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Abstract—Adaptive streaming, such as Dynamic Adaptive
Streaming over HTTP (DASH), has been widely deployed to
provide uninterrupted video streaming service to users with
dynamic network conditions. In this report, we analytically study
the potential of using P2P in conjunction with adaptive streaming.
Our focus is on how to provide incentives in P2P adaptive
streaming. We first study P2P adaptive streaming under a taxation
framework. Then we develop more general pricing mechanisms
for P2P adaptive streaming using cooperative game theory.

I. INTRODUCTION

We have recently witnessed the wide deployment of adap-
tive streaming that provides uninterrupted video streaming
service to users with dynamic network conditions. To our
knowledge, all deployed adaptive streaming solutions to date
are server-based [1]. Notably, Netflix’s online video streaming
service is implemented using Dynamic Adaptive Streaming
over HTTP (DASH) [2], [3]. In adaptive streaming, the video
server encodes the video into multiple versions at different
rates. Each client then dynamically chooses a video version
that matches the available bandwidth along the server-client
connection. To ensure continuous playback, low quality video
will be streamed if either the server is overloaded, or the
server-client connection has low available bandwidth. P2P
video streaming is a proven technology that can efficiently
reduce the load on servers, and provide robust video streaming
services in face of peer churn and bandwidth variations [4],
[5], [6], [7], [8]. It is therefore natural to consider integrating
P2P into adaptive streaming.

In P2P adaptive streaming, peers have heterogeneous and
time-varying upstream and downstream bandwidth availability.
A peer dynamically switches between video versions to match
its current network condition. A peer downloads video either
from the server, or from other peers watching the same version.
To maximally exploit the multiplexing gain, it is desirable to
facilitate P2P sharing among peers watching different versions
of the same video. Towards such a paradigm, the key design
questions for P2P adaptive streaming are:

1) Which video version (rate) should each peer receive?
2) How should we generate and distribute multiple versions

of the same video among heterogeneous peers?
3) How to we deliver stable video quality to peers in face

of temporal bandwidth variations?
Video rate allocation among peers reflects the fundamental

trade-off between providing social equality and contribution
incentives. On one hand we want to maximize the minimum
viewing quality across all peers; on the other hand, we want to
incentivize individual peers to maximally contribute bandwidth

by providing them a better viewing experience. One extreme
is to pool all upload bandwidth in the system and evenly
distribute it to all peers so that they watch the same video
version. This design is “fair” but does not provide incentives
for peers to contribute upload bandwidth. Another extreme
is to make a peer’s video download rate equal to its upload
contribution, so that peers are motivated to contribute more to
improve their viewing experience. However, in this case low
bandwidth peers will receive very poor quality video. Also
a peer with temporary upload bandwidth dips will experience
immediate video quality degradation. This works against P2P’s
multiplexing advantage, both spatially (among heterogeneous
peers at the same time), and temporally (cross different time
instants on a single peer).

II. TAXATION-BASED P2P ADAPTIVE STREAMING

In this section, we employ taxation to strike a balance
between fairness and incentives in P2P adaptive streaming.To
enable video sharing between peers watching different ver-
sions of the same video, transcoding can be applied: a peer can
transcode its received video into a different (normally lower)
quality level, and upload it to other peers watching at that
level. More recently, scalable video coding techniques, such as
layered video and MDC, have been adopted in P2P streaming.
Both of them incur computation and coding overhead on the
servers and peers. Another alternative is the helper-based de-
sign, where a peer downloads a sub-stream of a video version
different from the version it is watching, and then uploads it
to other peers watching that version. Different schemes call
for different video generation and P2P distribution designs.
Finally, to achieve video stability, both rate allocation and
P2P sharing have to be robust against temporal bandwidth
variations.

A. Taxation-based Incentive

Taxation-based incentive policy offers a flexible framework
that allows the tradeoff between the system-wide social wel-
fare and the incentive to individuals [9], [10], [11]. Let ud be
the upload bandwidth contributed by peer d. Under a tax rate
0 ≤ t ≤ 1, the target received video rate of peer d is

rd = (1− t)ud + r
(P )
d ,

where the first portion is called the entitled rate, which is
a fraction of its own upload contribution (1 − t)ud, and the
second portion is a share from the taxed bandwidth pool shared
by all users. If t = 0, the allocation degenerates into the ‘tit-
for-tat’ incentive: a peer’s video download rate matches its



video upload rate; if t = 1, all peers’ upload bandwidth are
taxed to the common pool to maximize the social welfare.

B. Model with Continuous Video Rates

Our design objective is to maximize the aggregate video
quality on all peers under the taxation incentive policy. We
consider a system with one server and N classes of peers.
The server upload bandwidth is us. Let Si be the set of
peers in class i. There are ni peers in Si, each of them
has upload bandwidth of ui. Without loss of generality, we
assume peer classes are ordered in a decreasing order of their
upload bandwidth, u1 > u2 > · · · > uN . Let rij be received
video rate of peer j in Si. We introduce vector notations
U , {ui, 1 ≤ i ≤ N} and N , {ni, 1 ≤ i ≤ N}.
Let R , {rij1 ≤ i ≤ N, 1 ≤ j ≤ ni} be the received
video rates on all peers. PSNR (Peak Signal-to-Noise Ratio)
is the standard objective metric to evaluate the quality of a
compressed video. PSNR of a video coded at rate rc can be
approximated by a logarithmic function β log(rc), where β is
a constant related to the video feature. In this section, we study
the case that the server can generate arbitrary number of video
versions, each of which can be at arbitrary rate. We study the
system capacity under three situations: video transcoding on
peers, layered video coding on server, helper-based solution
without transcoding and layered coding.

