
On the Efficiency of P2P Service Trading through Social Networks

Yong Liu†, Hao Hu†, Zhengye Liu†, Markus Mobius∗, Keith Ross‡ and Yao Wang†
†Electrical & Computer Engineering, Polytechnic Institute of NYU

∗Harvard University and NBER
‡Computer and Information Science, Polytechnic Institute of NYU

January 15, 2009

1 Service Trading through Social Networks

We consider a set U of users connected in a social network GS = (U,F), where the social link set F ⊂
U × U defines the friends relations between users. If user i treats j as his friend, i connects to j through
a directed link 〈i, j〉 ∈ F . Suppose each user can provide some services, and also want to consume some
services provided by other users. We can define a demand graph GD = (U,D), where D ⊂ U × U is
the service demand profile among users. For a service demand d = (k, l) ∈ D, k is the provider and l is
the consumer of the service. User k charges user l a cost of h(k,l) for providing the service. We define the
associated |U | × |U | demand matrix H = [H(k, l)] as H(k, l) = h(k,l) if (k, l) ∈ D, and H(k, l) = 0 if
(k, l) /∈ D.

Assume there is no centralized bank and no common currency in the system. User k and l can trade their
services synchronously if they need services from each other and h(k,l) = h(l,k). However, this synchronous
trading is too restrictive. To relax the synchronous requirement, the trust between friends can be utilized to
allow friends exchange services asynchronously. Specifically, we introduce pairwise credit between a pair
of friends 〈i, j〉. User j can obtain a service d = (i, j) from i by borrowing h(i,j) amount of credits from i.
Let bij be the amount of credit j owes to i. Automatically, we have bij = −bji. Initially, there is no credit
balance between i and j, bij(0) = bji(0) = 0. After i serves j once, the balance becomes bij(1) = h(i,j). If
the next time i obtains a service (j, i) from j, the balance becomes bij(2) = bij(1)− h(j,i) = h(i,j) − h(j,i).
Let Cij be the maximum amount of credits j can borrow from i. Then the constraint on the credit balance
is bij ≤ Cij , and bji ≤ Cji. Since bij = −bji, the credit balance constraints between i and j can be
summarized as

−Cji ≤ bij ≤ Cij

With pairwise credits, friends can exchange services asynchronously as the mutual credit limits allow.
However, users still cannot obtain services provided by users outside of his direct friends group. To address
this problem, we introduce a credit transfer mechanism inside social network to allow a user to obtain
services from a remote user who is indirectly connected to him through a path of friend links. Specifically,
if l wants to obtain some service provided by k, l first tries to find a path from k to l in the social network,
p(k, l) = {k = r0 → r1 → r2 → · · · rm−1 → rm = l}. Then l can initiate a sequence of credit transfers
in the reverse direction of path p(k, l): rn borrows h(k,l) credits from rn−1, n = m, · · · , 1. After the credit
transfers, k can provide the service to l and the credit balance on each node is updated as brnrn+1(t+ δ) =
brnrn+1(t) + h(k,l).1

1Pairwise credits between different friend pairs are not exchangeable. Therefore, the credit balances between different friend
pairs cannot be merged.

1

2 Credit Transfer Routing

More generally, a service demand can be served as long as a legitimate credit transfer flow can be established
from the provider of the service to the consumer of the service. Let xd

〈i,j〉 be the amount of credit transfer for
service d on link 〈i, j〉, then {xd

〈i,j〉, 〈i, j〉 ∈ F} should satisfy flow conservation on all nodes in the network:

∑
i:〈i,u〉∈F

xd
〈i,u〉 −

∑
j:〈u,j〉∈F

xd
〈u,j〉 =

−hd if u = provider(d)
hd if u = consumer(d)
0 otherwise

, ∀u ∈ U,∀d ∈ D (1)

When there are multiple simultaneous service demands, the total aggregate credit transfers on link 〈i, j〉 and
〈j, i〉 can be calculated as

∑
d∈D x

d
〈i,j〉 and

∑
d∈D x

d
〈j,i〉 respectively. Therefore the resulted credit balance

between user i and j after all credit transfers is bij =
∑

d∈D(xd
〈i,j〉 − xd

〈j,i〉). We have to make sure that the
resulted credit balances on all links after executing all services are bounded by their credit limits:

−Cji ≤
∑
d∈D

(xd
〈i,j〉 − xd

〈j,i〉) ≤ Cij , ∀〈i, j〉 ∈ F. (2)

Given a social network S = (U,F) with links weighted by credit limits {Cij , 〈i, j〉 ∈ F}, and the set
of service demands D with the associated demand matrix H , the credit transfer routing problem is to find
credit transfer flows X (H) , {xd

〈i,j〉, d ∈ D, 〈i, j〉 ∈ F} such that constraints defined in (1) and (2) are all
satisfied.

