Multipath IP Transmission:
Motivation, Design, and Performance

Abstract—Most end devices are now equipped with multi-
ple network interfaces. Applications can exploit all available
interfaces and benefit from multipath transmission. Recently
Multipath TCP (MPTCP) was proposed to implement multipath
transmission at the transport layer and has attracted lots of
attentions from academia and industry. However, MPTCP only
supports TCP based applications and traffic rate allocated to
each path is totally determined by TCP congestion control. In this
paper, we implement multipath transmission at the network layer
and develop a Multipath IP (MPIP) design consisting of signaling,
session and path management, multipath routing, and NAT
traversal. MPIP supports flexible multipath routing strategies to
satisfy diverse application needs. We implement MPIP in the
latest Linux kernel. Through controlled lab experiments and
Internet experiments, we demonstrate that MPIP can effectively
obtain multipath gains at the network layer. MPIP not only can
be used by the legacy TCP and UDP protocols, but also works
seamlessly with MPTCP. For TCP-based applications, MPIP’s
performance is comparable to MPTCP, and the best performance
can be obtained when they work together.

I. INTRODUCTION

Contemporary end devices are normally equipped with
multiple network interfaces, ranging from datacenter blade
servers to user laptops and handheld smart devices. Exploiting
all available interfaces, applications can adopt multipath trans-
missions to achieve higher and smoother aggregate throughput,
resilience to traffic variations and failures on individual paths,
and seamless transition between different networks. While
each application can implement its own multipath transmission
at the application layer, it is more desirable to provide mul-
tipath transmission services from the lower network protocol
stack so that all applications can benefit from it. Recently,
Multipath TCP (MPTCP) has been proposed and got lots
attention from academia and industry [1], [2], [3], [4]. In
MPTCP, if a pair of nodes have multiple end-to-end IP
paths, each TCP session is carried by multiple subflows, each
of which is an independent regular TCP connection and is
routed to one available path. TCP Packets are dispatched
to different subflows along different paths. At the receiver
end, all packets coming from different subflows/paths are put
back for reconstructing the original TCP data stream. MPTCP
allows all TCP-based applications enjoy the multipath gain in a
transparent fashion. However, UDP-based applications cannot
benefit from it. Fundamentally, the question of “at which
layer(s) should multipath transmission be implemented?” is
still largely open. On one hand, routing is intrinsically a net-
work layer function; on the other hand, end-to-end multipath
transmission can be conveniently initiated and managed by
end nodes at transport and application layers.

In this paper, we share our experience of implementing
multipath transmission at the network layer of end nodes
and present our design of Multipath IP Transmission (MPIP).
MPIP has several advantages over MPTCP:

e Broader Coverage. While MPTCP can only be used by
TCP based applications, MPIP can transmit IP packets
generated by both TCP and UDP based applications.

o Better View and Coordination. The network layer can
directly measure network status and promptly capture
various dynamic events, such as interface and network
changes. Since all application traffic go through the net-
work layer, MPIP can adjust the transmission strategies
for all applications in a coordinated fashion.

e More Flexible Routing. With MPTCP, traffic allocated to
each path is determined by the rate achieved by the TCP
subflow on that path, i.e., routing is simply a result of
congestion control. It is too rigid for applications with
diverse throughput and delay needs. MPIP instead can
implement any customized multipath routing strategy to
satisfy application needs at the network layer.

e Lower Complexity. MPTCP has to work with complicated
implementations and constraints imposed by the legacy
TCP implementations. To the contrast, the legacy IP
protocol is stateless and much simpler than TCP. It gives
lots of freedom for MPIP design and implementation.

Meanwhile, MPIP also faces additional challenges. First of all,
due to the stateless nature of IP, there is no existing session and
path management mechanisms at the network layer. Secondly,
to work with multiple paths, MPIP constantly needs feedbacks
about the availability and performance of each path. However,
the legacy IP does not provide end-to-end feedbacks. Thirdly,
various middle-boxes, e.g., NAT routers, are by no-means
transparent. They change and verify IP and TCP headers, and
drop packets which they believe are “unorthodox” according to
the legacy TCP/IP protocol. They pose significant challenges
to MPIP. Multipath transmission unavoidably leads to out-of-
order packet delivery. This will cause problem for running
legacy TCP over MPIP. Finally, MPIP design and implemen-
tation should minimize the overhead and complexity added
to the network layer. We address those challenges to achieve
multipath gains in our MPIP design and implementation. The
contribution of our work is three-fold.

