority buffer and the low
priority buffer. The experimental results are compared with
our analytical results in Figure 3.

25

- - High Priority: Theoretical
2F * High Priority: Experimental
— Low Priority: Theoretical

% Low Priority: Experimental

[
«
T

Queue Length

05F

Fig. 3. Priority Fluid Queue with Two High Priority Flows and Single Priority
Flow

Similar to (34) and (36) for E[H?], we can get a group of
equations to obtain the second moment of H. Together with
E[L?] obtained in Theorem 5, the correlation between H (t)
and L(t) can be solved as:

BIHT) = 5 (A7) -

E[H?] - E[L?))

V. TANDEM PRIORITY QUEUEING SYSTEM

In this section, we study tandem priority queueing system
with strict priority. As shown in Figure 4, the system has V'

Fig. 4. Tandem Fluid Queueing System with Two Priorities

fluid servers in tandem. Service rate of server i is ¢;. To make
the problem nontrivial, we set ¢; > - - - > c¢y. We take the high
and low priority traffic models in Section Il as traffic model
at the first node. We assume for high priority traffic r; > ¢,
and low priority traffic ; < cy. At node 7, denote by H,(¢)
the high priority buffer content, L;(t) the low priority buffer,
O;(t) the output process of high priority buffer and Q;(¢) the
output process of low priority buffer. A similar tandem fluid
queueing system without priority has been studied in [20].
The sample path description for the first node is:

d M

aHl(t) = zjj(t)d IHl( ) (39)
j=1

d

—La(t) = ridg, oy + (r = V(1 = T, )L,y (40)

dt

The solution for H;(t) and L4 (¢) has been studied in Section
IV-C.
The sample path description for node i (i > 2) is

Oi1(t) =cic1ly,_ @
Qlfl(t) = (1 IHi71(t))(Ci*1[L1:71(t) + rl(l - ILi—l(t)))
%Hi(t) = Oi_l(t) — CiIHi(t)

= Qim1 (W)L, 1y (1L = Tr, (1))
(41)

For the 4th high priority buffer, it is a single class fluid
queue driven by a M/G type of ON-OFF process O;_1(t).
Given the distribution of O;_4(t), by using Lemma 1 and
Lemma 2, we can obtain the stationary distribution of H,(¢)
and O;(t). According to Lemma 3, we can solve for the
distribution of O;(t). Therefore we can get the stationary
distribution of { H;(¢),0;(t),2 <1 < V'} one by one. For low
priority buffer L;(t), since its input process Q;_1(t) depends
on its service process (the residual service left by high priority
traffic is dependent with H;_;(¢) thus @;_1(t)), its stationary
distribution is difficult to get.

A better way to solve {H;(t),L;(t)} is to explore the
equivalence between the tandem priority fluid queueing sys-
tem under study and a single node priority queue, which is
established in the following theorem.

Theorem 6: For 2 < k < V, Y0, Hi(t) ~ Hil(t),
Sy Lit) ~ Li(t) and O (t) ~ Oy(t), where Hy(t) and
Lk( ) are the buffer contents of a single node priority fluid
queue with service rate ¢, and fed by the same high and
low priority traffic as the tandem system; O, (t) is the output
process of the single node priority queue’s high priority buffer.
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Proof: The sample path for the single node priority fluid
queue is:

d. M
j=1
d -
ELIC( ) Tlfgk(t) + (7“1 —cp)(1— Iﬁk(t))lﬁk(t) (43)
Ok (t) = Cklﬁk (t) (44)
For Vk > 2,
L k
p Z H;(t) = Z(Ci—JHFl(t) = ¢ilm, 1))
i=2 i=2
=l ) — erlm
Then we have
L M
- SOH(t) = rimi)dt — crlm, (45)
i=1 Jj=1

Because ¢; > --- > cy, it is easy to see Zle H;(t) >0 if
and only if Hy(t ) > 0,80 I gy 4y = I, (v)- Equation (45)
can be rewritten as

M
d
d—z :ZTJIJ t—CkIEk H;(t) (46)
p =
Comparing (46) with (42), we will have Zle H;(t) ~ Hy(t)

and O (t) ~ Ok (t).
For the low priority flow,

dtZL

=1 — (1= Tu,w)(crlp, @+l =1, 1))
(47)
When Hy,(t) = 0, Li(t) = 0 if and only if Zle L;(t)y=0.
Thus (47) can be rewritten as:

t) =1y, ) + (11— cx) o,y (1 = T, 1)
Hi(t))
(48)