3 Feasibility Results for Static Service Demands

Lemma 1 If a set of demands form a loop in the demand graph GD and the demand costs are the same,
then all demands in the set can be executed simultaneously as long as users involved in the demand sets are
connected in the social network GS .

Proof: Let C = {u0 → u1 → · · ·um → um+1 = u0} be a loop in the demand graph, and h(un,un+1) =
h, 0 ≤ n ≤ m. For 0 ≤ n ≤ m− 1, find a path Pn in GS from un to un+1. Obviously P−m , ∪

0≤n≤m−1
Pn

is a path (might with loops) from u0 to um. Then Pm , {〈j, i〉| the reverse link 〈i, j〉 ∈ P−m} forms a path
from um to u0. Now allocate credit flows for demands in set {(un, un+1), 0 ≤ n ≤ m} as follows:

{x(un,un+1)
〈i,j〉 = h,∀〈i, j〉 ∈ Pn, 0 ≤ n ≤ m}

It can be easily verified that the flow conservation in (1) is maintained for all demands, and
m∑

n=0

x
(un,un+1)
〈i,j〉 =

m∑
n=0

x
(un,un+1)
〈j,i〉 ∀〈i, j〉 ∈ ∪

0≤n≤m
Pn.

In other words, the credit balance resulted from the executions of this set of service demands is zero on all
social links involved. Therefore the credit balance constraints (2) are satisfied automatically.

In summary, a demand loop in the demand graph can be executed synchronously in a social network
without leaving any balance on any social link.
As illustrated in Figure 1, five users form a social network with a chain topology: A↔ B ↔ C ↔ D ↔ E.
If C wants service from A, and E wants service from C, A wants service from E. Service providers and
consumers are not directly connected in the social network. By setting up credit transfer path A→ B → C
for service (AC), C → D → E for service (CE), and path E → D → C → B → A for service (EA), all
demands are executed, and the credit balances on all links remain zero.

2

EA

D

C

B

Figure 1: Credit transfer flows for a balanced demand set

Definition 1 Balanced Demand Matrix: a demand matrixH is called balanced if for any user in the demand
matrix, the total cost of service demands generated by him equals to the total cost of service demands
requested from him by other users in the demand set:∑

l∈U

H(k, l) =
∑
i∈U

H(i, k), ∀k ∈ U

Lemma 2 Any balanced demand matrix can be decomposed into finite demand loops in the demand graph.

Proof: In the demand graph GD, assign the cost of a service demand as the weight of the corresponding
demand link. For any node in the graph of a balanced demand set, the total weight on its ingress links
equals to the total weight on its egress links. One can traverse the graph in the following way: starting from
any node u0, pick any egress link, say 〈u0, u1〉, with positive weight, move to u1; since u1 has at least one
positive weight ingress link, due to the balanced ingress and egress link weights, it must have at least one
positive weight egress link, then pick any positive weight egress link of u1, say 〈u1, u2〉, move to u2, using
the same argument, the trip can continue until at some step n, the trip goes back to a previously visited node
ui, 0 ≤ i < n, then we find a demand loop ui → · · ·un−1 → un = ui. Let h = mini≤l≤n−1 h

(ul,ul+1),
remove the identified loop from the graph by subtracting h from the weights of all links in the loop. The
ingress and egress link weights on all nodes are still balanced after the loop removal. We can repeat the
process until all link weights go to zero, or equivalently all demands have been decomposed into demand
loops

Theorem 3 Any balanced demand matrix can be executed simultaneously in a social network GS as long
as users involved in the demand sets are connected in GS .

Proof: According to Lemma 2, we can decompose a balanced demand set into demand loops. According to
Lemma 1, each demand loop can be executed independently without generating credit balance on any link.
After executing all demand loops, all demands in the original balanced set are executed.

Definition 2 Reduced Demand Matrix: for a demand matrix H , the reduced demand matrix H̄ is defined
as

H̄(k, l) = H(k, l)−min(H(k, l), H(l, k))

The reduced demand matrix captures the net demand between a pair of users.

Corollary 4 A demand matrix H is executable in a social network GS if and only if the corresponding
reduced demand matrix H̄ is executable in GS .