1) We develop a complete design to implement multipath
transmission at the network layer, consisting of signal-
ing, session and path management, multipath routing,
and NAT traversal. Our MPIP design not only can be

used by the legacy TCP and UDP protocols, but also
works seamlessly with MPTCP.

2) We design a simple delay-based routing algorithm for
MPIP to balance the loads of available paths. We also
propose a user-defined mutlipath routing framework,
through which customized routing strategies can be
realized by MPIP to satisfy diverse application needs.

3) We implement MPIP in the latest Linux kernel. We eval-
uate its performance using controlled lab experiments
and Internet experiments. We demonstrate that MPIP
can effectively achieve various multipath gains at the
network layer. For TCP sessions, MPIP’s performance
is comparable to MPTCP, and the best performance can
be obtained when they work together.

The rest of the paper is organized as follows. Section II
describes the related work. The design of our implementation
is introduced in Section IV. In Section VI, we report the
experimental results for our multipath IP design. We conclude
the paper with summary and future work in Section VII.

II. RELATED WORK

Multipath transmission has been an active research area
for quite some time. Back to 2001, Hsieh et al proposed
pTCPI[5] that effectively performs bandwidth aggregation on
multi-homed mobile hosts. In [6], the authors investigated the
potential benefits of coordinated congestion control for multi-
path data transfers. In [7], Dong et al implemented concurrent
TCP(cTCP) in FreeBSD to improve throughput of connections
through balancing traffic load on multiple end-to-end paths. As
bandwidth of cellular network becomes comparable with the
wired Internet, switching among WiFi and cellular becomes
practical for mobile devices. In [8], the authors designed a
complete system that supports smooth transfer among different
networks. Shuo et al proposed a transport framework of
mobile network selection named Delphi in [9]. In 2010, Barre
et al published experimental results of using multiple paths
simultaneously in TCP transmission [10]. After two years,
based on IETF RFC 6182 for multipath TCP in 2011, the
same team implemented a complete prototype of multipath
TCP in Linux and Android system [1]. They also explored
many other aspects of MPTCP in [3], [11], [12], [4]. This
prototype is used by other researchers for measurement and
improvement of MPTCP. In [2], based on WiFi and cellular
networks, Chen et al did a thorough measurement of MPTCP
over wireless links. In [13], a delay-based congestion control
algorithm, a variation of TCP Vegas [14], was proposed for
multipath TCP. In industry, Apple implements multipath TCP
in i0S 7.0 for SIRI, a cloud-based natural language voice
command and navigation service, which is the first large-scale
industry deployment of multipath TCP.

III. SEMANTICS

Before describing the detailed design, we first define basic
elements in MPIP and present work flow of MPIP.

Node A Node B

Application Application

Transport

Multipath IP

socket

Session

Transport

Multipath IP

ry

IPll IPlZ IPZI IPZZ
11 \ /
. S —7 7
S \\:~_Pa£b.s—/;/ //’,
N~ ~ - —
S~ —] —_—
Soo e

—— i —

Fig. 1: Example of MPIP Transmission

e Node refers to an end device with potentially multiple
network interfaces, each of which gets assigned with a
private or public IP address.

o Session is the communication session between two nodes.
A session is established at the transport layer, using the
legacy TCP or UDP protocol.

e Path refers to an end-to-end path available for a session.
For each session, MPIP can use any network interface
on one node to transmit packets to any interface on the
other node. If the two nodes have M and N interfaces
respectively, the number of possible paths is M N.

With the legacy IP, each session is associated with only one
IP (interface) and one port number on each node. The routing
decision is based on destination IP address. MPIP employs
customized session-based routing, and transmits packets of
each session using any combination of the available paths.

