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ABSTRACT
The success of future P2P applications ultimately depends
on convincing users to volunteer their bandwidth, CPU and
storage resources, which is the challenge of incentive de-
sign. A natural approach to providing incentives in P2P ap-
plications is to use a single global currency, whereby peers
earn currency units when contributing resources. Global
currencies, however, require a high degree of coordination,
hindering their deployment in large-scale and decentralized
P2P systems. At the other extreme of global currency is
barter, for which peers bilaterally and synchronously trade
resources. Although bartering is simple and scales, it does
not fully incentivize peer contribution. In this paper, we pro-
pose a new incentive paradigm, Networked Asynchronous
Bilateral Trading (NABT), that can be applied to a broad
range of P2P applications. NABT is applicable in online
social networks. In NABT, each pair of friends keeps track
of a credit balance between them. When user Alice provides
a service (a file, storage space, computation, expert advice
and so on) to her friend Bob, she charges Bob credits. Un-
like synchronous barter, NABT allows peers to supply each
other at different points in time. NABT further allows peers
to trade with remote peers through intermediaries. We the-
oretically show that NABT can achieve the same level of
trading efficiency as global currency systems. Using sim-
ulations driven by MySpace traces, we demonstrate that a
simple two-hop NABT design can greatly improve the effi-
ciency of synchronous bilateral trading and effectively pun-
ish cheaters. The proposed NABT framework can be easily
adopted by contemporary online social networks to provide
incentives for existing and new P2P applications.

1. INTRODUCTION
Although P2P has proven itself as a viable architectural

paradigm for a variety of large-scale distributed applications,
P2P is far from reaching its full potential. Peers possess sur-
plus bandwidth, storage and CPU resources, with the surplus
fluctuating throughout the day. When aggregated together
across all peers worldwide, these unused resources consti-
tute a huge, untapped resource pool. Ultimately, P2P can
potentially realize the Worldwide Computer [3], a transfor-
mative vision in which billions of peer components – collec-

tively made available to applications through a common API
– to provide an infrastructure for file distribution and stor-
age, live and on-demand video streaming, VoIP, distributed
computation, and so on.

But the success of future P2P applications ultimately de-
pends on convincing users to volunteer their resources, which
is the challenge of incentive design. A natural approach
to providing incentives is to use a single global currency,
whereby peers earn currency units when contributing resources.
With global currency, Alice, as a resource supplier, would
earn currency units when she transmits bits, stores bytes,
provides computation and so on for the benefit of P2P appli-
cation. She can then, in turn, use her earned currency to re-
ceive bits, have files stored, or have computation performed
by the P2P application. Such a global currency system mim-
ics real-world currency and transactions, where each user
has a savings account that is decremented when it consumes
services and incremented when it supplies services. Users’
savings could be tracked using a centralized bank or using
some form of digital cash [7]. From economic theory, we
know that global currency systems are highly efficient [27].

Global currencies, however, require a high degree of co-
ordination: central banks rely on a well-functioning legal
system that enforces contracts, punishes counterfeiters and
resolves disputes. Moreover, central banks need to build a
reputation against creating unlimited amounts of currency
which would ignite inflation and undermine the usage of cur-
rency. It is also difficult to justify the high cost of maintain-
ing a complex currency and banking infrastructure for P2P
applications that normally trade goods and services in high
volume but of small value. Although there have been several
proposals for using global currency in P2P [35, 34, 4], and
several systems have actually been built, there hasn’t been a
deployment to date that has taken hold on a large scale [28,
7]. There has also been numerous proposals for global P2P
reputation systems [18, 16]; but to date there isn’t a large-
scale P2P deployment that has successfully used reputation.

As illustrated in Figure 1, global currency is at one ex-
treme of the spectrum of economic systems. At the other
extreme of the spectrum is barter, for which peers bilater-
ally and synchronously trade resources. Barter is appealing
because of its extreme simplicity, as there is no need for cur-
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rency, banks, public-key infrastructures, elaborate dispute-
resolution mechanisms or bank regulation. To date, there is
one large-scale P2P deployment with a “partially” successful
bartering system, namely, BitTorrent. Fundamentally, Bit-
Torrent’s incentive principle is as follows: a peer will get
the file faster if it contributes more upload bandwidth to the
torrent. This incentive encourages users to add resources
to the torrents they participate in, for example, to upgrade
their ISP access or increase the maximum upload rates in
their BitTorrent clients. BitTorrent and its variants realize
this basic incentive using a form of bilateral trading, some-
times referred to as tit-for-tat, for which Alice gives more
chunks to those peers who are currently giving her the most
chunks [8, 23, 10]. This trading is synchronous because it
is taking place within very short time periods, on the order
of tens of seconds. BitTorrent is wildly successful, with mil-
lions of simultaneous peers actively sharing files in hundreds
of thousands of swarms. Clearly, if BitTorrent had been de-
signed without tit-for-tat (or a variant), but otherwise exactly
the same, BitTorrent would have been a major failure, as the
majority of the users would have been free-riders [1, 32].

BitTorrent’s incentive scheme is only “partially” success-
ful in that its bilateral incentive scheme can be circumvented
[24, 25, 31, 33]. Moreover, it is difficult to trade long-tail
content with BitTorrent because users demands’ are rarely
bilaterally matched and there is no incentive for a peer to
contribute if it has no immediate demand. In addition, Bit-
Torrent’s synchronous bilateral trading is expressly designed
for file sharing and is not appropriate for a wider range of
applications. For example, tit-for-tat is inappropriate for
live streaming applications, in which high-bandwidth up-
loaders would have no incentive to supply bandwidth be-
yond what is needed to receive the video at the full rate;
and low-bandwidth uploaders might not even be able to trade
at a sufficiently high rate to see the video. More generally,
synchronous bilateral trading does not facilitate a market in
which users trade diverse and mixed resources (bandwidth,
content, computation, storage, expertise, and so on).

As illustrated in Figure 1, in the spectrum of economic
systems, ranging from bilateral trading at one extreme to a
global currency at the other, the sweet spot for P2P incen-
tive design likely lies somewhere in-between. This paper

explores a new paradigm for incentives, Networked Asyn-
chronous Bilateral Trading (NABT), that expands synchronous
bilateral trading by combining it with asynchronicity, net-
work trading via intermediaries, and online social networks.
In NABT, pairs of friends in online social networks maintain
a credit balance with each other, allowing them to supply
each other at different points in time.

Bilateral credit alone, however, does not completely solve
the market efficiency problem, because any specific pair of
friends can only trade rarely with each other over time. NABT
increases the market efficiency by allowing trade to pass
through intermediaries. For example, if Alice and Charlie
have a common friend, Bob, then Charlie can serve Alice
through Bob. In the process, Bob will decrease his debt with
Alice but increase his debt with Charlie. This mechanism
makes Alice’s credit with Bob more valuable because she
can use that credit to trade both directly with Bob and indi-
rectly with Bob’s friend Charlie. As discussed in Section 2,
NABT abounds in real-world economies, and can serve as
inspiration for P2P incentive design. NABT is particularly
appropriate in the context of online social networks (such as
Facebook and MySpace), where users have a natural set of
friends with whom they can set debt limits.

In this paper we make the following contributions:

• We introduce NABT as a new P2P trading paradigm
for online social networks. NABT solves two funda-
mental problems of the traditional synchronous bilat-
eral P2P trading: asynchronicity over time and asy-
chronicity over nodes.