Compared with (43), it is the same as the sample path of
Li(t). So we have S2F | Li(t) ~ Li(t). n

Ck)IZle Ll(t)(l — IE?:l

From this theorem, to solve the distribution of any high
priority buffer H;(t),i > 2, we first solve the O;_1(t)
according to Lemma 2. Since O;_1(t) is the only source
of the ith high priority buffer and O;_1(t) ~ Oi_l(t), the
distribution of H,(t) is readily to get through Lemma 1. Also
we can get the distribution of combined length of all the low
priority buffers Zle L;. From Theorem 5, the first moment
of Lj(t),1 < k <V can be solved. Then the first moment of

Le(t),2<k<Vis

k k—1
E[Ly) = E[Z L) - E[Z Li] = E[Li] — E[Lx—1] (49)

Similarly, when the first moment of H,y, (t),1 <k <V canbe
solved, e.g., single high priority flow or multiple Markov ON-
OFF high priority flows, the first moment of Hy(¢),2 < k <V
can be quickly solved as:

ZH

H;] = E[Hy,) — E[Hy_1] (50)

—1
z:l

A. Example

For the special case when high priorlg/ traffic are Markov
ON-OFF flows, we can solve for both 3% H; and 3% | I
Let A;, be the typical active period of high priority flow ¢, and
E[A;0] = «;. Using results in Section IV-E, we immediately
have

M
ZH Zum ri—ckt Y v

z 1 Vi =1 k=1 k;éi
E[E Lz]: g VZTZ l_ck+ § I/k
=1 Zz 1Yi =1 k=1 k;ﬁz
i E viTi(ri — ek + 1+ E k)
Ck — 71— z 1Vi =1 k=1,k#1

Together with (50) and (49), {E]|
be solved.

H;|,E[L;],1 <i<V}can

{x1,r1}

\H
wn TR

{x3,r3}

OYE\@O/’ H:|3 \@—
ol o

Tandem Priority Queueing System with Three Nodes and Four

r — L1

Fig. 5.
Sources

For the system in Figure 5, we have 3 priority fluid queues
in tandem. The service rate for queues are ¢; = 1, co = 0.8
and c3 = 0.7. The rate for low priority CBR flow is 0.2. There
are 3 Markov ON-OFF high priority flows with peak rates
r; = 1.2, 1 <14 < 3. The jump up rates of those Markov ON-
OFF sources are set to be A\ =2, A\ = 2.4 and A5 = 3. We
fix po =20 and sz = 30 and vary py from 5 to 20. Figure 6
plots the average queue length for high and low priority buffer
at each node.

V1. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the fluid queueing system with
two priorities. We use ON-OFF flows with exponential silent
periods and general active periods to model high priority
traffic; CBR flow for low priority traffic. Analytical results
are obtained for different system configurations. In a single
node system, when there is only one high priority flow or
multiple flows with exponential active periods, marginal buffer
distributions and moments are explicitly solved, correlations
between two buffers are calculated; for multiple flows with
arbitrary active periods, buffer content distribution of low
priority traffic is solved. We also extend our results to tandem
priority fluid queueing system. By relating it to equivalent
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oosh - EHY
\ --- E[H2)
— E[H3]

High Priority Buffer

04 -~ E[L1]
--- E[L2]
— E[L3]

Low Priority Buffer

(b) First Moment of Low Priority Buffer

Fig. 6. First Moments of Tandem Priority Queue

problems in single fluid queue, individual high priority buffer
distributions and combined low priority buffer distribution are
solved.

Sample path description tools are repeatedly used to obtain
analytical results. By looking into the queue evolutions, we
have established the equivalence between fluid queue and dis-
crete queue, tandem queues and single node queue, prioritized
queue and single class queue. As a new sample path tool,
Poisson Driven Stochastic Differential Equation is shown in
this paper to be very efficient in the study of fluid queueing
system driven by Markov ON-OFF flows. It enables us to get
moments of queues by solving a group of linear sample path
equations. Compared with traditional methods, which involve
solving probability density equations, this method is more
direct and easier to get closed form solutions.

We have shown that the autocorrelation function of Markov
ON-OFF sources has linear impact on congestion within fluid
queue. We also show this impact can traverse tandem queues
and priority classes. All these suggest that traffic autocorrela-
tion is in a sense as important as its average rate, and not as
a “second order factor” as commonly perceived. This could
be regarded as a general rule of thumb in buffer dimensioning
and other traffic engineering issues, even if flows can only be
modelled as general ON-OFF processes.
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