For the example in Figure 1, node A and node B are MPIP-
enabled. They use the legacy application layer and transport
layer. Each node has two interfaces (and the associated IP
addresses). There are four end-to-end IP paths, as illustrated
in Figure 1. When an application on node A opens a TCP
connection to node B, MPIP will treat this connection as a
new session. For each packet going from A to B, MPIP will
choose one of the four available paths to send it out. To do
that, MPIP will change the source and destination IP addresses
as well as the port numbers of the packet so that it can be
forwarded to the corresponding interface of the chosen path on
node B. When node B receives the packet, it will first check
which session it belongs to, then it changes the IP address
and port number back to the original values of the session.
Then the packet will be passed to TCP. The whole process is
transparent to TCP. If MPIP can simultaneously utilize the four
paths by dispatching different packets to different paths, TCP
throughput can be improved. Also the session can run as long
as one path is available. This means the TCP connection will
not be interrupted even if the default interfaces assigned to the
TCP connection by the OS are disconnected. This makes hand-
overs between different networks seamless and transparent to
the transport and application layers.

To realize the gain of MPIP, there are several major steps.

1y

2)

3)

4)

5)

6)

Signaling Channel: MPIP needs coordination between
the two end nodes. We implement a signaling channel
by adding a control message block to each IP packet.
Handshake: MPIP works only if both ends are MPIP
enabled. We design a handshake mechanism for a MPIP-
enabled node to probe the MPIP availability of a remote
node and configure MPIP transmission.

Session Management: MPIP conducts session-based
routing. Session management takes care of the addition
and removal of TCP and UDP sessions.

Path Management: The available paths between two
end nodes are explored at the beginning of each MPIP
session. During the session, MPIP also continuously
monitors the availability and quality of all paths.
MPIP Routing: MPIP dispatches packets to different
paths to take advantages of multi-path gain, seamless
transition between networks, as well as application-
specific customized routing.

NAT Traversal: The existence of NAT routers signifi-
cantly increases the complexity of MPIP. All compo-
nents are designed to work with NATs.

We present the detailed design for each component in the
following section.

IV. DETAILED DESIGN

MPIP only changes the network layer and is transparent to

Sender Receiver

Send Packet
Send MPIP Query
Send Packet
Send MPIP Query

Enable MPIP

Enable MPIP |4~ _ -1 Send MPIP Confirm

Send MPIP Confirm -7

Fig. 2: MPIP Handshake

Local IP Address List carries all local IP addresses on the
sending node. This list will be used to construct MPIP paths.

CM Flags encode the MPIP functionality of the packet.
With different values of CM Flags, different actions will be
taken when the packet is received.

Checksum is used to verify the integrity of the CM. Check-
sum is calculated using all other fields in CM. Receiver verifies
a CM by recalculating its checksum.

Other fields will be explained in the following sections.

B. Handshake

TABLE II: MPIP Availability

the transport and application layers. To keep the simplicity
of IP protocol, MPIP is still implemented as connectionless,
while maintaining some feedback information of the available
paths necessary for MPIP routing. We achieve this by simply
keeping track of several key tables. As a result, MPIP imple-
mentation does not add too much overhead to the kernel.

A. Signaling Channel

Due to its connectionless design, IP protocol doesn’t have
its built-in end-to-end feedback channel. MPIP routing algo-
rithms do need realtime information about the availability and
performance of end-to-end paths. It needs a signaling channel.
Instead of transmitting extra signaling packets, we piggyback
MPIP control and feedback information to each MPIP packet.
We add an additional control message (CM) data block at the
end of user data, as shown in Table I. The size of the CM
block is around 25 bytes, which is negligible for typical data
packets of 1000+ bytes.

TABLE I: Control Message Structure

Dest. IP | Dest. Port MPIP Query
Address Number Availability | Count
1P Py True 2
I1Po Py False 5

Source Local IP CM Checksum | Session
Node ID | Address List Flags ID
Path Feedback Packet Path
D Path ID Timestamp Delay

Source Node ID is a globally unique identification of the
sending node of this packet. To have a semi-static node ID,
we use the MAC address of one selected NIC (preferably a
more static one) to be its ID. The value of node ID is initiated
when the system starts and remains unchanged until it exits.