• We develop formal models to study the efficiency of
NABT. We theoretically show that NABT is perfectly
efficient with balanced demands and supports “networked
tit-for-tat”. The efficiency of NABT with unbalanced
demands is determined by the min-cut between service
sources and service sinks.

• We discuss various practical NABT design considera-
tions in dynamic P2P trading environment. We estab-
lish the memoryless property of dynamic credit trans-
fer routing in NABT. Distributed dynamic credit rout-
ing and credit limit adjustment algorithms are proposed.
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• We apply two-hop NABT to P2P file sharing applica-
tions. Through extensive simulations driven by a large
scale MySpace trace, we show that NABT greatly im-
proves the efficiency of synchronous bilateral trading
and can achieve almost the same level of efficiency as
global currencies. NABT can effectively isolate cheaters
and motivate peers to cooperate in service trading and
credit transfer.

The rest of the paper is organized as follows. In Section 2,
we introduce NABT as a new P2P incentive paradigm in on-
line social networks. We describe the fundamental incen-
tive underpinnings of NABT in Section 3. The efficiency of
NABT under balanced and unbalanced demand sets are an-
alyzed in Section 4. Practical NABT design considerations
are investigated in Section 5. The performance of two-hop
NABT in P2P file sharing is evaluated through simulations
driven by the MySpace trace in Section 6. We summarize
the related work on P2P incentive in Section 7. The paper is
concluded in Section 8.

2. NABT IN ONLINE SOCIAL NETWORKS:
A NEW P2P INCENTIVE PARADIGM

In the context of P2P sharing, synchronous trading is ap-
propriate when peers are synchronized in terms of both time
and service interest (content, computation, storage, etc.) But
in most other P2P resource markets that involve long-tail
content and diverse service interest, synchronicity is highly
constraining and inefficient. Synchronous trading fails along
two dimensions: (1) demand requests occur at different times
(asynchronicity across time) and (2) users’ demand and sup-
ply are not typically bilaterally matched over time (asyn-
chronicity across nodes or absence of “double coincidence
of wants” in economic terms).

Real economies have developed an an intriguing class of
alternative trading systems in situations where there is no
central authority to support a global currency that are col-
loquially referred to as trading favors [29, 30, 21]. They
are common in developing countries and within professional
networks. People in developing countries often lack liquid-
ity which makes it difficult to participate in formal markets
and requires them to procure services through their direct
and indirect social network [9, 22, 20].1 For example, Alice
might want to borrow a truck but none of her direct friends
has a truck. But she recently helped out her friend Bob who
has a friend, Charlie, with a truck. Bob can act as an inter-
mediary, call in a favor from Charlie and trade a favor with
Alice. For professional networks, it was shown that lawyers
“trade” clients to efficiently pool similar claims for class-
action lawsuits [13]. Favor trading is also commonly used
when looking for a job [15, 5].

Intuitively, favors solve the problem of asynchronicity across
1Often, formal markets for certain services such as renting cars,
trucks or tools do not even exist in developing countries because of
poorly functioning legal systems.

time while the use of intermediaries solves the long-tail prob-
lem or asynchronicity across nodes.

2.1 NABT Framework
In this section we describe the basic elements of NABT

which allow us to make the the favor trading paradigm of
real-world social networks operational for online social net-
works. Facebook, MySpace and other online communities
present exciting new opportunities to adopt NABT for P2P
incentive design.

1. Online Social Network. Peers belong to an underlying
online social network, such as Facebook or MySpace.
Each peer in the social network has a set of friends.

2. Credit Limits. Each peer i sets a credit limit Cij for
each friend j. The magnitude ofCij quantifies the trust
between the two friends and depends on their past trad-
ing history2.

3. Credit Balance. At any given time there is a credit
balance between friends. Let bij denote the amount
of credits user j owes user i. By definition, we have
bij = −bji. Because of the credit limits, the credit
balance satisfies

−Cji ≤ bij ≤ Cij . (1)

4. Asynchronous Trading. When user Alice provides a
good or service (a file, storage space, computation, ex-
pert advice and so on) to Bob, she charges Bob a cer-
tain number of credits. Her credit balance with Bob
then increases correspondingly. Alice will not provide
the service if Bob’s resulting debt would exceed the
credit limit Cij .

5. Trading via Intermediaries. Suppose Charlie wants a
good or service from Alice, but he is not one of her
direct friends. If they both have a common friend, say
Bob, then Charlie can still obtain service from Alice
using their mutual friend as a credit intermediary. In
the process, Bob will decrease his debt with Charlie
but increase his debt with Alice, see Figure 23. In
any transaction between Alice and Charlie, there can
be multiple intermediaries and, in fact, multiple paths
of intermediaries.

Unlike a currency scheme, NABT does not involve a global
currency infrastructure, and is void of banks, public-key in-
frastructures, elaborate dispute-resolution mechanisms and
bank regulation. Unlike BitTorrent, the scheme allows for
2In practice, the credit limit Cij would not be explicitly set by user
i, but instead by a local software agent acting on user i’s behalf.
The users may configure the agents with policies, providing guide-
lines to the agent, which may adaptively modify its credit limits.
3If Alice is providing Charlie a file, the transfer would normally be
done directly, from peer to peer, without passing through Bob. But
the credit transfer would take place via Bob.
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Figure 2: Example of Credit Transfer in Social Network

asynchronous trading, and trading of mixed services. Anal-
ogous to “favor trading” in real economies, it is straightfor-
ward to implement within the context of an online social
network. But before NABT can become a viable solution,
a number of fundamental questions need to be addressed.
First, does NABT’s credit limit structure provide true incen-
tives to users for sharing goods and services? How resilient
is NABT against cheating of individual peers? Second, un-
der what conditions does NABT market efficiency approach
that of global currency? Third, what is a simple and efficient
algorithms to enable networked trading? In the following
sections, we will answer these questions using analysis and
simulations.

3. DOES NABT INCENTIVIZE?
In this section we address the fundamental question of

whether NABT provides robust incentives for engineering
a flourishing economy. To examine this question, we discuss
some of the fundamental underpinnings of asynchronous trad-
ing as they apply to both off-line and on-line social networks.

3.1 Asynchronous Trading
When trading is asynchronous over time but not across

nodes the theory of repeated games provides a simple bi-
lateral incentive-compatible mechanism that naturally gives
rise to credits. Consider the example of two users, A and B,
who each have a list of files. Both users have demands for
files that arise independently (and therefore asynchronously
across time) at constant rate 1. Users cannot verify which
files are available for download from the other user but they
know that each requested file is available with probability
p. Downloading a file has utility u and sending a file has
cost h < u. An incentive compatible mechanism has to
satisfy two criteria. (1) The mechanism has to provide in-
centives to disclose that a requested file can be in fact sup-
plied, and (2) the potential supplier must be willing to bear
the cost h of uploading the file. The parameter p codes the
degree to which users’ needs are mutually compatible: when
p is large both users can satisfy most of their file-sharing
needs through mutual trade and asynchronicity across nodes
is low. A simple credit mechanism provides proper incen-
tives to both users: users initially start with a credit score of
0 and count the net number of “favors” (or downloads) pro-

vided by both partners. As long as the credit balance stays
strictly within the interval [−C,C] for some integer C > 0
agents voluntarily disclose whether they possess a requested
file and incur the upload cost. If the credit balance hits the
upper or lower limit the agent who provided a surplus of up-
loads in the past stops further uploads until the other agent
built up some credit for proof.