3

3

2

S+

1

6

5

S−

47

8

9

10

p(1)

p(2)

p(3)

n(4)

n(5)

n(6)

service
sources

service
sinks

virtual
source

virtual
sink

Figure 2: Extended Social Graph for Unbalanced Demand Set

Proof: IF :⇐ If H̄ is executable, let X (H̄) be the associated credit flow. Define Ĥ = H − H̄ , where the
subtraction is taken on each element. Ĥ defines a balanced demand set. Due to Theorem 3, it is executable
with some credit flowX (Ĥ) with zero credit balance on all links. It can be easily verified thatX (H̄)+X (Ĥ)
defines a legitimate credit flow for demand H = H̄ + Ĥ
ONLY IF :⇒ If H is executable, let X (H) be the credit flow. For each pair of users (k, l), merge credit
flows for two demands (k, l) and (l, k). It can easily verified that the combined flow implement the net
demand between (k, l) (possibly with credit transfer loops).

Definition 3 Unbalanced Demand Matrix: a demand matrix H is called unbalanced if there is at least one
user such that the total cost of service demands generated by him does not equal to the total cost of service
demands requested from him by other users in the demand set:∑

l∈U

H(k, l) 6=
∑
i∈U

H(i, k), ∃k ∈ U

Definition 4 Service sources and sinks in unbalanced demand set: for a user u in a unbalanced demand
set, calculate the difference between the cost of service that other users request from him and the cost of
the service that he requests: w(u) =

∑
l∈U (H(u, l) − H(l, u)). If w(u) > 0, we call user u a service

source, and p(u) = w(u) is its net service contribution; if w(u) < 0, we call user u a service sink, and
n(u) = −w(u) is its net service consumption.

Definition 5 For a social network GS = (U,F) with a unbalanced demand set D, let U+ be the set of
service sources, and U− be the set of service sinks, we construct an extended social network G′S = (U ′, F ′)
as follows:

U ′ = U ∪ {s+, s−}; (3)

F ′ = F ∪
u∈U+

〈s+, u〉 ∪
v∈U−

〈v, s−〉; (4)

C〈s+,u〉 = p(u), ∀u ∈ U+; (5)

C〈v,s−〉 = n(v), ∀v ∈ U−. (6)

Figure 2 plots an extended social graph for an original social network graph with ten users, where three
users are service sources, and three users are service sinks, four users are balanced.

4

Theorem 5 An unbalanced demand matrix D is executable in a social network GS if and only if the min-
cut between s+ and s− in the extended social network G′S is greater than or equal to M =

∑
u∈U+

p(u) =∑
v∈U−

n(v).

Proof: {SKETCH}
ONLY IF :⇒ In any credit transfer solution forD, the net credit flow from setU+ toU− isM =

∑
u∈U+

p(u).

Therefore the min-cut in G′S has to be at least M .
IF : ⇐ Given a min-cut between s+ and s− in G′S with size M , construct a flow from s+ and s− with
volume M =

∑
u∈U+

p(u), due to the link capacity constraint on link 〈s+, u〉, u ∈ U+, the flow routed from

s+ to a service source u ∈ U+ is exactly p(u), likewise, the flow routed from a service sink v ∈ U− to s− is
exactly n(v). On the virtual source node s+, put different labels to flows distributed through service source
nodes. On each service sink node, calculates the volume of flows received from different service sources,
denoted as f(u, v), u ∈ U+, v ∈ U−, obviously we will have∑

v∈U−

f(u, v) = p(u), ∀u ∈ U+;
∑

u∈U+

f(u, v) = n(v), ∀v ∈ U−; (7)

Construct a new demand matrix Ĥ with Ĥ(u, v) = f(u, v), the maximum flow directly transfer credits for
Ĥ in GS . So demands in Ĥ can be synchronously executed in GS . It can be easily verified that∑

l∈U

(Ĥ(k, l)− Ĥ(l, k)) =
∑
l∈U

(H(k, l)−H(l, k)), ∀k (8)

Roughly speaking, Ĥ and H have exactly the same service unbalance distribution at the node level.
Now construct another demand matrix H̃ by “subtracting” Ĥ from H . More specifically,

1. H̃(k, l) = H(k, l)− Ĥ(k, l);

2. d(k, l) = H̃(k, l) − H̃(l, k) > 0 set H̃(k, l) = d(k, l) and H̃(l, k) = 0; otherwise set H̃(k, l) = 0
and H̃(l, k) = −d(k, l).

Due to (8), it can be verified that H̃ is a balanced demand set. Due to Theorem (3), we can find credit
transfer flows for H̃ without change the credit balance on links. Combine the credit flows for Ĥ and H̃ , we
have a credit flow for Ĥ + H̃ . It can be checked that the reduced demand matrix for Ĥ + H̃ is the same as
the reduced matrix for the original demand set H . Due to Corollary 4, H is also executable.

4 Credit Transfer Strategies for Dynamic Service Demands

In a time-slotted system, at time slot k, a new set of demands H(k) are generated among users. Given the
credit balance on all social links resulted from previous services, one need to find credit transfer flows to
maximally execute current demand set.