C. Optimal Rate Allocation among Peers

When peers’ upload bandwidth are the only bottleneck, the
optimal video rate allocation among all peers should maximize
the aggregate video quality.

OPT I objective:

max
R

N∑
i=1

ni∑
j=1

log(rij), (1)

subject to:

rij ≥ (1− t)ui,∀i = 1, 2, · · · , N ; j = 1, 2, · · · , ni (2)
N∑
i=1

ni∑
j=1

rij ≤
N∑
i=1

niui + us. (3)

In OPT I, (1) denotes the aggregate utility of all peers. (2)
states that each peer should get at least its entitled rate. (3)
states that the aggregate peer video download rate can not
exceed the aggregate video upload rate in the system.

We develop a water-filling type of algorithm to get a feasible
solution of OPT I. In Algorithm 1, each peer reports its upload
bandwidth to a tracker. After collecting all peers’ information,
the tracker can calculate K∗, W ∗, and further determines the
video rates R of all peers. In the algorithm, B is the taxed
bandwidth pool can be used to maximize the system-wide
utility. According to the water-filling policy, one should always
use the common tax pool to help “weaker” peers. If B is used
to only help peers in class k and above, those helped peers

Algorithm 1 Water-Filling-Continuous (U ,N , us, N )

1: All peers enter a FIFO queue Queuep in the increasing
order of their upload bandwidth.

2: for each peer j in Si do
3: rij = (1− t)ui
4: end for
5: Put residual bandwidth of peers and servers to a pool B,

now B = t
∑N
i=1(uini) + us. Initialize Sw = φ.

6: while 1 do
7: Select peers with the same smallest upload bandwidth

uj out of Queuep and assume set of those peers is Sj .
8: if B+(1−t)|Sj |uj

|Sw|+|Sj | < (1− t)uj then
9: W ∗ = B

|Sw| ,K
∗ = j + 1, S∗K = Sw

10: rij = W ∗,∀(i, j) ∈ Sw
11: break
12: else
13: B = B + (1− t)|Sj |uj , Sw = Sw ∪ Sj ,
14: end if
15: end while

can get the same video rate at

Wk =

∑N
i=1 niui + us − (1− t)∑(K−1)

i=1 niui∑N
i=K ni

(4)

To find a feasible solution satisfying the entitled rate con-
straint, we have to make Wk ≥ (1 − t)uk. In the water-
filling algorithm, we try to find K∗, the smallest k such that
Wk ≥ (1 − t)uk. Let W ∗ = WK∗ , then the received video
rates of all peers are given as

r∗ij =

{
(1− t)ui, if (1− t)ui > W ∗

W ∗, if (1− t)ui ≤W ∗ (5)

In other words, all peers at least get the base rate of W ∗, and
peers in class 1 through K∗ − 1 will get their entitled rates,
which are higher than W ∗.

Theorem 1: The video rate R∗ obtained by Algorithm 1 is
the global maximum solution of OPT I.

Proof: We can formulate OPT I into a standard convex
programming problem with the following form:

max f(R)

subject to AR ≥ b
Using Karush-Kuhn-Tucker (KKT) conditions, one can easily
verify that, for the obtained R∗, there exists λ∗ such that

5f(R∗) = ATλ∗, λ∗ ≥ 0,

λT∗ (AR∗ − b) = 0,

ZT52f(R∗)Z is positive semi-definite,

where Z is a null-space matrix for the matrix of active
constraints at R∗. Generally, the KKT condition is a necessary
condition for the solution to be optimal. Since the objective
log() here is strictly concave, KKT condition is also a suffi-
cient condition. Thus, R∗ is the global optimal solution.

To achieve the optimal rate R∗, a feasible P2P video
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sharing scheme has to be developed. For single-rate P2P video
streaming, it has been shown [12], [13] that in a P2P swarm
with n peers, the optimal achievable video rate on all peers is

r = min{us,
us +Bn

n
}, (6)

where us is the server upload bandwidth and Bn is the ag-
gregate upload bandwidth among all n peers. It has also been
shown that distributed P2P distribution designs can approach
the optimal rate [14], [15].

In (5), there are K∗ different video rates to be achieved
between different classes of peers. Based on (6), for each video
rate r with n peers watching at that rate, it is sufficient to
design P2P video distribution such that there is a server/peer
generating the video version at rate r, and the total upload
bandwidth reserved for those n peers is nr. In the following,
we investigate how to achieve the optimal rate R∗ with peer
transcoding, layered coding, and helper-based P2P distribution.

D. P2P Distribution with Peer Transcoding

If peers have video transcoding capabilities, a peer receiving
a video can transcode the video to multiple lower rates and
upload them to peers watching at the lower rates.

Theorem 2: If the server’s upload bandwidth satisfies us ≥
(1 − t)

∑K∗−1
i=1 ui, the optimal rate R∗ can be achieved as

long as peers can do video transcoding once.