THEOREM 1. Let r be the user future utility discount rate.
A Markov-perfect equilibrium with voluntary disclosure and
uploads exists if C < C( rp ,

u
h ) where the upper bound C is

decreasing in its argument rp and increasing in its argument
u
h . (See [29] for proof.)

This result illustrates a basic trade-off between efficient trad-
ing and providing incentives: large credit limits make credit
limits less constraining but they also reduce agents’ incen-
tives to disclose and upload files.

3.2 Network Trading
Bilateral trading fails when there is asynchronicity across

both time and nodes such that p is small [19]. Demand pat-
terns for most long-tailed content exhibit a small p, since
users’ tastes for content are highly diverse. Consider the ex-
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Figure 3: Example of Trading Favors in Social Networks

ample of user A who is searching for a file that happens to
be on user B’s hard drive. In this example, the probability p
with which A can find some file of interest on B’s hard drive
is small. According to Theorem 1, this makes it difficult
to build a bilateral long-term trading relationship with that
agent: neither A nor B would have an incentive to disclose
files on their hard drive and incur the cost of uploading them.
However, every user now has four fixed friends with whom
he shares a credit balance. For the sake of exposition we
choose a very simplified credit model: an agent either owes a
favor (incoming arrow) or is owed a favor (outgoing arrow).
We say that agents A and B are connected through an open
path if there is a directed chain of outgoing links connecting
A and B. In our example, the chain A → I2 → I3 → B in
Figure 3(a) satisfies this criterion. The existence of this chain
can be revealed, for example, if A starts a search for the MP3
file and his friends delegate the request to their friends and
so on, until the relayed request reaches B. If B discloses pos-
session of the file and allows A to download it we propose
the following accounting protocol: all links along the open
chain connecting A and B change direction, as illustrated
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in Figure 3(b). Intuitively, A has used up one of his favors
and B has gained a favor. The two intermediaries I2 and I3
have each traded one favor for the other. Authors of [30] de-
rived the bounds on the probability that a user is connected
to another user who possesses a requested file. Importantly,
the high chance of being able to find a resource through an
open link provides incentives to trade favors with neighbors.
In particular, user B has an incentive to voluntarily disclose
possession of the file and send it toA because he gains some-
thing valuable in return: an open link to his friend I3 which
he can use for future trading.

It has been shown in [29, 30] that favor trading has a num-
ber of interesting properties: (i) Favor trading creates stable
long-term trading relationship with friends. (ii) Favor trad-
ing can be thought of as creating personalized “monies” be-
tween pairs of agents. Relaying favors is akin to trading one
of personal money for another unit. In this sense favor trad-
ing implements “favors” as a type of global currency which
does not require a central authority. (iii) The mechanism
is coalition-proof in the sense that groups of agents cannot
jointly deviate by redefining the direction of links between
themselves. Such operations do not change the net wealth of
the group measured by the number of net favors with the rest
of the community. (iv) Weak-link network topologies (such
as random networks) provide better incentives because the
overlap between the set of agents that can be reached through
two separate open links is small and the marginal value of
each link is therefore large [15].

4. EFFICIENCY OF NABT
One immediate question for online NABT is how effi-

cient it is compared with global currencies. The efficiency of
NABT is determined by three major factors: (i) Network ge-
ometry: How are peers connected in online social network?
(ii) Credit limits: How high are credit limits among pairs
of friends? (iii) Demand and supply distribution: How are
service demands and supplies distributed? Given these con-
straints, credit flows should be arranged for all service de-
mands to maximize the economic activity. In this section,
we analytically study the efficiency. To this end we need to
first introduce a formal model for Online NABT.

4.1 NABT Efficiency Model
We consider a setU of users connected in a social network

GS = (U,F ), where the social link set F ⊂ U × U defines
the friends relations between users. If user i treats j as his
friend, i connects to j through a directed link 〈i, j〉 ∈ F .
Since friendship is mostly a mutual relationship, there exist
a pair of directed links between two friends. Suppose each
user can provide some services, and also want to consume
some services provided by other users. We first consider a
model for static demand where all users post their demands
in the same time slot. In Subsection 5.1 we will extend the
model to cover dynamic demand, where users introduce new
demands from time slot to the next.

We can define a demand graphGD = (U,D), whereD ⊂
U × U is the service demand profile among users. For a
service demand d = (k, l) ∈ D, k is the provider and l is
the consumer of the service. User k charges user l a cost
of h(k,l) for providing the service. We define the associated
|U | × |U | demand matrix H = [H(k, l)] as H(k, l) = h(k,l)

if (k, l) ∈ D, and H(k, l) = 0 if (k, l) /∈ D.
Assume there is no centralized bank and no common cur-

rency in the system. User k and l can trade their services
synchronously if they need services from each other and
h(k,l) = h(l,k). However, this synchronous trading is too re-
strictive. With the pairwise credits introduced in Section 2.1,
friends can exchange services asynchronously as the mutual
credit limits allow. Initially, there is no credit balance be-
tween i and j, bij(0) = bji(0) = 0. After i serves j once,
the balance becomes bij(1) = h(i,j). If the next time i ob-
tains a service (j, i) from j, the balance becomes bij(2) =
bij(1) − h(j,i) = h(i,j) − h(j,i). A new service transaction
between i and j can be admitted if and only if the resulting
credit balance bij after the new transaction meets the credit
balance constraints between i and j as summarized in (1).

To facilitate trading via intermediaries, we introduce a
credit transfer mechanism through a path of friend links.
Specifically, if l wants to obtain some service provided by
k, l first tries to find a path from k to l in the social network,
p(k, l) = {k = r0 → r1 → r2 → · · · rm−1 → rm = l}.
Since friend links are bi-directional, l can initiate a sequence
of credit transfers in the reverse direction of path p(k, l):
rn borrows h(k,l) credits from rn−1, n = m, · · · , 1. Af-
ter the credit transfers, k can provide the service to l and the
credit balance on each node is updated as brnrn+1(t + δ) =
brnrn+1(t) + h(k,l).4

4.2 Credit Transfer Routing in NABT
More generally, a service demand can be served as long as

a legitimate credit transfer flow can be established from the
provider of the service to the consumer of the service. We
characterize the credit transfer on a social link 〈i, j〉 for de-
mand d using variable xd〈i,j〉, which is defined as the amount
of credits that node j borrows from node i for service d.
{xd〈i,j〉, 〈i, j〉 ∈ F} should satisfy the flow conservation on
all nodes in the network:

∑
i:〈i,u〉∈F

xd〈i,u〉−
∑

j:〈u,j〉∈F

xd〈u,j〉 =


−hd if u = p(d)
hd if u = c(d)
0 otherwise

,

(2)
where p(d) and c(d) denote the provider and consumer for
service d respectively, ∀u ∈ U and ∀d ∈ D.

When there are multiple simultaneous service demands,
the total aggregate credit transfers on link 〈i, j〉 and 〈j, i〉 can
be calculated as

∑
d∈D x

d
〈i,j〉 and

∑
d∈D x

d
〈j,i〉 respectively.

