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ABSTRACT

In Software Defined Networks (SDN), users manage network ser-
vices by abstracting high level service policies from lower level net-
work functions. Edge-based SDN, which relies on end hosts to im-
plement lower-level network functions, has been rapidly developed
and widely adopted in cloud. A critical challenge in such an envi-
ronment is to ensure that lower level network configurations, which
are distributed in many end hosts, are in sync with high-level net-
work service definitions, which are maintained in the central con-
troller, as state inconsistency often arises in practice due to commu-
nication problems, human errors, or software bugs. In this paper,
we propose an approach to systematically extracting and analyzing
the network states of OpenStack from both controller and end hosts,
and identifying the inconsistencies between them across multiple
network layers. Through extensive experiments, we demonstrate
that our system can correctly identify network state inconsistencies
with little system and network overhead, therefore can be adopted
in large-scale production cloud to ensure healthy operations of its
network services.

1. INTRODUCTION

In Software Defined Networks (SDN), users only define high-
level services and leverage programmable controller to send con-
figurations to distributed forwarding devices to realize low-level
network functions. This makes network management flexible and
easy. Depending on the forwarding devices that controller config-
ures, SDN could be categorized into two types: core-based and
edge-based. In core-based SDN, the controller directly configures
core network devices, such as OpenFlow switches and routers [24,
5]. In edge-based SDN, controller configures network edge de-
vices, i.e., end hosts that act as virtual switches or routers. Re-
cently, edge-based SDN has been rapidly adopted in the emerging
cloud environments, e.g., OpenStack [25], CloudStack [9], Euca-
lyptus [10], etc.

A critical challenge in SDN is to ensure the consistency between
high-level network service definitions and low-level configurations.
This problem is more prominent in edge-based SDNs, because:
(1) in such environments, low-level network configurations are dis-
tributed across potentially many end hosts, and (2) virtual switches
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or routers implemented in end hosts are less reliable than dedicated
network devices, hence are more likely to face various types of
errors during their operations. If such problem arises, misconfig-
urations on end hosts can potentially break the intended network
functions. In a multi-tenant cloud, this may even lead to security
breaches by exposing private network traffic to unauthorized users.
In this paper, we study the problem of identifying state inconsis-
tencies between controller and end hosts in OpenStack. In Open-
Stack forum, many operators have reported their encountered net-
work inconsistency problems [12, 11]. In our experience, those
inconsistencies often arise due to the following reasons:

o Communication Problems: For network services in Open-
Stack, controller sends network configurations to end hosts
through asynchronous messages. If messages are lost or com-
munication is disrupted during the configuration process, the
states between these two can become out of sync. Although
one can use TCP to enhance reliability, message losses still
happen due to various reasons, e.g., sending buffer becomes
full [21], message broker dies [2], etc.

e Human Errors: The commodity servers used to build today’s
cloud are not always reliable. System admins often need to
reboot, patch or repair the system manually. This process can
potentially introduce errors in virtual network configurations.

e Software Bugs: Edge-based SDN implementations are not
bug-free. We have experienced cases in which the network
configurations pushed into end hosts do not exactly reflect
the network policies defined at the controller. And some bugs
are hard to detect before real deployment.

To address those problems, we propose an approach to systemat-
ically identify the state inconsistencies between controller and end
hosts. We model network states at three layers. In our approach,
we will first extract the state data from the SDN controller, which
is typically stored in a database. By parsing this data, we obtain the
network states that should be implemented in the network. Then,
we deploy a light-weight agent on each end host to extract the vir-
tual network configurations, and parse out the network states that
are actually implemented. The two sets of network states are sent
to a central verification server, which compares and identifies any
inconsistencies between them.

Toward developing the approach outlined above, we made sev-
eral contributions in addressing the following challenges:

e Network State Abstraction: in large cloud environment, large
set of network configuration data needs to be processed from
the edge devices. We developed succinct representations for
layer 2-4 network states, respectively, and provided mech-
anisms to efficiently map raw configuration data into such
state representations.



o Sheer Volume of Data Processing: Another practical chal-
lenge is to deal with the sheer volume of configuration data
to be processed. In particular, for L4 state parsing, security
group rules, typically implemented with iptables, need to be
parsed and analyzed for each VM. For a production cloud
environment that contains thousands of (or more) VMs, this
can become a daunting task. We develop several methods
in addressing this challenge. First, we develop an efficient
method of traversing the iptable rules and use the Binary De-
cision Diagram (BDD) to succinctly represent and analyze
these rules. Second, to speed up the parsing process, we
developed smart L4 state cache to avoid repetitive network
state parsing for VMs with the same configuration. Finally,
we design a two-level verification method to further speed up
the verification process.

o System Design and Implementation: We implemented a ver-
ification system for the OpenStack cloud, developed various
data processing and caching mechanisms to reduce its over-
head. We also conducted extensive experiments to demon-
strate that our system can quickly identify network state in-
consistencies in real cloud environments.