Proof: We prove this by construction. Fig. 1 illustrates the
video distribution between the server and peers. The server,
denoted by S0, produces K∗ video versions. For the i-th
version, where 1 ≤ i ≤ K∗−1, the rate is (1−t)ui. We assume
server’s upload bandwidth us ≥ (1− t)∑K∗−1

i=1 ui. Thus, it is
large enough to deliver i-th video to the corresponding peers in
Si. For the K∗-th video, that video version rate is W ∗. Server
contributes its residual bandwidth φ0 = us−(1−t)∑K∗−1

i=1 ui
to distribute that video version.

For peers in Si(1 ≤ i ≤ K∗−1), after getting video version
with rate (1 − t)ui from the server S0, they only need (1 −
t)(ni − 1)ui more bandwidth to send to all peers in Si their
entitled rate. It is achievable since the total upload bandwidth
of these peers niui is larger than the bandwidth needed. Then,
peers in Si can do transcoding to generate video version with
rate W ∗ and contribute their residual bandwidth φi = niui −
(1− t)(ni − 1)ui to peers watching the base rate.

Then, we only need to show that all peers in set SK∗ ∪
SK∗+1 ∪ · · · ∪ SN can receive video version with rate W ∗.

The total aggregate upload bandwidth Φ to distribute that
video version is the sum of upload bandwidth of those peers
watching that video version and residual bandwidth from set
S0 ∪ S1 ∪ S2 ∪ · · · ∪ SK∗−1. Thus, the value of Φ can be
expressed as below:

Φ=

N∑
i=K∗

niui + φ0 + φ1 + · · ·+ φK∗−1

=

N∑
i=K∗

niui + us + t

K∗−1∑
i=1

niui = (

N∑
i=K∗

ni)W
∗

Hence, all peers in set SK∗∪SK∗+1∪· · ·∪SN can successfully
receive video rate W ∗.
Even if the server bandwidth is only enough to send out
one stream at the highest rate, the optimal rates R∗ can still
be achieved if peers can do video transcoding twice. Fig 2
illustrates the P2P distribution. Due to the space limit, we
skip the detailed proof here.

E. P2P Distribution with Layered Video Coding

P2P sharing between peers downloading video at different
rates can be also enabled if layered video coding is employed
by the server. Specifically, the server encodes the video into
multiple layers with nested decoding dependency. A base layer
has to be received by all peers. An enhancement layer k can
be decoded iff all layers up to k are received. Ideally, if peer
A’s video download rate is higher than peer B, then A has all
layers B needs. A and B share with each other their common
layers without the need of transcoding.

When layered video coding is employed, the server needs to
determine the total number of layers and the rate of each layer
to generate. We must determine which layers each peer should
download. We can show that when using layered video coding,
if coding overhead is negligible, the optimal video allocation
in (5) can also be achieved.

Theorem 3: The optimal rate in (5) can be achieved if the
server generates K∗ video layers, and all peers subscribing to
the same layer share video with each other.

Proof: The server generates K∗ video layers: the rate ξ1
for the 1st video layer is ξ1 = W ∗, the rate ξ2 for the 2nd
video layer is ξ2 = (1 − t)uK∗−1 −W ∗ and the rate for the
i-th(i > 2) video layer is ξi = (1− t)(uK∗+1−i − uK∗+2−i).
The set of peers receiving the j-th video layer is S

′

j = S1 ∪
S2 ∪ · · · ∪ SK∗+1−j .

For the i-th (1 < i ≤ K∗) video layer, the server transmits
one copy of that layer to peers in set S

′

i . All peers in S
′

i

form a P2P swarm. They need ξi(|S
′

i |−1) more bandwidth to
distribute layer i to all peers in the swarm. After allocating all
the i-th (1 < i ≤ K∗) video layers, we denote the aggregate



peer residual bandwidth be uRestp . Then,

uRestp =

N∑
i=1

niui −
K∗∑
i=2

ξi(|S
′

i | − 1)

=(1− t)u1 +

K∗−1∑
i=1

tniui +

N∑
i=K∗

niui+

W ∗(

K∗−1∑
i=1

ni − 1)

And the residual bandwidth on the server is uRests = us −∑K∗

i=2 ξi = us− (1− t)u1 +W ∗. It is straightforward to check
that uRestp + uRests = (

∑N
i=1 ni)W

∗ = W ∗|S′1|. Hence, the
optimal solution (5) can be achieved with K∗ video layers.

F. Helper-Based P2P Distribution

In practice, video transcoding on peers may impose too
great of a computational burden on peers or altogether im-
practical. Moreover, layered encoding may suffer from low
coding efficiency. In this Section, we study P2P distribution
when neither transcoding nor layered encoding is feasible.
In this case, in order to optimize the average video quality
while satisfying the entitled video-rate constraints, it may
be necessary for certain peers to act as “helpers,” that is,
to download video versions that they are not watching and
redistribute those versions to other peers.

Let G be the set of peers viewing a particular version. As
shown in [16], [17], with helpers, the maximal achievable
video rate r∗ for the peers in G is:

r∗ =
B(W ) +B(H)

|G| − B(H)

|G|2 , (7)

where B(W ) is the aggregate upload bandwidth of the peers in
G plus the amount of server bandwidth allocated to the version
and B(H) is bandwidth used by helpers to help the peers in
G. The last term in (7) reflects the helper-overhead, which
is the upload bandwidth (e.g., from the server’s allocation to
helpers) used to send video content (from the version) to the
helpers, so that they in turn can redistribute (and amplify) the
video to the viewers in G. Notably, helper-overhead decrease
as the number of viewers increases.