4Pairwise credits between different friend pairs are not exchange-
able. Therefore, the credit balances between different friend pairs
cannot be merged.
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Therefore the resulted credit balance between user i and j
after all credit transfers is bij =

∑
d∈D(xd〈i,j〉 − xd〈j,i〉). We

have to make sure that the resulted credit balances on all
links after executing all services are bounded by their credit
limits:

−Cji ≤
∑
d∈D

(xd〈i,j〉 − xd〈j,i〉) ≤ Cij , ∀〈i, j〉 ∈ F. (3)

Given a social network S = (U,F ) with links weighted
by credit limits {Cij , 〈i, j〉 ∈ F}, and the set of service de-
mands D with the associated demand matrix H , the credit
transfer routing problem is to find a set of credit transfer
flows X (H) , {xd〈i,j〉, d ∈ D, 〈i, j〉 ∈ F} such that con-
straints defined in (2) and (3) are all satisfied. This problem
is similar to the traffic routing problem in transport and com-
puter networks if one views the credit limit as link capacity
in a social network. One major difference is that the credit
balance on a link can be negative and credit flows in opposite
directions cancel each other.

4.3 Efficiency with Balanced Demand Set
In an ideal synchronous bilateral trade, a peer plays tit-for-

tat with another peer and the pairwise service contribution
and consumption balance out. In this section, we show that
NABT supports networked tit-for-tat: NABT is perfectly
efficient if the aggregate service consumed by each user (re-
gardless of the supplier) equals to the aggregate service sup-
plied by him (regardless of the consumer).

DEFINITION 1. Balanced Demand Matrix: a demand ma-
trix H is called balanced if for any user in the demand ma-
trix, the total cost of service demands generated by him equals
to the total cost of service demands requested from him by
other users in the demand set:∑

l∈U

H(k, l) =
∑
i∈U

H(i, k),∀k ∈ U

LEMMA 2. If a set of demands form a loop in the demand
graph GD and the demand costs are the same, then all de-
mands in the set can be executed simultaneously as long as
users involved in the demand sets are connected in the social
network GS .

Proof: Let C = {u0 → u1 → · · ·um → um+1 = u0} be a
loop in the demand graph, and h(un,un+1) = h, 0 ≤ n ≤ m.
For 0 ≤ n ≤ m− 1, find a path Pn in GS from un to un+1.
Obviously P−m , ∪

0≤n≤m−1
Pn is a path (might with loops)

from u0 to um. Then Pm , {〈j, i〉| the reverse link 〈i, j〉 ∈
P−m} forms a path from um to u0. Now allocate credit flows
for demands in set {(un, un+1), 0 ≤ n ≤ m} as follows:

{x(un,un+1)
〈i,j〉 = h,∀〈i, j〉 ∈ Pn, 0 ≤ n ≤ m}

It can be easily verified that the flow conservation in (2) is
maintained for all demands, and
m∑
n=0

x
(un,un+1)
〈i,j〉 =

m∑
n=0

x
(un,un+1)
〈j,i〉 ∀〈i, j〉 ∈ ∪

0≤n≤m
Pn.

EA

D

C

B

Figure 4: Credit transfers for a balanced demand set

In other words, the credit balance resulted from the execu-
tions of this set of service demands is zero on all social links
involved. Therefore the credit balance constraints (3) are
satisfied automatically.

In summary, a demand loop in the demand graph can be
executed synchronously in a social network without leaving
any balance on any social link.
As illustrated in Figure 4, five users form a social network
with a chain topology: A↔ B ↔ C ↔ D ↔ E. If C wants
service from A, and E wants service from C, A wants service
from E. Service providers and consumers are not directly
connected in the social network. By setting up credit transfer
path A → B → C for service (AC), C → D → E for
service (CE), and pathE → D → C → B → A for service
(EA), all demands are executed, and the credit balances on
all links remain zero.

LEMMA 3. Any balanced demand matrix can be decom-
posed into finite demand loops in the demand graph.

Proof: In the demand graphGD, assign the cost of a service
demand as the weight of the corresponding demand link. For
any node in the graph of a balanced demand set, the total
weight on its ingress links equals to the total weight on its
egress links. One can traverse the graph in the following
way: starting from any node u0, pick any egress link, say
〈u0, u1〉, with positive weight, move to u1; since u1 has at
least one positive weight ingress link, due to the balanced
ingress and egress link weights, it must have at least one
positive weight egress link, then pick any positive weight
egress link of u1, say 〈u1, u2〉, move to u2, using the same
argument, the trip can continue until at some step n, the trip
goes back to a previously visited node ui, 0 ≤ i < n, then
we find a demand loop ui → · · ·un−1 → un = ui. Let
h = mini≤l≤n−1 h

(ul,ul+1), remove the identified loop from
the graph by subtracting h from the weights of all links in
the loop. The ingress and egress link weights on all nodes
are still balanced after the loop removal. We can repeat the
process until all link weights go to zero, or equivalently all
demands have been decomposed into demand loops

THEOREM 4. Any balanced demand matrix can be exe-
cuted simultaneously in a social networkGS as long as users
involved in the demand sets are connected in GS .
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Proof: According to Lemma 3, we can decompose a bal-
anced demand set into demand loops. According to Lemma
2, each demand loop can be executed sequentially without
generating credit balance on any link. After all demand
loops are executed, all demands in the original balanced set
are executed.

Under balanced demand and simultaneous credit transfer,
we therefore see that credit limits do not constrain network
trading because no peer has to run a “debt”. In this case,
NABT is perfectly efficient, that is, just as efficient as a
global currency. This single slot version of NABT can be
viewed as a generalization of the synchronous bilateral trad-
ing; however, rather than playing tit-for-tat with a particular
peer, peers in our P2P mechanisms effectively play tit-for-tat
with the whole network.

4.4 Efficiency with Unbalanced Demand Set
In reality, service demands between peers are dynamic

and unavoidably unbalanced at any given time instance. Un-
der unbalanced demands, credit limits provide “cushion” to
absorb the temporary service imbalance between peers. In
this section, we study the efficiency of NABT under unbal-
anced demands.

DEFINITION 2. Unbalanced Demand Matrix: a demand
matrix H is called unbalanced if there is at least one user
such that the total cost of service demands generated by him
does not equal to the total cost of service demands requested
from him by other users in the demand set:∑

l∈U

H(k, l) 6=
∑
i∈U

H(i, k),∃k ∈ U

DEFINITION 3. Reduced Demand Matrix: for an unbal-
anced demand matrix H , the reduced demand matrix H̄ is
defined as

H̄(k, l) = H(k, l)−min(H(k, l), H(l, k))

The reduced demand matrix captures the net demand be-
tween a pair of users. The following Lemma establishes the
equivalence of the routing feasibility of a demand matrix and
its reduced demand matrix.

LEMMA 5. A demand matrix H is executable in a social
networkGS if and only if the corresponding reduced demand
matrix H̄ is executable in GS .

Proof: IF⇐: If H̄ is executable, let X (H̄) be the associ-
ated credit flow. Define Ĥ = H − H̄ , where the subtraction
is taken on each element. Ĥ defines a balanced demand set.
Due to Theorem 4, it is executable with some credit flow
X (Ĥ) with zero credit balance on all links. It can be easily
verified that X (H̄) + X (Ĥ) defines a legitimate credit flow
for the original demand H = H̄ + Ĥ
ONLY IF ⇒: If H is executable, let X (H) be the credit
flow. For each pair of users (k, l), merge credit flows for
two demands (k, l) and (l, k). It can be easily verified that
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Figure 5: Example of Extended Social Network

the combined flow implement the net demand between (k, l)
(possibly with credit transfer loops).