1.1 Related Work

Consistency maintenance is important for network management
system [20, 27]. But in the real system, inconsistencies could still
occur due to communication problems, human errors or software
bugs. There have been several studies on checking or debugging
SDN state problems between the control plane and the data plane.
Heller et al. [15] provided a survey on the existing studies and
tools for troubleshooting SDN. Specifically, [26, 13] studied high-
level abstractions for easier OpenFlow configurations. The work
in [18, 8, 22, 3] provided various techniques, e.g., model check-
ing, boolean expressions, SAT solver, to detect the inconsisten-
cies between the defined network policy and the actual network
state, in a core-based SDN environment. To reduce the overhead of
such checking, Khurshid et al. [19] and Kazemian et al. [17] pro-
posed using trie structure or dependency graph to allow incremental
checking. Also related are the work on debugging SDN configura-
tions, either by passively sniffing packets [29] or by actively send-
ing test packets to test the SDN systems [14]. All of the existing
studies were focused on the state inconsistency problem in core-
based SDNs, e.g., OpenFlow. They assume the inconsistencies are
due to the discrepancy between admins’ logical designs and their
actual flow-level implementations. Since OpenStack only offers
coarse-level commands to admins and don’t allow them to work di-
rectly on flow-level implementations, OpenStack don’t have those
type of inconsistency problems, and the techniques developed for
core-based SDNs cannot be directly used for OpenStack.

The study in [16] shows that the state inconsistency problem in
edge-based SDN is becoming critical to the success of the emerging
cloud architecture. Bleikertz et al. [6] proposes one general differ-
ential approach to detect misconfigurations and security failures in
virtualized infrastructure in near real-time. Their work primarily
targets on verification of L2 policy. We provide a more compre-
hensive solution covering from L2 domain to L4 domain and we
implemented it for real Openstack system. We traverse and model
iptables for L4 state extraction, using approaches adapted from pre-
vious work [23, 4, 28].

The rest of this paper is organized as follows. Section 2 intro-
duces the SDN functions in OpenStack and some inconsistency ex-
amples. Section 3 provides the overview of our methodology. Sec-
tion 4, Section 5 and Section 6 introduces details of our methodol-
ogy. In Section 7, we describe the system implementation. Then,

Section 8 presents how our approach detects previous mentioned
inconsistency cases effectively. Section 9 evaluates the performance
of our system. Finally, Section 10 concludes the paper.

2. BACKGROUND
2.1 SDN in OpenStack

State inconsistency is a problem that can potentially arise in any
edge-based SDNs. However, the design and implementation of the
solution are dependent on the specific SDN environment. In this
paper, we use OpenStack as the target environment to illustrate our
approach. As a background, here we briefly introduce OpenStack
and its SDN components.

A typical edge-based SDN setup in OpenStack involves three
types of nodes (see Fig. 1): Controller node, which handles user
requests for defining network services; Compute node, which is the
end host that runs hypervisor to host VMs and implements the vir-
tual network configurations for these VMs; Network node, which
serves multiple roles, including virtual routers, DHCP servers, etc.,
in order to support the communications between different virtual
networks. In a cloud data center, these different types of nodes
are typically connected by hardware switches. The virtual network
functions are defined by the user at the controller via API calls, and
then communicated to the compute or network nodes, via AMQP
messages, for actual configuration.

Controller

Internal network

Linux Virtual
DHCP Server Network

— User

Virtual Router

External
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Figure 1: SDN components in OpenStack

The controller mainly allows user to define 1) Layer 2 networks;
2) Layer 3 subnets that are associated with a block of IP addresses
and other network configurations, e.g., default gateways or DHCP
servers; 3) virtual interfaces that can attach to a Layer 2 network as
well as an IP address; 4) VMs that are attached to designated net-
works; 5) Layer 4 security group rules that determine the protocols
and ports of the traffic admissible to selected VMs. These high-
level network function definitions are stored in a central database.

The network functions defined on the controller are eventually
translated into system configurations on the compute or network
nodes, implemented using different technologies, e.g., Open vSwitch
(OVS) as shown in Fig. 2.

L2 network function is implemented as internal VLANs' by OVS.
On a compute node, VMs in the same L2 network are attached to
the same VLAN via vNICs, Linux kernel devices, bridges, etc. For
example, in Fig. 2, VM1 has a vNIC eth0 connecting to a TAP de-
vice vnetO, which connects to a virtual ethernet interface pair gvb!
and gvol through Linux bridge gbrl, and then connects to VLAN
1. Across compute nodes, VMs attached to the same VLAN are
connected to each other via a private network, which is either a
switch-configured L2 network, or IP tunnels.

"Note these are internal VLANSs defined in Linux OS, which are
different from the VLANS configured on physical switches.
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Figure 2: Sample SDN configurations in OpenStack compute and network nodes.

L3 network functions are implemented mostly on the network
node. The network node provides DHCP services to each L2 net-
work, and assigns IP address to VMs. Through OVS, it also defines
the routing between different subnets, as well as between subnets
and the public network. The routing function also supports net-
work address translation (NAT) for different subnets to communi-
cate with each other.

L4 security groups are implemented as iptables rules in compute
nodes, which include subset of rules for that accept or reject certain
types of traffic from/to each VM.

2.2 Inconsistency Examples

In Openstack, we do observe occurrence of state inconsistency.
When inconsistency occurs, the impact can be quite significant. In
the following, we introduce three inconsistency examples to illus-
trate how state inconsistency could happen and how it affects the
users.

2.2.1 L2 State Inconsistency Caused by Communi-
cation Error

In OpenStack, the controller communicates the network config-
urations to compute or network nodes via asynchronous AMQP
messages. Occasionally, we observe that these messages can get
lost, due to message queue overflow, TTL expiration, or network
disruptions. When this occurs, state inconsistencies may appear,
since the controller state in database has been updated, while the
end hosts did not modify their configurations. For the example in
Fig. 2(a), if the user requests through the controller to move VM1
from network 1 to network 2, but the message from the controller
to the compute node is lost, then L2 inconsistency related to VM1
happens.