Unfortunately, with the helper-overhead, it is no longer
possible to exactly achieve the optimal rate for OPT 1.
Instead, we develop a heuristic algorithm for helper-based
P2P distribution scheme, then study how far away it is from
the optimal. In the water-filling algorithm in Algorithm 1,
bandwidth-rich peers only get their entitled rates, and all
the bandwidth-poor peers get the same rate W ∗, which is
higher than their entitled rates. Thus, we propose a heuristic
Algorithm 2 for the helper-based case. In that algorithm, we
first use the water-filling approach in Algorithm 1 to get
the base rate W ∗ without considering the helper overhead.
Fig 1 illustrates the distribution design with transcoding or
layered coding. When transcoding and layered coding are not
available, we can use peers from S1 to SK∗−1 as helpers for

peers in the base class. Due to the helper overhead, W ∗ is not
achievable in the base class. To circumvent this, we first let the
server reserve bandwidth of W ∗ to feed the base video to all
helpers.1 Now we run the water-filling algorithm again with
the server bandwidth of us−W ∗. We get a lower base rate W

′

and the corresponding P2P distribution design as illustrated in
Fig 1. We treat those peers with video rates higher than W

′
as

the helpers for peers at rate W
′
, and use the reserved server

bandwidth of W ∗ > W
′

to feed the base rate video W
′

to all
helpers, then all peers in the base level will get rate of W

′
.

Algorithm 2 Video Version Allocation For Continuous Ver-
sion under Helper-based condition

1: Water-Filling-Continuous(U ,N , us, N ) to generate
W ∗,K∗

2: Water-Filling-Continuous(U ,N , us −W ∗, N ) to generate
R,W ′

,K
′

Theorem 4: From Algorithm 2, we get W ∗,K∗,W
′
,K

′

respectively. Then, the utility gap between the result obtained
from heuristic Algorithm 2 and the optimal solution is smaller
than W∗

W ′
.

Proof: When considering helper overhead, the optimal
capacity for this problem could not exceed the optimal solution
for OPT I. Thus, we can use the utility gap between (5) and
the result of Algorithm 2 as the upper-bound. The result of
Algorithm 2 can be expressed as

r
′

ij =

{
(1− t)ui, if (1− t)ui > W

′

W
′
, if (1− t)ui ≤W

′ (8)

If we assume that ri = (1− t)ui,∀i ≤ (K
′ −1), then W

′
can

be expressed as

W
′

=

∑N
i=1 niui + us −W ∗ − (1− t)∑(K

′
−1)

i=1 niui∑N
i=K′ ni

(9)

Compared with (5), we have W
′
< W ∗,K

′ ≥ K∗. Then, the
utility gap upper-bound can be expressed as:

N∑
i=1

ni∑
j=1

(log(r∗ij)− log(r
′

ij))

=

K∗∑
i=1

ni(log((1− t)ui)− log((1− t)ui)) +

K
′∑

i=K∗

ni(log(W ∗)

− log((1− t)ui)) +

N∑
i=K′

ni(log(W ∗)− log(W
′
))

<

N∑
i=K∗

ni
W ∗ − r′ij
W ′ <

W ∗

W ′ (10)

1The server does not have to send the whole base video to each helper. In
fact, each helper only needs to download a very small sub-stream of the base
video so that it can upload it to all peers at the base level by using up its
residual bandwidth. As shown in [16], the total bandwidth a server needs to
feed all the helpers is at most the base video rate.



TABLE I: Peer Uplink Capacity Setting
Types Uplink Capacity Number
Server 4000 kbps 1

Peer1 1500 kbps 100

Peer2 1000 kbps 200

Peer3 500 kbps 300

In (10), the first inequality is due to the concavity of log()
function and the fact that r

′

ij ≥ W
′
, the second inequality

uses the fact that
∑N
i=K∗(niW

∗−nir
′

ij) = W ∗, which is just
the bandwidth we reserve to deal with overhead.
Note that the upper bound of W∗

W ′
is for the aggregate utility

among all peers. When the peer number is large, the per-peer
utility in the helper-based distribution is almost the same as
the optimal case.

III. NUMERICAL STUDY FOR TAXATION

We conduct numerical case studies to verify our analysis and
further illustrate design trade-offs in P2P adaptive streaming.
We use AMPL/CPLEX package to solve OPT I, OPT II. For
the various heuristic algorithms, we use MATLAB to realize
them. Layered coding incurs coding rate overhead. When
employing SVC, an r-d optimized multi-layer encoder [18]
encodes 10% more compared to the single-layer H.264/AVC
coding. In our simulation, we use 0.1 as the overhead of
employing layered video, although this number is much higher
in reality [19].

A. Impact of Taxation Ratio

We study the impact of taxation ratio. To isolate the effects
of discrete video versions and helper overhead, we use contin-
uous transcoding here. In the simulation, there are three types
of peers as listed in Table I. Under different taxation ratios,
Fig. 3 shows the distribution of video rates of peers from
different classes. The system-wide utility is also plotted. At
low taxation ratio, video rates are quite diverse. It gives strong
incentive for the bandwidth-rich peers, but the bandwidth-poor
peers suffer bad quality, as a result the system-wide utility
is low. As the taxation ratio increases, the video rate gap
between classes decreases. Bandwidth-poor peers are helped
a lot by the taxed bandwidth pool. The system-wide utility
quickly approaches the optimal at tax rate around 0.38, where
heterogenous peers turn to watch video at more similar video
rates. It demonstrates that taxation can be used to tradeoff
between system-wide utility and incentive for individual peers.