In an unbalanced demand set, we can classify users based
on their net service contribution to the whole system.

DEFINITION 4. Service sources and sinks in unbalanced
demand set: for a user u in an unbalanced demand set, cal-
culate the difference between the cost of service that other
users request from him and the cost of the service that he
requests: w(u) =

∑
l∈U (H(u, l) −H(l, u)). If w(u) > 0,

we call user u a service source, and p(u) = w(u) is its net
service contribution; if w(u) < 0, we call user u a service
sink, and n(u) = −w(u) is its net service consumption.

For a social network with unbalanced demand matrix, we
can build an extended social network as follows.

DEFINITION 5. For a social network GS = (U,F ) with
an unbalanced demand set D, let U+ be the set of service
sources, and U− be the set of service sinks, we construct an
extended social network G′S = (U ′, F ′) as follows:

U ′ = U ∪ {s+, s−}; (4)
F ′ = F ∪

u∈U+
{〈s+, u〉} ∪

v∈U−
{〈v, s−〉}; (5)

C〈s+,u〉 = p(u), ∀u ∈ U+; (6)

C〈v,s−〉 = n(v), ∀v ∈ U−. (7)

Figure 5 plots an extended social graph for an original social
network graph with ten users, where three users are service
sources, and three users are service sinks, four users are bal-
anced. Now we are ready to present the main theorem that
characterizes the efficiency of NABT with unbalanced de-
mand matrix.

THEOREM 6. An unbalanced demand matrix D is exe-
cutable in a social network GS if and only if the min-cut be-
tween the source s+ and sink s− in the extended social net-
workG′S is greater than or equal to

∑
u∈U+

p(u) =
∑

v∈U−
n(v).

Proof: ONLY IF⇒: In any credit transfer solution for D,
the net credit flow from set U+ to U− is M =

∑
u∈U+

p(u).

Therefore the min-cut in G′S has to be at least M .
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IF⇐: Given a min-cut between s+ and s− in G′S with size
M , construct a flow from s+ and s− with volume M =∑
u∈U+

p(u), due to the capacity constraint on link 〈s+, u〉, u ∈

U+, the flow routed from s+ to a service source u ∈ U+ is
exactly p(u), likewise, the flow routed from a service sink
v ∈ U− to s− is exactly n(v). On the virtual source node
s+, put different labels to flows distributed through different
service source nodes. On each service sink node, calculates
the volume of flows received from different service sources,
denoted as f(u, v), u ∈ U+, v ∈ U−,∑

v∈U−
f(u, v) = p(u), ∀u ∈ U+; (8)

∑
u∈U+

f(u, v) = n(v), ∀v ∈ U−. (9)

Let’s construct a new demand matrix Ĥ as Ĥ(u, v) = f(u, v)
if u ∈ U+ and v ∈ U−; and Ĥ(u, v) = 0 otherwise. The
maximum flow directly transfer credits for Ĥ in GS . So de-
mands in Ĥ can be synchronously executed in GS . It can be
easily verified that∑
l∈U

(Ĥ(k, l)− Ĥ(l, k)) =
∑
l∈U

(H(k, l)−H(l, k)), ∀k

(10)
That is to say Ĥ and H have exactly the same aggregate
service unbalance distribution on each node.

Now construct another demand matrix H̃ by “subtracting”
Ĥ from H . More specifically,

1. H̃(k, l) = H(k, l)− Ĥ(k, l);

2. d(k, l) = H̃(k, l)− H̃(l, k);

3. if d(k, l) > 0, set H̃(k, l) = d(k, l) and H̃(l, k) = 0;
otherwise set H̃(k, l) = 0 and H̃(l, k) = −d(k, l).

Due to (10), it can be verified that H̃ is a balanced demand
set. Due to Theorem 4, we can find credit transfer flows for
H̃ without change the credit balance on links. Combine the
credit flows for Ĥ and H̃ , we have a credit flow for Ĥ + H̃ .
It can be checked that the reduced demand matrix for Ĥ+H̃
is the same as the reduced matrix for the original demand set
H . Due to Lemma 5, H is also executable.
In a trading system with a centralized bank and a global cur-
rency, service sinks can “buy” services as much as their bal-
ances with the bank allows. One can treat such a system as
a trading network with a star topology rooted at the bank.
The trading efficiency of bank system is also limited by the
min-cut of the star topology. As will be shown in our sim-
ulations, the efficiency of NABT in well-connected online
social networks is very close to trading systems with banks
and global currencies.

5. NABT DESIGN CONSIDERATIONS
While we have shown NABT incentivizes and is highly

efficient, practical design issues need to be addressed before

it becomes a viable P2P incentive mechanism in online so-
cial networks. In this section, we provide a discussion on
several NABT design considerations.

5.1 Dynamic Credit Routing
To study the efficiency of NABT, we assumed a static ser-

vice demand and the credit transfer routing is calculated us-
ing a centralized algorithm to maximally satisfy service de-
mands. In reality, users generate service demands dynami-
cally. Under dynamic service demands, credit transfers be-
tween users can no longer be grouped into a single time slot
and executed simultaneously. Instead, credit transfer routing
has to be done dynamically. Credit routing for a new ser-
vice demand takes as given the credit balances on all links
after credit transfers for earlier demands. If no legitimate
credit flow can be found for a peer’s demand, it can be either
dropped, or kept in the peer’s request buffer to wait for credit
balance changes triggered by future transactions from other
peers in the network. To study the efficiency of NABT with
dynamic demands, we employ a time-slotted model. At each
time slot k, a new set of demands H(k) is generated among
users. Given the credit balance on all social links resulting
from previous services, our goal is now to find credit transfer
flows to maximally satisfy current demand set.

5.1.1 Memoryless Property of Dynamic Routing
We first show the memoryless property of credit routing.

THEOREM 7. Given a set of executed demands in history
H(i), 1 ≤ i ≤ k − 1, a new demand set H(k) is executable
in GS if and only if the aggregate demand up to time k,
A(k) =

∑k
i=1H(i), is executable in GS with zero initial

credit balance on all links. In other words, the executability
of H(k) is independent of how credit flows were set up for
demand sets H(i), 1 ≤ i ≤ k − 1, that have been executed
in the past.

Proof: Denote by X (i) the credit flow for demand setH(i),
1 ≤ i ≤ k − 1.
ONLY IF ⇒: If H(k) is executable at time k, let X (k)
be the corresponding credit flow. Naturally we have a credit
flow for the aggregate demandA(k) in the initial social graph
by merging {X (i), 1 ≤ i ≤ k} into one set of credit flows.
IF⇐: Let Y(k) be the credit flow for the aggregate demand
set A(k) in GS with zero credit balance on all links. Similar
to the previous argument, all credit flows configured up to
time k − 1 execute the aggregate demand up to time k − 1:
A(k − 1) =

∑k−1
i=1 H(i). Let Y(k − 1) be the aggregate

credit flow. Construct a new demand Ǎ(k − 1) by reversing
the directions of all demands of A(k − 1), construct a new
flow Y̌(k − 1) by reversing the directions of all credit flows
in Y(k− 1), immediately Y̌(k− 1) implements all demands
in Ǎ(k − 1). At time k, we first add in credit flow Y̌(k − 1)
to execute Ǎ(k − 1), then all links’ credit balance go back
to zero. Then we add in Y(k) to implement A(k). In two
steps, we construct a credit flow for the composite demand
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Ǎ(k−1)+A(k), which has the same reduced demand matrix
as H(k). According to Lemma 5, H(k) is also executable at
time k.
With the memoryless property, the credit routing feasibil-
ity for new service demands is independent of how credit
routing was done for demands in the past. One may draw a
conclusion that, at any given time k, all feasible routing so-
lutions for the current demand setH(k) are equally good for
future routing. However, this argument is only true in terms
of the routing feasibility. In reality, credit routing has to take
many other considerations.