2.2.2 L3 State Inconsistency Caused by Software Bug

We also found there are software bugs in the current OpenStack
code that can potentially lead to network state inconsistencies. An
example we observed was depicted in Fig. 3 when we configure
the virtual network using the VlianManager setting in OpenStack’s
nova-network functions.

Unlike in OpenStack quantum networks, in nova-network, there
is no network node acting as virtual router. Instead, each compute
node will implement the routing functions for the VMs running on
it. In Fig. 3, VM1 and VM2 are on one compute node, VM3 and
VM4 are on the other compute node. VM1 and VM3 are attached
to vlan 1, while VM2 and VM4 are attached to vilan 2, through
the Linux virtual devices and bridges (e.g., VM1 connects to vianl
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| route
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Figure 3: An example of L3 state inconsistency when using Open-
Stack nova-network function

through vnet0 and br100). Across compute nodes, VMs on the
same VLAN are connected through the physical switch, which as-
signs ID 1 and 2 to the two VLANS, respectively. For VMs on the
same VLAN but different compute nodes to communicate, they go
through their respective bridge gateways, e.g., VM1 will use br/00
(10.0.0.1) to reach br100 (10.0.0.2), then reach VM3. For VMs on
different VLANS to communicate with each other, they go through
the local routes first. For example, for VM1 to reach VM4, it goes
through VM2 on the same compute node to reach VLAN 2, through
the local routing configuration, which allows packets from network
10.0.0.x to be routed to network 70.1.0.x.

However, in OpenStack nova-network implementation, the rout-
ing entries to a subnet are only created on the compute node, when a
VM on that subnet is instantiated on this compute node. In the case
of Fig. 3, if VM2 is not yet created on compute node 1, VM1 will
not be able to reach any VM on VLAN 2, e.g., VM4, even though
from the controller configuration, one would think there is a route
set from VLAN 1 to VLAN 2. Thus, L3 inconsistency would occur
under such condition.

2.2.3 LA State Inconsistency Caused by Human Er-
ror
In this case, an operator mistakenly deleted the following ingress

iptables rules for a VM on a compute node, when performing reg-
ular maintenance tasks:

DROP udp 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68;
RETURN 0.0.0.0/0 0.0.0.0/0;

The DROP rule ensures that any UDP packets from port 67 to
port 68 will be rejected for this VM. Then the RETURN rule will al-
low the packets to traverse the calling iptables chains. In the effort
of manually recovering the configurations for this VM, the operator



accidentally switched the order of these two rules. As a result, the
DROP rule becomes ineffective, as the packets will hit the RETURN
rule first. Consequently, this VM will be exposed for potential se-
curity risks from this UDP port.

3. SYSTEM OVERVIEW

To address above inconsistency issues, we propose an approach
to systematically identifying the state inconsistencies between con-
troller and end hosts. As depicted in Fig. 4, our approach involves
following steps:

e Data Extraction: Verification process starts with extracting

network configuration data from both controller and end hosts.

In controller, configuration data are typically stored in a cen-
tral database and we just need to fetch related information
from that database. In end hosts, we deploy a light-weight
agent on each end host to execute certain system commands
or check content of some configuration files on each end host
to extract data.

o Network State Abstraction: To characterize the network states
for both controller and end hosts, we model states at three
layers: Layer 2 state, which indicates the MAC-layer net-
work each Virtual Machine (VM) connects to; Layer 3 state,
which represents the IP level reachability between VMs, and
Layer 4 state, which describes the sets of rules for accept-
ing/rejecting packets of various protocols and ports for each
VM.

e Data Parsing: After extracting data from both controller and
end hosts, we do data parsing to obtain network states in
above state abstraction format. In our design, all extracted
data are sent to one verification server to do data parsing
and the following verification. When cloud scale becomes
large, huge raw data parsing may becomes the bottleneck.
As shown later, for the most time-consuming L4 layer pars-
ing, we use smart L4 state cache to speed up that process.

e State Verification: After data parsing, we get controller net-
work state and the actual end-host network state. We can do
State Verification to check the inconsistency among the two
state expressions. For the most time-consuming L4 layer ver-
ification process, we develop two-level verification method to
avoid unnecessary computations.

Among the above four steps, Data Extraction is kind of straight-
forward, we put details of that step in Appendix A. For the residual
three steps, we describe them in more details in the following three
sections.

Data Extraction & Controller
Controller N
Parsing State
[ @
Data Extraction & End Host
End hosts Parsing State

Figure 4: Overall approach for state inconsistency identification

4. NETWORK STATE ABSTRACTION

We characterize the network states for both controller and end
hosts using a common format. Since SDN allows configuration of
network functions at three different layers, we define network states
correspondingly.

Layer 2 State: defines VM’s MAC layer connectivities, i.e., whether

a VM can receive ethernet packets from certain L2 network. We
define the L2 state as mapping between the two:

Map,, = {MAC; : Network; } e))

where MAC; represents the MAC address of a VM’s vNIC, and
Network; represents the L2 network (uniquely identified by an ID,
e.g., external VLAN ID) it is attached to.