B. Capacity Comparison of Three Distribution Designs

We compare the capacity of transcoding, layered coding,
and helper-based distribution when varying the number of
peers in the system. The taxation ratio is set to be 0.02 and
there are three classes of peers with uplink capacity listed
in Table I. Initially each class only has 4 peers. Then, we
gradually add 10 more peers to each class at each round. Fig.
4(a) plots video rate distributions of three classes of peers
under different distribution designs. As shown in Theorem 2,
transcoding can achieve the optimal rate. Due to the layered
coding overhead, the rate achieved by layered coding is now a

fraction lower than that of transcoding regardless of peer num-
bers. Helper-based distribution incurs helper-overhead. The
achieved rates are slightly lower than the optimal transcoding
case. Even when peer number is very small, helper-based
distribution achieves higher rate than layered-coding. When
peer number is large, helper-overhead is almost negligible, and
the achieved rates are almost the same as the transcoding case.
Fig. 4(b) compares the per-peer utility gap from the optimal
for helper-based distribution and layered coding. As expected,
layered coding leads to a constant utility loss, while the utility
loss for helper-based distribution quickly converges to zero as
the number of peers increases. Although video transcoding
always gives us the optimal solution, it incurs computation
overhead on peers. Since P2P streaming systems usually have a
large number of peers, helper-based distribution is a promising
simple approach. We will just use the helper-based approach
in the following simulations.

C. Results under Bandwidth Variations

To investigate the impact of peer bandwidth variations, we
first simulate a system with only one peer class, and without
peer churn. We assume that there are 4 upload bandwidth
levels: 1, 500 kbps, 1, 000 kbps, 600 kbps, 400 kbps, and
the server’s upload bandwidth is 15, 000kbps. Bandwidth
variations on all peers follow the same switching probability

matrix P =


0.4 0.45 0.1 0.05
0.2 0.5 0.2 0.1
0.1 0.4 0.4 0.1
0.05 0.1 0.45 0.4

, the mean sojourn time at

level i is 1/µi = 1(1 ≤ i ≤ 4). Then, we change the taxation
ratio. At each taxation ratio, we run Monte Carlo simulations
with 10, 000 sample points. Fig. 5(a) and Fig. 5(b) show video
rate and system utility distributions under different taxation
ratios. Since we use continuous model here, the base video rate
can take any value, and has continuous probability distribution,
the entitled rates only take discrete values. As the taxation ratio
increases, video rates of all peers turn to be more similar and
the whole system utility is enhanced. When the taxation ratio
is large enough, more taxation ratio does not help any more,
like the curves of t = 0.4 and t = 0.5 are overlapped in the
figure. Since we are dealing with a single class of peers, their
upload bandwidth assume a homogeneous distribution. A high
taxation ratio is justifiable. In this case, taxation achieves the
temporal multiplexing gain. It allows a peer with temporary
bandwidth dips continue to get stable video download from
other peers.
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bution

Now, we study a system with multiple classes. In the
simulation, there are three classes. In each class, peer’s uplink
capacity has four levels like in Table II, and the server’s
upload bandwidth is 15, 000 kbps. We assume that system
provides 18 discrete video versions with rates ranging from
100 kbps to 1, 800 kbps, and the rate difference between
the adjacent video version is exactly 100 kbps. For each
class, we reuse the switching probability matrix P in the
previous section to control the switching between its four
levels 2, and the mean sojourn time at level i in class c is
still 1/µ

(c)
i = 1(1 ≤ i ≤ 4, 1 ≤ c ≤ 3). Then, we also change

the taxation ratio and run Monte Carlo simulation with 10, 000
samples for each ratio. Fig. 6(a), Fig. 6(b) and Fig. 6(c) plot the
video rate distributions when the taxation ratio t = 0, 0.2, 0.5
respectively. Table III shows the mean and standard deviation
(SD) of the video rate for each class and the system utility
under different taxation ratios (TR). We can see that with
higher taxation ratio, the system utility becomes larger and
its variance becomes smaller. For all classes, a higher taxation
ratio makes video rate variation smaller, which is beneficial
for all peers. Meanwhile, higher taxation ratio also has the
effect that there would be much smaller difference between
strong peers’ video rates and week peers’ video rates. Thus,
an appropriate taxation ratio should be determined by jointly
considering video quality variation, system wide efficiency,
and incentive to individual peers.
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Fig. 6: Video Rates for Multiple Classes without Peer Churn

TABLE II: Peer Class Setting
Peer Upload Capacity (kbps) Peer

Class(c) Level 1 Level 2 Level 3 Level 4 Number
1 1700 1500 1300 1100 100
2 1200 1000 800 600 200
3 700 500 300 100 300

2Since different classes have different four bandwidth levels, the actual
bandwidth variation processes between different classes are different

TABLE III: Rate (Mbps) and Utility Variation for Multiple
Classes without Peer Churn