5.1.2 Multiple Credit Routing Objectives
In the efficiency study, one can utilize any path to trans-

fer credits and reach the maximum credit flow. In prac-
tice, long credit transfer paths are likely less preferable than
shorter ones. Shorter credit transfer paths employ less num-
ber of trading intermediaries. It will increase the resilience
of NABT against individual user failure and cheating. One
has to simultaneously consider the “width” and “length” of
credit transfer paths. Similar to multi-path traffic routing, it
is also possible to employ multiple paths to transfer credits
for a service demand requiring lots of credits. Since credit
flow on each path affects the credit balance across each bilat-
eral link, it affects subsequent incentives and the efficiency
of asynchronous trading. For example, it might be better
to “split up” one large credit flow between a particular de-
mand and supply node into multiple flows across several dis-
joint paths connecting these two nodes. Such a protocol can
make requests less “chunky” and hence improve efficiency
by reducing the chance that bilateral links hit the credit con-
straints. Multipath credit routing can also increase the re-
silience against failures on individual paths. If a particular
demand can be satisfied by more than one node, the routing
protocol might “score” different possible paths by assessing
how it affects intermediaries’ credit constraints. We will in-
vestigate dynamic credit flow routing algorithms to tradeoff
multiple credit routing objectives in our future work.

5.1.3 Routing Calculation
Credit routing can be calculated by a centralized algo-

rithm to maximally satisfy service demands. However, a
centralized solution requires a greater degree of coordina-
tion and is hard to implement in online social networks. On
the other hand, decentralized algorithms to find credit rout-
ing paths are closer to the spirit of asynchronous trading
and can be easily adopted in online social networks. Sim-
ilar to link-state routing, e.g. OSPF, in traffic networks,
users in a social network can periodically exchange the sta-
tus of their social links, including the connectivity, credit
limit, credit balance. Using the collected network informa-
tion, each user calculates credit routing for his demands lo-
cally. Users on the calculated routing path will then be no-
tified to carry the credit transfer. Such a proactive approach
might incur too much signalling overhead to exchange social

link status. Alternatively, one can adopt a reactive approach:
users calculate credit routing on-demand. After a user gen-
erates a service request, he will first search for potential ser-
vice providers by sending out queries through the social net-
work. 5 Then the user explore the credit transfer paths to
those potential providers by sending out credit transfer re-
quests through their neighbors. One simple way is to use
controlled flooding. A credit transfer request with volume h
will first be sent to the user’s direct neighbors with which it
has an available credit budget no less than h (that is, it can
borrow additional h credits without violating the credit limit
constraint). Likewise, those neighbors will only forward the
credit transfer request along the links with available credit
space greater than or equal to h. When the credit transfer
request reaches one of the supplier, it will send back a reply
in the reverse direction to establish a credit transfer path. To
control the overhead, one can adopt a TTL counter to limit
the scope of flooding. In fact, as will be shown in our simula-
tion of MySpace, even a two-hop flooding can already reach
a large number of users in typical online social networks.

5.2 Dynamic Credit Limit Setting
In NABT, the credit limits Cij are individually set by the

users and reflect the trust between friends in online social
networks. As shown in Theorem 1, there is a tradeoff be-
tween efficiency and incentives. With dynamic service de-
mands, users dynamically negotiate credit limits with their
friends. Similar to practices in real social networks, a pair
of friends tend to trust each other more as more trades be-
tween the two, direct or indirect, are fulfilled. And trust will
be damaged by unfulfilled trades and service disputes. In
NABT, users can adopt different policies for credit limit ad-
justment. In our simulations, we adopt a simple Additive
Increase Multiplication Decrease (AIMD) adjustment algo-
rithm: the credit limit on a social link increases by an amount
of α after each fulfilled transaction utilizing the link; the
credit limit decreases by a factor of β whenever the link is
involved in an unfulfilled or disputed transaction. This way,
users are motivated to fulfill services requested from them
and relay credits for their friends. Cheaters will be pun-
ished by losing their connectivity for future service trades.
To avoid credit limit explosion, a maximum credit limit can
also be set.

5.3 Additional Incentives for Intermediaries
In NABT, when relaying requests for service, intermedi-

aries “break even” in trading bilateral credits. As explained
in Section 3, the incentives for intermediaries come from that
participating in credit transfers can maintain and strengthen
their social links, through which they can obtain services
in future. On the other hand, intermediaries do incur some
small costs when relaying credits. Additional incentive mech-
anisms can be adopted to maximally motivate users to achieve
5It is also possible that service providers are located through a
channel independent of the online social network.
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a network-wide trading efficiency. One promising mecha-
nism is to allow links to go “stale” if they haven’t been used
for relaying requests. This can be done by introducing a
discount rate for credit limit on links. Essentially, more re-
cent trades carry more weights in determining the current
credit limit. To maintain enough credit limit for efficient
trading, one is motivated to actively participate in NABT.
Another mechanism is to compensate intermediaries by al-
lowing them to charge a commission for relaying. This com-
mission can be implicitly transferred by allowing the inter-
mediary to swap credit with the requesting node for a slightly
larger credit with the providing node.

6. SIMULATION STUDY OF NABT
To evaluate the performance of NABT, we developed a

time-stepped simulator to compare NABT with synchronous
trading and with trading with global currency. We drove the
simulator with social network traces collected from MyS-
pace [2]. Our simulation results highlight the incentives pro-
vided by NABT, the advantages of networked trading, and
the impact of cheating behavior.

6.1 P2P Trading in File Sharing
We use P2P file sharing as an example to demonstrate the

applicability and efficiency of NABT in online social net-
works. We simulate a P2P file sharing network with 10, 000
peers. Each peer dynamically generates requests to down-
load files in a catalog of 10, 000 files. Each peer can share
some files on its disk and upload to other peers. We as-
sume peers are all self-optimizing and follow some strategy
to trade files with other peers in the system. Three trading
paradigms are investigated and compared:
Trading with Global Currency (GCT). We assume there
is a global currency and a centralized bank. Peer i has Bi
initial credits with the bank. For simplicity, we assume that
each file costs one credit. Any peer can download a file from
any other peer. If peer i wants to download a file from peer
j, i pays one credit to j through the bank.
Synchronous Trading (ST). Two peers can trade if and only
if they can supply files to each other simultaneously. Each
peer can trade with all other peers in the system. To in-
crease the trading opportunities, each peer locally buffers
unfulfilled file download requests so that the request can be
fulfilled in the future. Specifically, the trading policy is as
follows: if a peer i has a buffered request for a file that is
available at another peer j, and at the same time peer j has
a buffered request for a file that is available at peer i, peer i
and j exchange the files they want.
Two-hop NABT. Peers are connected in an underlying so-
cial network. For each file download request, a requesting
peer inquires with its friends (called one-hop friends) and
the friends of its friends (called two-hop friends) in the so-
cial network. The peer checks whether there are potential
supplying peers within the two hops, and whether the paths
to these supplying peers can pass sufficient pairwise credits.