Layer 3 State: defines the IP layer reachability between VMs,
and between a VM and the external network. We define the con-
nectivity within the private network as a binary matrix

IP-MAC; IP-MAC; IP-MAC
IP-MAC1 T11 T12 . T1M
IP—MAC2 T21 T22 e T1M
: . . . @)
IP-MAC s M1 TM2 N MM

If a VM with IP and MAC address combination, IP-MAC; can
reach another VM with IP-MAC;, then 7;; = 1; otherwise, r;; =
0. Note that because the same IP address can be reused in different
private networks, we need to use both IP and MAC addresses to
uniquely identify a VM’s vNIC at layer 3. A VM can connect to
the external network if and only if it is assigned with a public IP by
the NAT router. Therefore, we can represent VMs’ connectivity to
the external network as the following mapping:

Map,,,p1;c 13 = {IP-MAC; : Public IP;} 3)

where Public IP; represents the public IP address that a VM is
NATed to, if it can reach the external network.

Layer 4 State: defines each VM’s security groups and the as-
sociated packet filtering rules. We use Binary Decision Diagram
(BDD) [7] as a representation of L4 state. Specifically, for each
iptables rule, we generate a bitmap representation, which consists
of five fields, with a total of 98 bits: source IP range (32 bits), des-
tination IP range (32 bits), protocol (2 bits), source port (16 bits),
and destination port (16 bits). This bitmap can then be presented
in the form of a BDD [7], which compactly and uniquely repre-
sents a set of boolean values of these fields, and the corresponding
actions when the values of these fields match certain conditions.
As the examples shown in Fig. 5, a BDD has two end nodes: 0
represents the reject action, 1 represents the accepted action. B,
represents the nth bit that needs to be checked. Using this struc-
ture, IP address set 128.0.0.0/28 and 192.0.0.0/28 can be simply
represented as Fig. 5(a) and Fig. 5(b), respectively.

Note that with BDD, we can also easily perform set operations,
such as Union, Intersection, and Difference, which are important
for this study. For example, to obtain the union of the two BDDs
in Fig. 5(a) and 5(b), one can simply remove B, as the rest of
the two BDDs are the same, as shown in Fig. 5(c). The union and
intersection operations are needed when we analyze the aggregate
effect of of multiple iptables rules, each represented in a BDD.
The difference operation is important when comparing the BDD
representations of L4 states between controller and end hosts.

S. STATE PARSING

After data is extracted, the next step is to parse it into network
state representations. State parsing for the controller is straightfor-
ward, since the network configurations extracted from controller
database can be directly translated into network states. State pars-
ing for the end hosts, however, requires more effort. We describe
how we do state parsing for end hosts in the following.



(a) 128.0.0.0/28
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Figure 5: Examples of using Binary Decision Diagram represent-

ing layer-4 state

5.1 L2/L3 State Parsing

On a compute node, L2 state can be parsed by traversing the vir-
tual device connections between each VM’s MAC address and the
internal VLANSs configured on the hypervisor host. Across com-
pute nodes, the internal VLAN will be mapped to an external L2
ID by Open vSwitch. Since the external L2 ID is assigned across
compute nodes, we can use the VMs’ associations to external L2
IDs to determine which VMs belong to the same L2 network. Note
that here the external L2 ID will map to the network in Eq. (1).

L3 network states include both the IP-level reachability between
VMs, i.e., Eq. (2), and their connectivity to the external networks,
i.e., Eq. (3). For the former, we first check for each pair of VMs,
whether they are connected in the same L2 network. If they are in
the same L2 network, and their IP addresses are also configured to
the same subnet, then they can reach each other. If they are not in
the same subnet, we determine whether the two VMs use the same
virtual router in the network node as gateway. If they do, then we
check whether the virtual router is configured with routing entries
that support the IP routing between the two IP subnets. For the
latter, we need to check for each VM’s private IP address, whether
its gateway virtual router has the corresponding routing entry to
allow it to reach a public IP address. In addition, we also need to
check whether the virtual router implements NAT rules to translate
between the two IP addresses. For this, we need to traverse the
corresponding rules in iptables, following a procedure that will be
discussed next.

5.2 L4 State Parsing

L4 state parsing involves analyzing each VM’s security group
configurations to generate the BDDs corresponding to its ingress
and egress packet handling actions, respectively.

In end host, iptables rules are organized in chains. Each chain
contains a sequence of rules, each of which defines a matching
packet set, and the associated action accept, drop, return, or call
another chain. Fig. 6 shows one example of iptables chain. Chain
X is the main chain with default action drop. It calls chain Y at rule
X3, and another chain Z at rule X4. Chain Y further calls chain J,
and so on. We can characterize the calling relation between chains
using a graph, in which each chain is represented by a node, and a
directed link goes from X to Y, if chain X calls chain Y. Since
there is no calling loop at the chain level, the calling relation graph
is an acyclic graph. For example, Fig. 6 can be abstracted as a tree
rooted at the main chain X.

To generate the BDD representation of a VM’s L4 state, we

ONE= o

Figure 6: An example of iptables chains

need to traverse the entire iptables chain. We developed Algo-
rithm 1 to parse all the rules of a chain sequentially to obtain the
accepted/dropped packet sets (A/D), and the set of packets (R)
triggering the action of returning to the calling chain, respectively.
C denotes the set of packets that have not been matched by any
rule yet, and is initialized to the set of all packets P. After pars-
ing a new rule, which consists of the set of matched packets (M),
rule action (action), and the chain to be called (CalledChain, if the
action is ‘call’), the algorithm updates the unmatched packet set
C, and adds the newly matched packets (M N C) to the set corre-
sponding to the action type (line 5 to 11). If the action is to call
another chain, the algorithm recursively calls itself to traverse the
called chain and obtain its accept, drop and return sets to update the
packet sets of the current chain (line 13-14). Since the calling rela-
tion between the chains is an acyclic directed graph, this algorithm
can correctly traverse all chains in a set of iprables configurations.
Note that using this algorithm, we only need to traverse each chain
once, unlike the existing approaches [28], which typically require
traversing a chain multiple times. For the iptables traversing in L3
State Parsing, we just need to modify Algorithm 1 to further con-
sider the SNAT and DNAT packet sets.