TR Class 1 Class 2 Class 3 Utility
Mean SD Mean SD Mean SD Mean SD

0 1.43 0.19 0.93 0.19 0.44 0.17 8037.9 10.05
0.1 1.23 0.19 0.83 0.14 0.58 0.04 8104.5 7.11
0.2 1.11 0.16 0.78 0.07 0.65 0.05 8119.2 6.56
0.3 0.97 0.09 0.77 0.04 0.70 0.03 8128.1 5.96
0.4 0.88 0.07 0.79 0.03 0.72 0.04 8130.5 6.04
0.5 0.80 0.00 0.80 0.01 0.74 0.05 8132.3 6.06
0.6 0.80 0 0.80 0.01 0.74 0.05 8132.5 5.89

IV. COOPERATIVE GAMES FOR P2P STREAMING

A. Cost-sharing Mechanism for Single Version P2P Streaming

In P2P video streaming, cooperation between peers can
give gains in both content and bandwidth. In this section,
we apply cooperative game theory to study how to share the
cost of a video streaming service among participating peers.
One unique feature of this P2P streaming game is that a
peer’s participation in the service set can potentially reduce
the system-wide bandwidth cost.

We start with the basic P2P streaming cooperative game
where only one video version is available, and where each
peer bids to see the video. We will extend this basic game to
P2P streaming with multiple versions in the next subsection.
We normalize the video rate to be 1 (and normalize the link
bandwidths accordingly). We denote by A the set of peers
interested in this video. Without loss of generality, we assume
each peer in A has download bandwidth larger than the video
rate. For peer i, its upload bandwidth is denoted by ui and its
utility for watching the video is vi.

1) Service Cost: To serve a set S of peers, the server’s cost
can be calculated by

c(S) = cc(S) + cd(S), (11)

where cc(S) is the total content cost and cd(S) is the total
distribution cost for streaming the video to all peers in S. We
assume the server content cost cc(S) is an increasing concave
function of |S|. In other words, the server incurs decreasing
marginal content cost for serving additional peers. Without
P2P sharing, the distribution cost cd(S) is w|S|, where w
is the cost per unit server bandwidth. When peer-assisted
distribution is employed, video sharing between peers can
significantly offload the server, thereby reducing the server
distribution cost. In P2P streaming, the upload contribution of



a peer is determined by its upload bandwidth as well as the
efficiency of the P2P streaming algorithm in utilizing peers’
upload bandwidth. As demonstrated in [13], if all peers are
fully connected, all peers’ upload capacity can be fully utilized
to achieve high video streaming rate. In real P2P systems,
however, a peer in a larger swarm has a better chance to find
neighbors to exchange content, and it is also more likely to
find nearby peers to achieve high P2P data-transfer throughput.
As a result, the peer upload capacity utilization is less than 1
but normally increases as the number of peers increases [20],
[7]. For our P2P streaming cooperative game, we model the
average upload bandwidth utilization as an increasing concave
function ρ(|S|) of the streaming swarm size, with ρ(|S|)
approaching 1 when the number of peers is large. Taking
into account the peers’ upload contribution, the server’s upload
bandwidth contribution is given by:

Ud(S) = 1 +

[
|S| − 1− ρ(|S|) min(|S| − 1,

∑
i∈S

ui)

]
, (12)

where the first term is the unavoidable server bandwidth cost
to stream at least one full copy of the video to the swarm,
the second term is the additional bandwidth the server has to
provide on top of peer upload contribution to ensure all peers
receive the video stream.

2) Cost-sharing Mechanism for ui ≤ 1: When ui ≤ 1 for
all i ∈ A, so that each peer’s upload bandwidth is no more than
the video rate, the server distribution cost can be approximated
by

Ûd(S) = |S| − ρ(|S|)
∑
i∈S

ui =
∑
i∈S

(1− ρ(|S|)ui), (13)

with approximation error bound −1 ≤ Ûd(S) − Ud(S) ≤ 0.
Using this minor approximation, the server cost becomes

c(S) = cc(S) + w
∑
i∈S

(1− ρ(|S|)ui).

Therefoe, a natural cost-sharing scheme for peer i with upload
capacity ui is:

Scheme-I: p(i, ui, S) ,
cc(|S|)
|S| + w(1− ρ(|S|)ui),

where the first term is the equal share of the content cost, the
second term is the distribution bandwidth cost discounted by
each peer’s upload contribution.

Theorem 5: Scheme-I is cross-monotone.
Proof: For all S, T ⊆ N and i ∈ S, due to the concavity

of cc(·), cc(S)
|S| ≥

cc(S∪T )
|S∪T | . Also since ρ(·) is an increasing

function, we have ρ(|S|) ≤ ρ(|S ∪ T |). Therefore, we have
p(i, ui, S) ≥ p(i, ui, S ∪ T ), which satisfies the definition of
cross-monotone.

As part of the bidding, if each peer reveals its true upload
bandwidth (but not necessarily its true utility), then we can
directly apply the theory in [21]. In particular, it follows from
Theorem 5 and the theory in [21] that under the cost-sharing
Scheme-I and the mechanism of Algorithm 1, every peer will

bid its true utility value, vi, and Algorithm 1 returns the
maximal service set S∗(v).