To take advantage of MPIP, both end nodes of a session need
to be MPIP enabled. Locally, every node maintains a table
(Table II) to record the availability of MPIP on remote nodes.
Due to the existence of NAT, two different remote nodes might
share the same IP address, this is why we have to index each
entry using the combination of IP address and port number.

The MPIP handshake process is illustrated in Figure 2.
When a node receives a packet from the transport layer, it
first checks locally whether the destination address and port
number has an entry in Table II. If yes and MPIP availability
is true, then the packet will be sent out using MPIP; if MPIP
availability is false, it will be sent out as a normal IP packet to
be backward-compatible. If there is no entry found in the table,
besides sending out the packet as a normal IP packet, MPIP
makes a copy of the packet and inserts the CM block with
Flags_Enable for MPIP query. When the packet is received
by a MPIP-enabled node, the receiver adds the sender’s IP
address and port number into its own MPIP availability table
with value of True, then sends back a confirmation packet to
the sender with Flags_FEmnabled. When the sender receives
the confirmation, it will add the receiver’s address and port
number to its local MPIP availability table.

With the handshake flow above, the smallest number of
query packet that will be sent for the whole process is only
one. But sometimes because of packet loss or synchronization

issues, there can be multiple query packets sent out by both
ends. This is not a problem because the design of the system
allows receiving more than one query packets and confirmation
packets. In Table II, the column Query Count maintains
the number of query messages that have been sent out to
each destination. If the number is larger than a threshold, it
assumes that the destination doesn’t support MPIP, and mark
the availability in the table as False. In our experiments, we
set the threshold to five.

TABLE III: Node ID vs IP address and Port

Node ID | IP Address | Port Number
ID: IP11 P11
1D, IP1o Pio
1Dy IP>1 P
1Dy IPyo Pso

After the MPIP handshake, a node can start to learn the
interfaces available on each MPIP-enabled remote node. Each
node maintains a node ID to IP address and port number
mapping table, as in Table III. Every time a MPIP packet is
received, the receiver extracts the sender’s node ID from the
packet’s CM block, and IP address and port number from the
packet header. The three tuple is then written into the mapping
table. Note, if there are multiple sessions from the same sender,
even if the sessions share the same network interface on the
sender, they will use different port numbers. As a result, the
number of entries for a remote node can be larger than the
number of interfaces available on that node.

C. Session Management

At the transport layer, each session is identified by the
traditional 5-tuple: source and destination IP addresses and
port numbers, and protocol type. Since MPIP can transmit
a packet of a session using different source and destination
IP/port addresses than the session’s original addresses, we
can no longer use IP/port numbers to associate a received
MPIP packet to a transport layer session. Instead, we will use
session ID and node ID carried in the CM block to identify the
session of a MPIP packet. We need a table to correlate the two
different session mapping schemes employed by MPIP and the
legacy transport layer. This is achieved through the session
information table, as in Table IV. The table maintains one
entry for each session to each remote node. For each entry, the
socket information, namely IP addresses and port numbers, are
the original ones from the transport layer. A session’s socket
information will not be changed even if the IP addresses and
port numbers that are initially assigned to the session are not
active anymore. As will be shown later, this is to guarantee
seamless hand-overs between networks.

After the MPIP availability handshake has been successfully
completed, when sending out a packet, the sender checks
Table IV to see whether a proper session entry has been
generated. If not, MPIP generates a new session ID and adds
a new entry to Table IV. The IP addresses, port numbers
and protocol are extracted from the packet header, and the
destination node ID is obtained from Table III. After this,

all packets belong to the session will carry the session’s ID
in its CM block. On the receiver end, whenever a MPIP
packet is received, the receiver extracts the source node ID
and session ID in its CM block. If there is no entry found in
its session information table, it will generate a new entry and
populate it with the source node ID, session ID, and socket
information carried in the packet header, with swapped source
and destination IP/port addresses. This will make sure that
both sides of the same session use the same session id. Note
that, due to NAT, for the same session, the IP addresses and
port numbers seen by a remote node might be different from
the values on a local node. This won’t cause any confusion as
long as the session ID and node ID combination is unique.
Removal of a session is done by expiration. At each node,
every time it sends or receives a packet, it updates the session’s
Update Time column in Table IV. For an active session, this
time stamp should be updated frequently. If a session is not
updated over some time interval, the session is considered to
be obsolete and will be removed from Table IV. In our system,
this threshold value is set to 120 seconds. After all information
related to this session is removed, if there are still more packets
coming from that session, MPIP handshake will start over.
The Next Sequence No is used for TCP out-of-order packet
processing, which will be explained in Section V-B.