Algorithm 1 ParseChain(chain)

I: A=D=R=0;C=P;
2: while chain is not empty do

3: (M, action, CalledChain)=ReadNextRule();
4 E=MnNnC;C=C-M;

5:  switch (action)

6:  case ‘accept’:

7: A=AUE,

8:  case ‘drop’:

9: D=DUE,

10:  case ‘return’:

11: R=RUE,

12:  case ‘call’:

13: (A1, D1, R1) = ParseChain(CalledChain);
14: A=AU(ENA); D=DU(EnND);

15:  end switch
16: end while
17: return (A, D, R)

In a compute node, packets to/from a VM have to traverse pre-
routing chain, forward chain, and post-routing chain sequentially.
In OpenStack implementation, VM’s packet filtering rules are all
placed in the forward chain, which consists of common subchains
shared by all VMs, as well as VM-specific subchains, as illustrated
in Fig. 7. The subchains for different VMs are uniquely identifiable
by VM'’s physical device name or IP address.
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Figure 7: Structure of iptables chains on OpenStack compute node

Note that only VM-specific iptables rules are supposed to be
modified by the controller during normal operations. However, on
the compute node, there are other rules (e.g. those shared by all
VMs in Fig. 7) that can affect individual VMs. We call these rules
shared rules. The intersection between the two forms the overall L4
state of a VM. Unless we assume all iptables rules, including the
shared rules, on compute node can only be modified by OpenStack
controller and the modifications are always correct, we cannot ig-
nore the possibility of shared rules being tempered. Therefore, we
need to check the validity of shared rules as well. Specifically, we
need to first parse out the BDD expression of the accepted packet
set for the host by traversing all iptables rules. We then obtain the
accepted packet set for a VM as a subset of the host’s accepted
packets that match the VM’s device name.

5.3 L4 State Cache

Compared to L2, L3 state parsing, L4 state parsing is much more
time-consuming. In L4 state, the network configurations are con-
verted into BDD representations. We optimize this conversion pro-
cess by implementing a cache.

Intuitively, if network configuration changes are small between
two consecutive verifications, the later verification can reuse most
of the BDDs generated in the previous rounds of verifications. Even
if one runs the verification for the very first time, since most of L4
security group rules are common between the controller and end
hosts, the BDDs generated from the controller can also be reused
in end host state parsing. So the cache will keep a copy of BDDs,
irrespective of whether they are generated from the controller or
end hosts, as we parse the iptables rules. At the verification step, if
BDD parsing is needed for a set of rules, the parser will first check
whether the target rules already have BDDs in its cache. If yes,
then the parser will avoid parsing the same rules again. To achieve
the maximal gain, we design caches for both individual rules and
traversed chains.

Caching for individual rules is straightforward. Whenever we
encounter a rule of form (.S, action), where S is the string defin-
ing the matched packet set. We cache the BDD calculated for this
rule, indexed by string S. We also cache (partially or fully) tra-
versed chains. When traversing iptables chains, as described in
Algorithm 1, we cache the intermediate results after parsing each
additional chain. Each cache item is indexed by the ordered list
of the rule strings (including all the string definitions S) in the
corresponding traversal. For example, after traversing the ipta-
bles chains in Fig. 6, all individual rules in chain X, Y, Z, and
J will be cached. BDDs for all partially and fully traversed chains
are also cached, i.e., Z = {Z1}, {1}, J = {1, 2}, {¥1,J},
{Xl, X, Y} and X = {)(17 XQ, Y, Z}, etc.

With this caching mechanism, we can maximally reuse previous
parsing results if only a small portion of the chains are modified.
When the L4 state parser is requested to parse a new chain, it will
first look up the full chain cache for exact match. Since a chain can

call other chains, an exact match can be claimed for a chain only if
all its descendant chains have exact match. In our implementation,
we index all chains by topological ordering in the calling relation
graph and always parse the chains with lower order first. So when
we parse a chain, all its descendant chains must have been parsed.
We can quickly check cache hit for this chain. If there is no exact
match, it will then look for maximally matched partial chain, and
only parse the BDD for the unmatched parts of the chain. If partial
chain match cannot be found, it will look up the BDD cache for
individual rules, then traverse the rest of the chain to calculate the
BDD for the entire chain.

6. STATE VERIFICATION

Once the network states at L2, L3 and L4 are obtained, we can
then verify the state consistency between controller and end hosts
by comparing the two sets of states.

6.1 L2/L3 State Static Verification

L2/L3 State Verification: L2 states are represented as a set of
mappings, as defined in (1), between VM’s MAC address and L2
network. We can simply compare the two mapping sets, corre-
sponding to the controller state and end host states, and identify
different mappings.

Similarly, the L3 states of VM’s reachability to public networks
are also represented as a set of mappings, as described in Eq.(3).
The state comparison also involves identifying different mappings
between controller and end host states. The L3 states of inter-VM
reachability are represented as a binary matrix, as stated in Eq.(2).
‘We can compare the two matrices from controller and end hosts, to
identify any entry 7;; that has different values.