But it is more natural to suppose that each peer may not only
lie about its utility vi but also lie about its upload bandwidth
ui. In particular a peer (or a group of colluding peers) may
bid a higher upload bandwidth than it actually has in order
to increase its chances of being included in the swarm. In
this case, the bidding game is different from the traditional
game [21]. Recall that in the traditional game, the total cost
c(S) and the cost for each agent ξ(i, S) is determined only by
the cooperation set S and not the bids. But now, since the cost
shares p(i, ui, S) depend on the bids (the upload rates), the
classical cooperative game theory no longer directly applies.
Algorithm 3 develops a cost-sharing mechanism M(p) out of
a cost-sharing scheme p for a P2P cooperative game.

Algorithm 3 P2P Cost Sharing Mechanism M(p)

1: Each peer bids its utility and upload bandwidth 〈vi, ui〉;
2: Initialize Q← A.
3: Repeat
4: Let Q← {i ∈ Q : vi ≥ p(i, ui, Q)}.
5: Until for all i ∈ Q, vi ≥ p(i, ui, Q).
6: Return S = Q and pi = p(i, ui, Q), for all i ∈ Q, pi = 0,

for all i /∈ Q.

To summarize the P2P cooperative game, the following
steps are taken:

1) We design a cost structure p(i,u, S) which in general
may depend on the vector of upload bandwidths u =
{ui, i ∈ A}.

2) Each peer i bids 〈v′i, u′i〉, which may or may not be
truthful.

3) After the bidding is completed, Algorithm 3 is used to
determine the set of participants S′ based on the 〈v′i, u′i〉
values.

4) The P2P streaming is carried out over the set S′. Peers
are charged according to their actual upload bandwidths
rather than their bidded bandwidths. The profit for peer
i is given by vi − p(i,u, S′) when i ∈ S′ and is zero
otherwise.

Theorem 6: In a P2P cooperative game, if the cost-sharing
scheme p is cross-monotone and the cost sharing of each peer
p(i,u, S) only depends on u through its own upload contri-
bution ui, then the cost-sharing mechanism M(p) defined in
Algorithm 3 is group-strategyproof.

Proof: Let S be the service set returned by M(p) under
truthful bids. Since p is a cross-monotone cost-sharing scheme,
S is the unique maximal set satisfying vi − p(i, ui, S) ≥ 0,
∀i ∈ S.

We prove by contradiction by supposing there is strategic
coalition with associated bids. Specificlly, suppose there is
a group of colluding peers C and associated bids 〈v′i, u′i〉,
i ∈ C, resulting in service set S′ returned by M(p), with the
following properties: (a) vi1(i ∈ S′) − p(i, ui, S′) ≥ vi1(i ∈
S) − p(i, ui, S) holds for every i ∈ C, and (b) there is at



least one i0 ∈ C such that vi01(i0 ∈ S′) − p(i0, ui0 , S′) >
vi01(i0 ∈ S)− p(i0, ui0 , S).

Consider a peer i ∈ S′ − C. Such a peer bids truthfully,
and according to the definition of M(p), we immediately have
vi−p(i, ui, S′) ≥ 0. Now consider a colluding peer i ∈ S′∩C.
By (a) we have vi − p(i, ui, S′) ≥ vi1(i ∈ S)− p(i, ui, S). If
i 6∈ S, then it directly follows vi − p(i, ui, S′) ≥ 0. If i ∈ S
then it follows vi − p(i, ui, S′) ≥ vi − p(i, ui, S) ≥ 0, where
this last inequality follows from the property of S stated in
the first paragraph of this proof. Combining these cases, we
have vi − p(i, ui, S′) ≥ 0, ∀i ∈ S′. Since S is the maximal
service set under truthful bid, then S′ ⊆ S.

For (b) to hold, it is easy to see that i ∈ S′ and thus
i ∈ S. Thus, vi0 − p(i0, ui0 , S′) > vi0 − p(i0, ui0 , S). Then
p(i0, ui0 , S

′) < p(i0, ui0 , S), which contradicts S′ ⊆ S and p
is cross-monotone. Thus, M(p) is group-strategyproof.

Corollary 6.1: M(Scheme-I) is group-strategyproof.

3) Cost-sharing Scheme for the General Case: For the case
where there is at least one i ∈ A, with ui > 1, the server
cost approximation in (13) can introduce considerable error
for some peer combinations. For this case, we need to design a
new cost-sharing scheme. Motivated by Scheme-I, it is natural
to consider Scheme-II to reward a peer by its relative upload
contribution:

p(i, ui, S) ,
cc(S)

|S| + w(1−min(1,
|S| − 1∑
i∈S ui

)uiρ(|S|)),

where the first term is equal content cost share, and the second
term is the adjusted peer upload contribution. Note that in
Scheme-II, the costs p(i,u, S) now depend on u and not just
on ui. It is straight-forward to establish the following result:

Theorem 7: Scheme-II is budget-balanced.
Although Scheme-II is very natural and budget-balanced, it

is neither cross-monotone nor group-strategyproof.
Theorem 8: Scheme-II is not cross-monotone.