If there exists multiple paths, the requesting peer randomly
selects a path.

6.2 Simulation Setup
Time is advanced in time slots, with each time slot rep-

resenting one minute. We simulate the system for 2, 880
minutes in each simulation run.

6.2.1 File Profile
To simplify the simulation and focus on the P2P trading

efficiency, we assume files are small and have the same size
of 3 MB (about the size of a typical MP3). In our simu-
lations, we assume the file popularity follows a Zipf dis-
tribution. When files are sorted in the descending order of
popularity, the probability that the jth video is requested is
pj = j−(1−ρ)/I , where I is the normalization factor and
ρ is a control parameter. We chose ρ = 0.27, which is a
commonly used factor for video on-demand services [6].

6.2.2 Peer Profile
There are two types of peers in terms of bandwidth: 37%

of peers are Ethernet users with an upload bandwidth con-
tribution of 1.2 Mbps, while the rest of peers are residential
users with an upload bandwidth contribution of 400 kbps
[17]. In terms of willingness for sharing, we also assume that
there are two types of peers: 10% of the peers are content-
rich peers, each sharing 1, 000 files; 90% of the peers are
content-scarce peer, each sharing 50 files. Initially, each
peer is assigned a random subset of files for sharing based
on the Zipf distribution. The cached files at each peer evolve
during the simulation. The oldest files in the cache are re-
placed by the newly received files. In the system, each peer
goes online and offline randomly, following a Markov On-
OFF process with both the average on time Ton and the av-
erage off time Toff set to 720 minutes. When a peer reen-
ters the system, it has the same cached files and credit bal-
ances as when it last left the system. Each peer generates
file download requests according to a Poisson process with
rate γ. The default requesting rate is set to 1/10. Thus, on
average, every 10 minutes, a peer requests a new file. The
file requested again follow the Zipf distribution. After a peer
generates a new file request, it inserts the request into its re-
quest queue. Meanwhile, a peer maintains serve queue to
buffer the received requests from other peers. Requests in
the serve queue are served in a first-in-first-out (FIFO) fash-
ion. Within each time-slot, each peer attempts to find sup-
plying peers that can fulfill the requests in its request queue.
Different systems have different trading policies to assign
these requests. For a particular request, when there is more
than one peer that satisfies a given trading policy, the peer
will select a supplying peer that can serve this file with the
shortest waiting time. It is also possible that a peer cannot
find one supplying peer for a particular request. In this case,
the peer will eave this request in its request queue, and try
again in the next time-slot. If a file request cannot be sched-
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uled within 60 minutes after it has been generated, the peer
will simply drop this request and remove it from its request
queue. We assume the request queue of each peer has a finite
length (in our simulation, 100 requests). If a peer’s request
queue is full, all newly generated requests are blocked.

6.2.3 Trading Configuration
To simulate NABT, we assume peers are connected by

an underlying online social network with a topology col-
lected from MySpace. The trace is obtained by crawling the
MySpace on-line Web site from September to October, 2006
[2]. The crawler randomly selects a starting user, crawls the
user’s friends’ pages, their friends’ pages, and so on. Fig-
ure 6 shows the CDF of the number of friends in this so-
cial network topology. On average, a user has 127 friends.
However, a large fraction of the users have a small number
of friends; for example, more than 50% of users have less
than 10 friends. In each time slot, we only consider friends
who are currently online. The default initial credit limit C
for each pair of peers is set to 5. After each transaction, all
peers on the path adapt their credit lines according to the
AIMD algorithm described in Section 5.2, with α = 0.1 and
β = 0.5. The maximum credit limit is set to 100.

To make the comparison as fair as possible, each peer i in
GCT is given an amount of initial credits equal to the sum of
all of peer i’s intitial pairwise credits in NABT with all of its
active friends. Thus, Bi is set to be C ∗ Ton/(Ton + Toff ) ∗
Di, where Di is the number of friends of peer i in NABT.

6.3 Simulation Results

6.3.1 Trading Efficiency Comparison
We compare the trading efficiency of the three paradigms

mainly using two performance metrics:

• Request success ratio (θ): The ratio of fulfilled re-
quests to the total number of requests for a peer. The
canceled and blocked requests are not counted.

• Average waiting time (T ): The waiting time for a
fulfilled file download request is the time lag between
the request arrival and the download completion time.

Since the files are small, the actual file transmission
time is short. The waiting time is mostly due to the de-
lay in the request queue on the requesting peer and the
delay in the serve queue in the supplying peer.

Figure 7 and 8 show the CDF of θ and T across all peers
for the NABT, ST, and GCT schemes. From Figure 7, we
observe that the ST system generally has a low request suc-
cess ratio. About 90% of peers have a θ lower than 0.25.
As expected, the lack of common interest in the ST system
limits the chance of trading, especially for the content-scarce
peers. The content-rich peers have a much higher probabil-
ity for trading and consequently have a high θ. The average
request successs ratio for the content-rich peers is as high as
0.97. From Figure 8, we can see that the ST system has a
long waiting time T given that a request can be successfully
scheduled. More than 50% of peers have an average waiting
time longer than 20 minutes. We should note that our simu-
lated system is underloaded (the system utilization is about
0.05), so that long T is mainly contributed by the waiting
time in the request queue at a requesting peer, instead of the
waiting time in the serve queue at a supplying peer. This
is because a request peer has to wait for a long time to find
a trading partner with mutual interest. The low trading ef-
ficiency of ST results in low request success ratio and long
waiting time.

The GCT system has a much higher request success ratio,
as indicated in Figure 7. More than 40% of peers can suc-
cessfully schedule all of their file requests. These peers have
enough credits to pay for all of the files they want. They
either have a large amount of initial credits, or earn suf-
ficient amount of credits during the trading process with a
high serving capacity. The peers with less credits or lower
serving capacity cannot support all of their requests, result-
ing in a relatively low θ. Figure 8 shows that peers in GCT
also experience short waiting times T . After a peer locates a
supplying peer, as long as it has enough credits in the bank,
it can schedule the requested file immediately. The delay in
the request queue is small.

Figure 7 and 8 show that the efficiency of NABT is much
better than ST and is very close to GCT. In NABT, a peer
with enough pair-wise credits has a very good chance to

11



400 600 800 1000 1200 14000.5

0.55

0.6

0.65

0.7

0.75

Average On Time

Re
qu

es
t S

uc
es

s 
Ra

tio

(a) Average peer on time

2 4 6 80.5

0.55

0.6

0.65

0.7

0.75

Initial Credit Limit

(b) Initial credit line
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user contribution

pass the credits to the supplying peer. For peers not well
connected in the social network, their file requests may need
to wait in the request queue for a while to obtain an avail-
able path to pass the credits. As a result, the waiting time of
NABT is slightly longer than GCT.