6.2 L4 State Static Verification

L4 State Two-level Verification: 14 states are represented in BDDs
that describe the ingress and egress packet filtering rules for each
VM. If we obtain the BDDs for each VM from both the controller
(BDDE) and from the end hosts (BDDx). The state comparison
can be achieved by comparing their difference [7]:

Diff(BDD g, BDDy) = BDDa )

If BDDA = ¢, then the states are consistent; otherwise, it repre-
sents the inconsistent L4 packet filtering behavior.

Note that it is not desirable to conduct BDD comparison in every
round of L4 state verification, because deriving the BDDs for each
VM involves traversing all of its iptables rules, which is computa-
tionally intensive. To reduce the computation overhead, we design
a two-level verification approach like Algorithm 2 shows. The in-
tuition behind the two-level verification approach is the following:
if the OpenStack controller correctly configures the security group
rules for VMs on a compute node, then the iptables rules should be
configured following the specific template implemented by Open-
Stack. With this template, all shared iptables chains should fol-
low a standard form, and the only variations are in the VM-specific
chains, which define the security groups a VM is associated with.
Plus, the VM-specific chains should contain the rules that are iden-
tical to the ones defined at the controller.

In practice, these assumptions should be true during most of the
normal operations. And in these normal scenarios, we can first
check whether the compute node’s iptables configurations follow
the OpenStack template, and then whether the rules for a VM match
between controller and compute node. All these can be done at the
string level, without involving BDD calculations. If both results are
positive, then the L4 states are consistent between the two.



There are two anomaly cases that can potentially happen. The
first case is the iptables configurations on compute node follow the
OpenStack template, but the specific configurations of a VM are
different from the ones at the controller. This could happen when
there is communication error between the controller and compute
nodes, or due to some (rare) software bugs, as we shall see later
in our experiments. In this case, there will be VM rules mismatch
between controller and compute node. Hence, we should invoke
the BDD parsing for the VM-specific chains, and then compare
these BDDs obtained from controller and compute node. Note that
in this case, the BDD parsing only involves the chains specific to
a VM with mismatched rules, not the other chains shared across
VMs.

The second case is when the iptables configurations on compute
node do not even follow the OpenStack template. This could hap-
pen when configurations are manually modified by system admin
or by other program. In this case, we will have to generate the
BDDs for all rules defined on the compute node, and then parse out
the L4 state for each VM, using the method described in Section 5.
Only by doing that can we fully verify the BDDs obtained from
compute nodes against those from controller.

Algorithm 2 Two-level Verification

1: if iptables rules in end host follows OpenStack template then
2:  if rules for a VM match between controller and compute
node in string level then

3: L4 states are consistent for that VM

4:  else

5: Invoke BDD parsing for VM-specific chains.

6: Compare BDDs obtained from controller and end-host.
7:  endif

8: else

9:

Generate BDDs for all rules defined on compute node, parse
out L4 state as described in Section 5.2.

10:  Compare BDDs obtained from controller and end-host.

11: end if

7. SYSTEM DESIGN AND IMPLEMENTA-
TION

We designed and implemented a prototype of the proposed state
verification system on OpenStack. Here we describe the implemen-
tation details of this prototype.

Following our overall methodology, the verification system pri-
marily consists of three subsystems: a) data collection subsystem,
b) state parsing subsystem and c) state verification and reporting
subsystem, as shown in Fig. 8.
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Figure 8: Prototype design and implementation

The data collection subsystem is responsible for collecting all
the data required for state verification. It includes i) data collection

agent residing on each end host, with plugins that can be invoked to
collect various virtual network configurations, e.g., iptables rules,
routing tables, etc., and ii) data collector residing on the verifi-
cation server, which is responsible for receiving the data collected
from the agents on the end hosts, as well as for issuing SQL queries
to collect configuration data from the controller database.

The data collection agent is a lightweight program. We enable
“File-Per-Table” mode [1] on the controller database, so that each
table is stored in its own data file. The data collector will snapshot
database table only when the corresponding data file is modified.
The data collection agent on end hosts are invoked periodically as
a cron job. To support continuous verification, we use NTP to
ensure clock synchronization between these agents. Both the data
collection agent and the central data collector are designed with a
pluggable architecture. They can be easily extended to collect new
data sources or data from other cloud management systems.

The data processing subsystem includes a state parser that in-
gests all the data from the data collector and parses it into the three
layers of network state representations. Since L4 state parsing is a
computation intensive task, we implement a configuration data fil-
ter to perform the two-level comparison, as described in Section 6.
Only if the filter determines L4 state parsing is needed, will the
state parser converts the configuration data into a BDD representa-
tion. To further reduce the overhead of L4 state parsing, the state
parser stores previous parsing results in a local cache. Whenever
a new L4 state parsing is requested, the cache is checked. If there
is a hit in the cache, the state BDD will be directly retrieved from
the cache. We describe the design of this cache later in this section.
To support continuous verification, we need to do some additional
processing, e.g., deleting duplicate state snapshots, etc.

Finally, the state verification and reporting subsystem takes the
L2, L3, and L4 state representations obtained from both the con-
troller and end hosts in each verification window, as well as gener-
ates inconsistency alerts. The state inconsistencies can be presented
as an integrated part of an admin UI (e.g., the Horizon dashboard
of OpenStack).

All components described above are implemented in Python.
Except for the end host data collection agent and the state incon-
sistency reporting function, all other components run on a central
verification server, which is hosted in the management network of
OpenStack.