D. Path Management

After a session is registered with MPIP, the next step is
to explore all the available paths for the session. One simple
solution is to have each node send their local IP addresses
to the other end using the Local Address List in CM block.
Then any pair of IP addresses on each end can be used as a
path for MPIP transmission. However, this only works if all
interfaces on both ends have public IP addresses. To solve this
problem, we again have to identify paths using a combination
of IP address and port number on both ends. Consequently, the
path management has to be done for each session individually.

1) Establishment: MPIP maintains a path information table
on each node, as in Table V, to record the available paths for
each session. Each entry contains the ID of the remote node
and the session ID. Each path is allocated with a path ID,
which is unique on the local node. The source and destination
IP and port addresses are NOT necessarily the same as those
allocated to the session at the transport layer. They are the
actual TP and port addresses in the header of MPIP packet.

Given M and N interfaces at each end node of a session,
there are totally M x N possible paths that can be added to
the session. Let’s explain the process through the example in
Figure 1. Node A initiates a session with node B. The IP and
port addresses allocated to the session at the transport layer are
(sip1,sp1) and (dip1,dp;) on A and B respectively. Then on
both ends, MPIP records the new session, and adds the default
path between (sip1,sp1) and (dipy,dp;) for the session in
Table V. Since A knows B is MPIP-enabled, it also tries to
send the same packet from its another local interface with IP
address sip2 by changing its source addresses to (sipa, sp1).
When B receives the packet, possibly due to NAT, the source

TABLE 1IV: Session Information

Dest. Session | Source Source Destination | Destination | Protocol Next Update
Node ID D 1P Port 1P Port Sequence No Time
1D SID; SIP, | SPORT; DIP; DPORT; TCP S1 T
1D SIDo SIP, | SPORT, DIP; DPORT> UDP 0 T>
1D SID; SIPy | SPORTs3 DIP, DPORTS3 TCP So T3
1Dy SIDo SIPy | SPORT4 DIP, DPORT, UDP 0 Ty
TABLE V: Path information
Dest Session Path Src Src | Dest | Dest | Minimum Real-Time Real-Time Maximum Path
Node ID ID ID IP | Port 1P Port | Path Delay | Path Delay | Queuing Delay | Queuing Delay | Weight
1D SIDy | PIDq1 | sip; | spy | dipy | dp, Dmin11 D1, Q11 Qmaziy Wi
ID SID1 PID12 87;}')2 SP1 dlpl dpl Dmin12 D12 Q12 maxr192 W12
ID SIDQ PID21 Sipl SPo dipl dpl Dmmgl D21 Q21 Qmawgl W21
D STD; | PIDa; | sipy, | spy, | dipy, | dpy | Dminas Doy Q22 Qmawas W2

IP and port addresses in the packet might be different from
(sipa, sp1), say (sips, 5p1). Then B examines the Source Node
ID and Session ID in the packet’s CM block, it knows this
is a MPIP transmission for the same session but from a
different interface. B adds for the session a new path with
destination address of (sipy, 5p1) in its path information table.
Now B will also send back Baﬁkets to A’s second interface,
using destination addresses (sipa, $p1). When A receives the
packet, it confirms the connectivity of its local path between
(sipa, sp1) and (dipy, dp;1), and adds it to its path information
table. Similarly, if B has another interface with public address,
A will obtain the new address from the Local Address List in
the CM block of packets from B to A. Then A can establish
more IP paths to this new address using a similar process.

2) Monitoring: To facilitate path selection, MPIP contin-
uously monitors the performance of active paths. Packet loss
and delay are two important path performance measures. Given
that packet losses in the current Internet are rare, we only
focus on path delay in our current design. Due to asymmetric
routing and unequal congestion levels along two directions of
the same path, instead of measuring the round-trip delay of a
path, we measure the one-way path delay to infer the quality
of a path along each direction.