6.3.2 Sensitivity of System Configurations
We investigate the sensitivity of system configurations,

such as the number of on-line users and the initial credit lim-
its, on the trading efficiency of NABT. Figure 9(a) shows the
average request success ratio over all peers as a function of
the average on time Ton. We fix the average off time Toff
to 720 minutes. Thus, a larger Ton leads to more on-line
peers. As expected, θ increases as peers stay longer in the
system. With more on-line peers, it is easier for a peer to
find credit transfer paths. The initial credit limit is another
design parameter that affects the trading efficiency for the
NABT system. As indicated in Figure 9(b), with a higher
initial credit limit, peers can use more credits to trade with
each other, hence increasing the trading efficiency.

6.3.3 Service Differentiation
A good incentive design leads to service differentiation

among peers with different service contributions. Figure 7
and 8 show that different peers have different success ratios
and waiting times. In this section, we will see whether these
differentiated services relate to the peers’ contributions to
the system. Figure 10(a) relates the success ratio of each
peer to its upload contribution (in terms of number of files).
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Figure 11: CDF of request success ratio for bilateral
trading with and without intermediaries.

The red curve is obtained by using power fitting on all of
the scattered points. Peers with a higher contribution are
more likely to have a higher request success ratio. This is
especially true for the peers that contribute more than 300
files: they successfully schedule almost all of their requested
files.

Figure 10(b) relates the request success ratio of each peer
to its relay contribution (in terms of the number of times of
being an intermediary peer). Similar observations can be
made: peers that are willing to help their friends for relaying
the pair-wise credits are more likely to have a higher success
ratio. Our AIMD credit limit adaptation algorithm increases
the credit limits for the trading intermediaries. This provides
incentives for the peers to act as trading intermediaries.

6.3.4 Importance of Trading Intermediaries
Intermediaries play important roles in NABT. In this sec-

tion, we examine the efficiency improvement brought in by
intermediaries. We conduct simulations to compare the per-
formance of two-hop NABT with direct bilateral trading. In
direct bilateral trading, a peer is only permitted to trade with
its one-hop friends. Figure 11 shows the CDF of θ across all
peers for the direct bilateral trading and the two-hop NABT
systems. We can observe that the performance of direct trad-
ing is much worse than two-hop NABT. 70% of the peers
have request success ratio lower than 0.1. Intermediaries
improve the trading efficiency of direct bilateral trading in
two ways: (i) Networked trading significantly increases the
trading coverage. The ratio between the number of two-hop
neighbors and the number of one-hop neighbors is approxi-
mately the average number of active friend links of a peer in
the social network. In our simulations, the average number
of friend links is 127, and about half of them are active at
any given time. Therefore one intermediary can increase the
number of potential trading partners for a peer by a factor of
more than 60. (ii) Intermediaries also increase the number
of credits that can be passed between direct neighbors. It is
possible for a peer to pass credits to its one-hop friends us-
ing multiple parallel two-hop paths through intermediaries.
This effectively increases the aggregate credit limits between
a pair of direct friends.

6.3.5 Impact of Cheating
We now consider free-riding and cheating behavior. In
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Figure 12: CDF of request success ratio for NABT with
the presence of free-riders.

a P2P file sharing system, a free-rider may try to receive
the same or even better services as regular peers with mini-
mum contribution to the system. Although a social network
provides built-in reputation among friends, it nevertheless
still needs some mechanism to limit uncooperative behav-
iors. For example, as a supplying peer, a free-rider may not
fulfill its commitment to serve a file after it receives the cred-
its; as a requesting peer, a free-rider may not pay the credits
after it receives the requested file; as an intermediary peer, a
free-rider may not pass the pair-wise credits properly. These
uncooperative behaviors will lead to a dispute among the
peers on the credit transfer path. We now show that NABT
adapts the credit lines to limit the obtainable service quality
of cheaters.

In our simulation, we assume that 10% of the peers are
free-riders. A free-rider behaves as a cheater, causing a dis-
pute, with a probability of 0.5. We investigate whether the
system can provide a limited service quality to the free-riders.
Figure 12 plots the CDF of request success ratio for the co-
operative peers and the free-riders. We can observe that with
our AIMD credit limit adaptation algorithm, the free-riders
receive much worse service compared with the cooperative
peers: more than 60% of free-riders have a θ lower than 0.2.
The cooperative peers have a similar θ as when there are
no free-riders (Figure 7). Since a free-rider keeps cheating,
most of its friends block its file or credit transfer requests
by reducing its credit limit. Although the cooperative peers
may also be punished when getting involved in a dispute, the
disputes nevertheless have little affect on their overall trad-
ing efficiency. This is because: (i) for a cooperative peer, the
occasional credit limit reduction of a particular friend does
not affect its credit limits with its other friends; (ii) the co-
operative peer can rectify its reduced credit limit by serving
file requests and/or transferring credits.

7. RELATED
As mentioned in the Introduction, there are several stud-

ies on BitTorrent’s tit-for-tat incentive mechanism [8, 23,
10, 24, 25, 31, 33]. As described in Section 1, BitTor-
ren’s tit-for-tat scheme is essentially synchronous bartering;
as demonstrated in our simulations, synchronous schemes
are generally inefficient. There have been several impor-
tant studies of asynchronous incentive schemes in P2P sys-

tems. For example, there are several proposals for using
global currency in P2P [35, 34, 4, 14]. NABT, with its
distributed currency and bilateral trading, is very different
from all of these global currency schemes. There has also
been interesting proposals for global P2P reputation systems
[18, 16]; but to date there isn’t a large-scale P2P deploy-
ment that has successfully used reputation. Game theoretic
approaches for P2P incentives have been studied in [26, 11,
12]. Feldman et al use simulation to show that reciproca-
tion incentive mechanisms can drive the system of strategic
users to nearly optimal levels of cooperation [12]. More re-
cently, Zhao et al developed a mathematically-tractable dy-
namic game-theoretic framework to analyze a broad class of
P2P incentive schemes [36]. To our knowldege, this paper,
proposing and exploring NABT, is the first to examine P2P
incentives in the context of online social networks.

8. CONCLUSIONS AND FUTURE WORK
We presented a new P2P trading paradigm for online so-

cial networks: Networked Asynchronous Bilateral Trading
(NABT). NABT solves the two fundamental problems of
traditional synchronous bilateral P2P trading: asynchronic-
ity over time and asychronicity over nodes. In NABT, peers
can trade services with each other both asynchronously and
through intermediaries. Supporting a form of “network tit-
for-tat” we mathematically showed that NABT is perfectly
efficient with balanced demands. The efficiency of NABT
with unbalanced demands is determined by the min-cut be-
tween service sources and service sinks. We discussed prac-
tical design considerations in dynamic trading environment.
To demonstrate the efficiency of NABT, we developed two-
hop NABT algorithms for P2P file sharing systems. Through
simulations driven by a MySpace trace, we showed that NABT
greatly improves the efficiency of synchronous bilateral trad-
ing and can achieve almost the same level of efficiency as
global currency. In addition, NABT can effectively isolate
cheaters and motivate peers to cooperate in service trading
and credit transfer.

NABT opens up an exciting space for P2P incentive de-
sign. An important open problem is optimal credit routing
algorithms to tradeoff multiple routing objectives. It is desir-
able to design dynamic credit limit adjustment algorithms to
adapt to user demands and user trading behaviors. It is also
desirable to develop additional incentive strategies that max-
imally motivate intermediaries to participate in networked
trading. Another important direction for future work is to
implement the NABT algorithms as incentive engines for
P2P applications in online social networks. The implemen-
tation of NABT is straightforward and only requires mini-
mum coordination among friends in social networks.
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