8. CASE STUDIES

In a production cloud, when the state inconsistency occurs, the
impact can be quite significant. Previously in Section 2.2, we listed
three inconsistency examples across L2, L3 and L4 layers. Here
we show how our system can help identify those inconsistencies.

e L2 State Inconsistency Caused by Communication Error in
Section 2.2.1: Our system will show that the L2 state at the
controller is:

{VMI : Network 2}
{VM2 : Network 1}
{VM3 : Network 2}
{VM4 : Network 2}

However, the state parsed from the compute node would show
that VML is still attached to network 1, instead of network 2.
Thus, admin would be notified inconsistency happens.

o [3 State Inconsistency Caused by Software Bug in Section



2.2.2: On the controller, the L3 state between VMs indicates:

VM1 VM3 VM4
VM] — 1,3 = 1 T1,4 = 1
VM3 r3,1 = 1 — r3,4 = 1
VM4 T4,1 = 1 T4,3 = 1 —

However, using our approach, the L3 state parsed from com-
pute node 1 and 2 would show thatry 4 = 0, 74,1 = 0, hence
there are inconsistencies between the two.

e [4 State Inconsistency Caused by Human Error in Section
2.2.2: Through our method, BDDE derived from the con-
troller and BDDy from the compute node are clearly differ-
ent: Diff(BDDg,BDDy) = BDDa, where BDDA repre-
sents the ineffective DROP rule.

9. PERFORMANCE EVALUATIONS

To deploy our system in a production environment, we need to
ensure it does not incur significant overhead to the underlying sys-
tems. We performed extensive experiments to measure our sys-
tem’s overhead. In this section, we report on some of the key re-
sults.

9.1 Experimental Setup

We set up a three-node OpenStack environment for our exper-
iments: one node acting as both the controller and network node,
the other two acting as compute nodes. Table 1 shows the hardware
configuration of these three nodes.

Table 1: Hardware Configurations

[ Server I CPU [ Memory |
Controller/Network Node Intel Core i3 3.07GHz 4MB Cache 4GB
Compute Nodes Intel Core i3 3.30GHz 3MB Cache 8GB
Verification Node Intel Core i3 2.50GHz 3MB Cache 8GB

9.2 Overhead of Data Extraction

Table 2: Network Settings

| Scale || #VM # Security | # Rules # # Floating | # Name
per node groups per SG | Subnet P space
Small 5 2 5 4 10 6
Medium 10 4 20 8 20 12
Large 15 6 50 12 30 18

As described in Section 7, data extraction from the end hosts in-
volves invoking the agent on each network or compute node and
executing system commands, which could incur some overhead.
Here, we measure the extra CPU and memory consumption in-
curred from such data extraction over a one-hour period, with data
extraction and parsing triggered every 10 minutes. To test the per-
formance in virtual networks of different scales and complexities,
we experiment with small, medium and large network configura-
tions, with different number of VMs per compute node, security
groups, etc., as shown in Table 2. Fig. 9(a) and 9(b) show the CPU
and memory overhead. We observe that the data extraction agent
imposes only a modest CPU overhead of < 0.02% and memory
overhead of < 30K B on end hosts, even in the most complex set-
ting.

We also measure the data extraction time in different network
settings in Table 3. For compute node, data extraction time in-
creases with the number of VMs per node. The extracting time
for the large setting with 15 VMs/node is about 0.5s. For network
node, the extraction time is mostly dependent on the number of net-
work name spaces, and the number of subnets and floating IPs, as

0.04,
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Il Compute Node 2

Il Network Node
[_JCompute Node 1
Il Compute Node 2

0.03|

CPU Utilization Percentage

Small Medium Large 0 Small Medium Large

(a) Average CPU Overhead

Figure 9: Data extraction overhead caused by agents on end hosts

(b) Average Memory Overhead

they determine the number of networks and routing entries man-
aged by the network node. As shown in the table, the extraction
time is around 1.3s for the large network, with a fairly complex
setting.

Table 3: Data Extraction Time

Scale End-host Agent Verification Server
Network | Compute | Compute Controller
Node Node 1 Node 2 DB
Small 0.662s 0.228s 0.204s 0.020s
Medium 0.955s 0.346s 0.354s 0.022s
Large 1.314s 0.481s 0.522s 0.027s

Data extraction from the controller involves querying its man-
agement database. The overhead incurred by such query can be
considered negligible for today’s database servers. In our Open-
Stack environment, we use MySQL as the controller database. As
shown in Table 3, the extraction time is less then 30ms in all the
three settings.

Summary: The data extraction subsystem only incurs modest
CPU and memory overhead to the SDN components, and can finish
the extraction in seconds for typical virtual network settings.

9.3 Performance of Static State Verification

Next, we measure the time required for static state verification,
after the configuration data has been collected in the verification
server. As discussed in Section 5, the most time is spent on pars-
ing the configuration data into network states, especially the L4
states. After parsing, the time needed for inconsistency checking
is minimal. Table 4 shows the parsing and verification time at L.2,
L3, and L4 for the three network setups, where there was no state
inconsistency.” Since we implemented the two-level comparison
mechanism as described in Section 6, without any inconsistency,
L4 parsing and verification finish after quick string-level checking.
So the parsing and verification time are very small.