TABLE VI: Path Delay Feedbacks

Source Path Path Feedback
Node ID ID Delay Time
1D11 PID1; D11 T11
1D12 PID12 D12 Tia
1D2y PIDo; Doy 1o
1D22 PlDss Dog Tho

In Table V, all fields related to network delay will be
calculated by one-way path delay feedback from the remote
node. When node A sends out a packet, it chooses a path
from Table V, sets Path ID of the packet’s CM block, and sets
Packet Timestamp with its local system time 7T7. After node B
receives this packet, it extracts Source Node ID, Path ID and
Timestamp from the CM block. The node ID and path ID are
directly used to identify records in its local path delay feedback
table (Table VI). The one-way delay for the path from A to

B is calculated as 75 — T3, where T5 is B’s local system time
when receiving the packet. Node B checks whether the path
that identified by the source node ID and path ID already exists
in Table VI, if yes, it updates the path’s delay with 1o — T7;
otherwise, it adds a new entry into Table VI. In practice, the
absolute value of path delay calculated here isn’t the real delay
value due to the clock difference between node A and node
B. But our path selection algorithms depend on the relative
ordering and variations of path delays, instead their absolute
values. Clock difference between nodes has little impact.

When node B needs to send a packet back to node A,
B piggybacks path delay information with the packet. It
chooses the record with the earliest (oldest) feedback time
from Table VI, sets the field Feedback Path ID and Path Delay
in the packet’s CM block, and updates the column Feedback
Time with its local system time. When node A receives the
packet, it extracts the path ID and path delay value from its
CM block, and fills the path delay value into the column Real-
Time Network Delay in Table V.

3) Dynamic Path Addition and Removal: As multipath
feature enabled on a device, IP addresses of interfaces change
dynamically. A mobile device can connect to different access
points (WiFi hotspot/Cellular Tower) during a session. Its IP
addresses can be changed, removed or added back dynami-
cally. To make the changes transparent to the session, MPIP
supports dynamic addition and removal of paths from Table V.
When IP address change happens on one node, it will set
Flags_IP_Change in the CM block of its next outgoing
packet. After receiving a packet with this flag, the receiver
knows that IP address change happened on the sender, it
removes all entries of all paths of this session in all tables,
including Table II, Table III, Table V and Table VI. At the
mean time, the entry for this session in Table IV remains
unchanged. The path that sends out the IP change notification
packet will be added back to the aforementioned tables as the
only path of the session. Also, the sender does the same reset
for this session. After all these resets, there is only one path
left for this session, all the other available paths will be added
back into the system through the procedure in Section IV-D1.

E. Multipath Routing

Given all paths available for a session, every time one node
needs to send out packets, it chooses the most suitable path
from Table V. MPIP offers different routing schemes to satisfy
the diverse needs of applications.

1) Concurrent Transmission: Many applications, e.g., web,
file transfer, and video streaming, can benefit from high
throughput transmissions. MPIP can concurrently transmit
packets along multiple paths to achieve higher throughput
than the traditional single path routing. As in Table V, we
maintain a Path Weight for each active path. Each packet will
be dispatched to a path k with the probability P(k), which is
calculated as:

Wi

- Zzl\; Wi'

Path weight is the only criterion for path selection and
determines the performance of MPIP load balancing. In our
prototype, we use realtime path feedback delay to dynamically
update path weights.

The difference between the real-time delay and minimum
delay along a path can be used to infer the queuing delay
which reflects the congestion level along the path. We can
adjust the weight of each path using the real-time queuing
delay. In Table V, Real-Time Path Delay D is collected using
receiver feedbacks as described in Section IV-D2. Every time
a new path delay sample D is received, the other three delay
metrics are updated as follows.