Proof: We provide a counter example. Suppose we have
four peers, with upload bandwidth of 0, 0, 2, 2 respectively.
When only the first three peers form a coalition, S3 =
{1, 2, 3}, the price for peer 3 is:

p(3, 2, S3)=
cc(S3)

|S3|
+ w(1−min(1,

|S3| − 1∑
i∈S3

ui
)uiρ(|S3|))

=
cc(S3)

3
+ w(1−min(1,

2

2
)2ρ(3))

=
cc(S3)

3
+ w(1− 2ρ(3)) (14)

When all four peers form a coalition, S4 = {1, 2, 3, 4}, the
price for peer 3 is:

p(3, 2, S4)=
cc(S4)

|S4|
+ w(1−min(1,

|S4| − 1∑
i∈S4

ui
)uiρ(|S4|))

=
cc(S4)

4
+ w(1−min(1,

3

4
)2ρ(4))

=
cc(S4)

4
+ w(1− 3

2
ρ(4)) (15)

Comparing (14) with (15), if cc(S3)
3 − cc(S4)

4 < wρ(3)
2 ,

establishing that Scheme-II is not cross-monotone.

Theorem 9: Let M(Scheme-II) be the mechanism obtained
from Algorithm 3. M(Scheme-II) is not group-strategyproof.

Proof: We prove this using the example in the proof of
Theorem 6. Set the utility values large enough for all four
peers so that if they all bid truthfully, they will all be included
in the service set, that is, set vi ≥ p(i, ui, S4), i = 1, 2, 3, 4.
The cost shares for peer 3 and 4 are the same, as calculated
in (15):

p(3, 2, S4) = p(4, 2, S4) =
cc(S4)

4
+ w(1− 3

2
ρ(4)).

Now suppose peer 3 announces that its upload bandwidth
is 10 instead of 2. The cost shares for peers 3 and 4 become

p′(3, 10, S4)=
cc(S4)

4
+ w(1−min(1,

2

12
)10ρ(4))

=
cc(S4)

4
+ w(1− 5

3
ρ(4)) (16)

and

p′(4, 2, S4)=
cc(S4)

4
+ w(1−min(1,

2

12
)2ρ(4))

=
cc(S4)

4
+ w(1− 1

3
ρ(4)) (17)

respectively. Thus, if we set peer 4’s utility value to v4 =
cc(S4)

4 + w(1 − 1
2ρ(4)) < p′(4, 2, S4), and set the other

three peers to have large values, then the resulting coalition
set for M(p′) becomes {1, 2, 3}. Since u1 = u2 = 0, it
is easy to check that the cost share allocated to peer 3 is
p′(3, 10, S3) = p(3, 2, S3) < p(3, 2, S4) as shown in Theorem
8. Thus, because peer 3 gains benefit by lying about its upload
bandwidth, M(Scheme-II) is not group-strategyproof.

Based on the above cost-sharing scheme, now consider
Scheme-III:

p(i, ui, S) =
cc(S)

|S| + w(1−min(1,
|S| − 1

|S|ū )uiρ(|S|)),

where ū denotes the average upload bandwidth of peers who
are watching the video. The value can be determined by the
server using historical data. It is straightforward to establish
the following three results.

Theorem 10: Scheme-III is budget-balanced if ū is indeed
the average upload bandwidth of peers in S.

Theorem 11: Scheme-III is cross-monotone.

Corollary 11.1: Let M(Scheme-III) be the mechanism ob-
tained from Algorithm 3. M(Scheme-III) is group strategy-
proof.

B. Multi-Version P2P Streaming

Now suppose there are J video versions with decreasing
video rates r1 > r2 > · · · > rJ . Similar to the single-version
case, there is a set A of peers. Peer i has upload capacity
of ui, and video utility vi. We assume each peer i first and



foremost wants to watch the highest video rate allowed by its
utility budget vi. After being assigned to the highest possible
video rate, it desires to pay the lowest possible price without
changing the assigned rate.

Let Sj be the set of peers watching version j. We set the
pricing scheme for peer i watching video version j based on
Scheme-III:

pj(i, ui, Sj) = cj(|Sj |)+w(rj−min(1,
(|Sj | − 1)rj
|Si|ūj

)uiρ(|Sj |)),
(18)

where cj(|Sj |) , c
(c)
j (|Sj |)/|Sj | is the content price for

version j, ūj is the expected upload bandwidth of peers
watching version j.

Algorithm 4 Top-Down Multi-Round Bidding for Multi-
version P2P Streaming

1: Each peer bids its utility and upload bandwidth 〈vi, ui〉;
2: Initialize S ← A.
3: for j = 1, ..., J do
4: T = S
5: REPEAT
6: Let S ← {i ∈ S : vi ≥ pj(i, ui, S)}.
7: Until for all i ∈ S, vi ≥ pj(i, ui, S).
8: Sj = S; Ri = rj , for all i ∈ Sj ;
9: S = T − Sj ;

10: If S = ∅ then Stop.
11: end for
12: If S 6= ∅ then Ri = 0 for all i ∈ S;

Algorithm 4 selects video rate Ri for each peer i. It starts
from the highest video rate. Once a peer is selected to watch
a particular video rate, it is not considered for the lower
video rates. When each peer has been allocated to some
video version, or all video versions have been considered, the
algorithm ends.

V. CONCLUSION

In this paper, we studied the incentive issues in P2P adaptive
streaming. We demonstrated that incentive-compatible shar-
ing between peers watching different video versions can be
enabled through taxation. Simple helper-based P2P distribu-
tion can achieve close-to-optimal efficiency without video
transcoding and layered video coding. We also showed that
pricing mechanisms derived from cooperative game theory
can be used to foster and sustain P2P sharing in adaptive
streaming.
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