Table 4: Parsing and Verification Time

Scale Parsing Verification
L2 L3 L4 L2 L3 L4
Small 0.012s | 0.006s | 0.021s | <Ims [ <Ims | <Ims

Medium 0.019s | 0.014s | 0.042s | <Ims [ <Ims | <Ims
Large 0.029s | 0.021s | 0.093s | <Ims [ <Ims | <Ims

When inconsistencies do exist and are detected by the string-
level checking, we will have to verify L4 state using BDD. The
caching mechanism in Section 5.3 can be used to speed up BDD
calculation. To demonstrate the savings brought by two-level com-
parison and caching, we conduct four experiments with three dif-
ferent implementations:

1. one-level BDD verification that always generates BDD for
all iptables chains and rules;

“When inconsistency happens, parsing and verification time
for L2, L3 have no change.



2. two-level verification without cache that first checks if the
end hosts’ iptables rules match with those on the controller,
and performs BDD parsing only if there is mismatch;

3. two-level verification with cache of the previously calculated
BDDs, and run the program for the first time, and the cache
is empty initially;

4. two-level verification with cache, same as in 3), but the pro-
gram has been run once before, and the cache has been built
from the previous verification runs.

We focus on the large network and run verification with three dif-
ferent levels of inconsistencies. These inconsistent configurations
are injected by modifying the iptables rules on the compute nodes.
By randomly selecting IP addresses and port numbers, we generate
errorneous rules to replace randomly selected, original rules in ipt-
ables. We vary the modified configurations from 1%, 5%, to 10%
of the overall configurations (measured by the number of iptables
rules). In each setting, we also create two different scenarios ac-
cording to the reasoning in Section 6: a) the modified rules only
affect individual VMs, and b) the modified rules can affect both
individual VMs and the entire compute node (i.e., all VMs on it).

[ One-level
60| [ Two-level Without Cache 60
[ Two-level With Cache (First Round)
50 I Two-level With Cache (Second Round) 50

[ One-level

[ Two-level Without Cache

[ Two-level With Cache (First Round)
I Two-level With Cache (Second Round)

1% 1% 10%

5%
Precentage of Change

5%
Precentage of Change
(@) (b)

Figure 10: L4 state verification: a) when modifying rules for indi-
vidual VMs; b) when modifying arbitrary rules

In the first scenario, we can quickly identify VMs whose rules
are inconsistent at the string-level, and only need to do BDD pars-
ing for those VMs. This explains the big saving of the two-level

verification schemes over the one-level verification scheme in Fig. 10(a).

Among the two-level verification schemes, caching results in addi-
tional savings. As expected, the second run can reuse BDDs cal-
culated in the previous run, even with 10% rules changed between
the two runs.

In the second scenario, the modifications are no longer associ-
ated with individual VMs. After inconsistencies are detected in
the first-level verification, we will have to do comprehensive BDD
parsing for each host. As a result, in Fig. 10(b), two-level verifica-
tion consumes almost the same time as the one-level BDD verifi-
cation. Nevertheless, caching can still reduce the time by reusing
BDDs calculated earlier in the same run, or from the previous run.

Summary: Our system typically takes only seconds to perform
state verification in a reasonably-sized SDN environment, hence
can provide timely inconsistency alerts to the operator.

10. CONCLUSION

In this paper, we studied the problem of network state verifica-
tion in OpenStack. Our solution consists of data extraction, state
parsing and state verification at L2, L3 and L4 layers. To reduce
the parsing time for L4 state, we proposed a two-level compari-
son design and developed a hierarchical BDD caching algorithm.
Through experiments and emulation, we demonstrated that our ver-
ification system can effectively detect a variety of configuration in-
consistencies with low computational overhead. The current ap-

proach detects inconsistencies by comparing two network state snap-
shots obtained from the controller and end hosts. In SDN, network
configurations can change frequently. While the controller state can
be captured easily, the actual state on end hosts may be “in transit"
when the snapshot is taken. We are working on continuous verifi-
cation that aligns snapshots taken on the controller and end hosts
and then to identify legitimate transient snapshots on end hosts.

APPENDIX
A. DATA EXTRACTION

The verification process starts with extracting network config-
uration data from both controller and end hosts. Extraction from
controller is straightforward: the configuration data is typically
stored in a central database. For instance, guantum database table
in OpenStack controller contains all network states that are sup-
posed to be implemented. We can query the database to obtain the
state information. For example, we can get each subnet’s IP range
and gateway’s IP by running SELECT network_id,cidr,gateway_ip
FROM subnets.

Extraction from the end hosts involves executing certain system
commands or checking the content of some configuration files on
each end host. In Table 5, we list the sources from which we ex-
tract end host configurations, when OpenStack quantum network-
ing functions are used.

Table 5: Source of configuration data for OpenStack SDN func-
tions

Source Command / File Path Network Layer
IPTable iptables -t table_name -L -n L4
Routing Table netstat -rn L3
Linux Bridge bretl show L2
Open vSwitch ovs-dpctl show L2
ovs-vsctl show
ovs-ofctl dump-flows bridge_name
Veth Pair ethtool -S device_name L2
Network ip netns L2,L3
Namespace ip netns ns_name command
VM Info virsh list —all L2,1L3,1L4
virsh dumpxml domain_name
IP Address ip addr 12,13

For L2 state, we need to determine which network a VM’s vNIC
is attached to. Data extraction agent on each compute node will
execute the related commands in Table 5, collecting the informa-
tion regarding the vNIC, virtual devices, internal VLANSs, and the
connections among them. For L3 state, the agent extracts routing
tables from the network node, Linux name space, VMs and their IP
addresses from the compute nodes, etc. For L4 state, the raw data
consists of iptables rules implemented in the OS of compute node.
By executing the system commands as shown in Table 5, the agents
can extract the rules applicable to each VM.
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