1) Minimum Path Delay: D,,;, = min{D,,;n, D};

2) Real-Time Queuing Delay: Q = D — D in;

3) Maximum Queuing Delay: Qmar = max{Qmaz, @}

P(k) (1)

We use a simple heuristic iterative algorithm to adjust path
weights T}, based on their queueing delays. At each iteration,
we first calculate the average queueing delay among the active
paths. For a path with delay larger than the average, we
decrease its weight by a small amount A; for a path with
delay smaller than the average, we increases its weight by
A. The weight saturated at minimum of 1 and maximum of
1,000. The updated weights will be used to update dispatching
probability as in (1).

This way, we keep all live paths in consideration. Heavily
congested paths will not be completely eliminated. Instead
they will have the minimum weight, and their weights will
be increased after congestion is relieved.

2) User-defined Multipath Routing: Not all applications
take throughput as the first priority. For a live video streaming
session, as long as the throughput is higher than the video
rate, delay is more critical for the streaming quality. Even
for the same application, different data may have different
QoS requirements. In the example of video calls, such as
FaceTime and Skype, audio stream has low volume but are
very sensitive to delay, video stream has high volume and can
be less sensitive to delay than audio. To address the diverse
needs of applications, we design MPIP to support user-defined
routing schemes.

< Higher Layer(Transportation Layer, TCP, UDP) >
Dest MPIP
enabled?

Attach CM block

Modify packet header,
push up

Drop
packet

Extract CM and process

MPIP
packet?
A 4 Y
< Lower Layer(Link Layer, Mac) >

Fig. 3: Work flow of sending and receiving a packet.

) 4

Modify packet header,

choose a path to send
out

A user can inform MPIP of its desired multi-path routing
policy by configuring a routing priority table as illustrated in
Table VII. Each line of the table is a customized routing rule

TABLE VII: User-defined Multipath Routing Table

1P Port Min Max Routing
Address Number | Protocol | Length | Length | Priority
* 22 TCP 0 200 Ry
192.168.1.2 5222 UDP 200 * Ty
192.168.1.2 5221 UDP 0 500 Ry

for outgoing packets. Each rule matches a set of packets and
the routing priority for the matched packets. Packet matching
is done using destination IP address, port number, protocol,
and the range of packet length. We currently define two types
of routing priorities: throughput-first 7', and responsiveness
first R¢. Outgoing packets with T’y priority will be dispatched
to available paths using the concurrent routing scheme pre-
sented in Section IV-E1. Outgoing packets with Ry priority
will always be sent to paths with the lowest delay. Table VII
shows an example of the customized routing table.

To conclude this section, Figure 3 presents the workflow of
how MPIP sends and receives packets.

V. TCP RELATED ISSUES

MPIP changes the default single-path transmission to
achieve higher throughput and robustness. It also brings some
new issues for the upper layer protocols, especially TCP, such
as NAT checking and out-of-order packet delivery. It is also
intriguing to explore the co-existence of MPIP with multi-path
transmissions at upper layers, such as MPTCP. In this section,
we present our solutions to some TCP related issues.

A. NAT Checking

Based on our experiments and other previous studies [1],
NAT devices are by no means transparent, and conduct all
kinds of mapping, verification, and dropping to end-to-end
sessions, especially TCP. One immediate obstacle posed by
NAT to MPIP is that many NAT devices will drop a TCP
packet if they don’t have a record about the TCP connection

that the packet belongs to. If we transmit TCP packets on a
path different from the original one through which the TCP
connection is established, NAT devices along the path are not
aware of the connection and will drop these packets.

1) Fake TCP Connection: To work around a NAT device
that drops packets of a TCP connection established on a
different path, we construct a fake TCP connection along
the path traversing the NAT before sending packets over that
path. Instead of constructing a real TCP connection, we mimic
TCP’s three-way handshake connection establishment at the
network layer and make sure this connection information
won’t go up to TCP layer. All handshake packets have CM
Flags set to Flags_H s, these packets are dropped after being
processed by MPIP. As shown in Table I, the field Local
Address List carries all local IP addresses. Also, the node
that initiates the connection is considered as the client. When
the client receives the IP address list of the server, it sends
out a SYN packet along each possible path to the server
except the original one which was used to initiate the real
TCP connection. When the server receives a SYN packet, it
replies with a SYN-ACK packet through the same path. After
the client sends out the final ACK packet to the server, the
three-way handshake for a fake TCP connection is completed
successfully. After this, NAT routers along the path have a
record about this fake TCP connection, will pass TCP packets
assigned to the path.