Theorem 6 Given a set of executed demands in history H(i), 1 ≤ i ≤ k − 1, a new demand set H(k) is
executable in GS if and only if the aggregate demand up to time k, A(k) =

∑k
i=1H(i), is executable in GS

with zero credit balance on all links. In other words, the executability of H(k) is independent of how credit
flows were set up for demand sets H(i), 1 ≤ i ≤ k − 1, that have been executed in the past.

5

Proof: Denote by X (i) the credit flow for demand set H(i), 1 ≤ i ≤ k − 1.
ONLY IF :⇒

If H(k) is executable at time k, let X (k) be the corresponding credit flow. Naturally we have a credit
flow for the aggregate demand A(k) in the initial social graph by merging {X (i), 1 ≤ i ≤ k} into one set
of credit flows.
IF :⇐

Let Y(k) be the credit flow for the aggregate demand set A(k) in GS with zero credit balance one all
links.

Similar to the previous argument, all credit flows configured up to time k − 1 execute the aggregate
demand up to time k − 1: A(k − 1) =

∑k−1
i=1 H(i). Let Y(k − 1)

be the aggregate credit flow. Construct a new demand Ǎ(k − 1) by reversing the directions of all
demands of A(k − 1), construct a new flow Y̌(k − 1) by reversing the directions of all credit flows in
Y(k − 1), immediately Y̌(k − 1) implements all demands in Ǎ(k − 1).

At time k, we first add in credit flow Y̌(k−1) to execute Ǎ(k−1), then all links’ credit balance go back
to zero. Then we add in Y(k) to implement A(k). In two steps, we construct a credit flow for the composite
demand Ǎ(k − 1) +A(k), which has the same reduced demand matrix as H(k). According to Corollary 4,
H(k) is also executable at time k.

When a peer cannot find a credit flow for his demand, he can either drop the demand request, or keep the
request in buffer and wait for credit balances change triggered by transactions from other peers in the net-
work. To verify the efficiency of social network based P2P trading, we conducted a preliminary simulation

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

initial credit limit

re
qu

es
t h

ol
d

ra
tio

distributed
centralized

(a) Holding Probability as Function of Credit Limits

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

initial credit limit

av
er

ag
e

ho
ld

 ti
m

e

distributed
centralized

(b) Waiting Time as Function of Credit Limits

Figure 3: Efficiency of Social Network Trading with Dynamic P2P Service Demands

study using a synthesized social network with 400 peers. Peers randomly connect to each other. Peer degree
follows truncated power law with coefficient α = 2 in the range of [5, 100]. The average peer degree is 5.2.
We assign homogeneous credit limitK to all peering links. Each peer generates service demand to a random
peer in the network. The cost of demand follows a truncated normal distribution in the range of [10, 120].
The average cost of demand is 50, and the standard deviation is 50. The demand inter-arrival time on each
peer is uniformly distributed in [0, 400]. We simulated both bufferless and buffered peer request mode. In
the buffered mode, peers hold unfulfilled demand requests and wait for a chance to execute them in a later
time. Given credit balances on all links, a demand is executed if and only if a credit transfer flow can be
established between the supplier and consumer of the demand. For comparison, we also simulated the same
P2P trading with a centralized bank: each peer has a balance and credit limit with the bank; a peer’s balance
increases if he provides a service and decrease if he consumes a service; a peer’s service got hold if his

6

negative balance reach his credit limit. We set the credit limit of a peer with the bank to be the summation of
his credit limits with all his friends in the social network. Figure 3(a) plots the probability that demands got
hold in buffer as a function of credit limits. As we increase the credit limit from 50 (roughly one demand) to
150 (roughly three demands) on all links in the network, the holding probability quickly decreases from 35%
to 3%. The hold probability approaches that of the centralized bank as the credit limit increases. Figure 3(b)
plots the average waiting time for demands to be executed. Again, there is quick reduction when the credit
limit is increased from 50 to 150. The waiting time approaches zero when credit limit is large. We repeat
the same simulation with the setting that 20% randomly chosen peers behave like free-riders. They only
generate service demand, never serve demands from other peers, and never participate in credit transfer. As
illustrated in Figure 4, the trading efficiency of the whole social network degrades significantly. Both the
hold ratio and request wait time in the buffer increases.

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

initial credit limit

re
qu

es
t h

ol
d

ra
tio

no freeriders
20% freeriders

(a) Holding Probability as Function of Credit Limits

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

initial credit limit

av
er

ag
e

ho
ld

 ti
m

e

no freeriders
20% freeriders

(b) Waiting Time as Function of Credit Limits

Figure 4: Efficiency of Social Network Trading with Free Riders

7