2) UDP Wrapper: Another solution is UDP wrapper. Dur-
ing our experiments, most NAT devices don’t verify socket
information of UDP packets. We make use of this feature
and transmit a TCP packet inside a UDP packet to pass NAT
checking. At the sender side, every time the network layer
gets a TCP packet from transport layer, MPIP chooses a path
to send the packet out. If the chosen path isn’t the original
path, it encapsulates the whole TCP packet into a UDP packet
by adding a forged UDP header using the corresponding IP
addresses and port numbers of the chosen path. At the receiver
end, MPIP can tell this UDP packet is a carrier for a TCP
packet instead of a regular UDP packet by checking the
Protocol field of the path in Table IV. After removing the
UDP header, the original socket information will be extracted
from Table IV to be filled into the TCP and IP headers.

B. Out-of-order Packet Processing

When TCP works over MPIP, if the delay difference
between multiple paths is significant, we can expect a lot
of out-of-order packets, which will significantly degrade its
performance. We try to mitigate this out-of-order problem at
the network layer using a simple algorithm.

For each session in Table IV, if it is TCP protocol, MPIP
maintains the sequence number S of the next in-order packet
of the session to be received. MPIP also maintains a separate
buffer B for each active session to store out-of-order packets.
Whenever a new packet is received, if the sequence number
is larger than .S, it will be stored in buffer B; if the sequence
number equals to .S, MPIP pushes all consecutive packets
stored in B to the transport layer and update the next sequence

number S accordingly. If one packet is lost or delayed for a
long time, all subsequent packets will get stuck in the buffer.
As a result, TCP layer will assume that all packets are lost, this
will be devastating for the connection. To avoid this, we set up
the maximum size of the buffer. All the packets in the buffer
will be pushed up once the buffer is full. In our prototype, we
set the maximum size to 10 packets.

C. MPTCP over MPIP

MPTCP exploits the multi-path gain at the transport layer.
A MPTCP session employs multiple subflows, each of which
is a legitimate TCP connection over a single IP path. MPIP
exploits the multi-path gain at the network layer. When
MPTCP runs over MPIP, MPIP treats each TCP subflow as
an independent session, which can now utilize multiple paths.
For the example in Figure 1, a MPTCP session can have 4
subflows. MPIP will create 4 paths for each subflow. As a
result, there are totally 4 sessions and 16 paths managed by
MPIP. Now MPTCP and MPIP work together to adapt the
traffic allocated to each path. When congestion accumulates
on one path, MPIP will first notice the high queuing delay
on that path, reduce the path weight and shift packets to less
congested paths. The load balancing conducted by MPIP at the
network layer makes the congestion variations along different
paths less perceivable for MPTCP subflows so that MPTCP
can make better use of subflows to achieve higher throughput.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed design, we
implemented MPIP in Linux kernel 3.12.1 in Ubuntu system.
The main functions are implemented in three new files with
about 5, 000 lines of code. We modified the file of “ip_input.c”
and “ip_output.c” under IPv4 folder to embed our MPIP
feature into the existing TCP/IP stack. We then evaluated the
performance of the system in both controlled lab environment
and on the Internet. In all experiments, we tried to keep the
configuration of each node unchanged after installation. We
conducted side-by-side comparison with TCP and MPTCP.
For all TCP experiments, we use CUBIC-TCP [15] as the
congestion control algorithm. MPTCP version 0.88 is used in
our evaluation. Iperf3 is used to generate traffic.

A. Controlled Lab Experiments

In our lab, we installed the prototype on two desktop com-
puters, which are connected directly to a router without any
middle-box. Each desktop has two 1000 bps NICs, leading to
4 paths with aggregate capacity of 200M bps between the two
nodes. We used Netem tool in Linux to control bandwidth and
delay on each path to generate various multi-path scenarios.
Wireless connections were also used in our evaluation.

1) Impact of Out-of-order Packet Processing: To test out-
of-order packet processing in Section V-B, we replaced one
wired NIC on one desktop with a WiFi NIC. As a result,
the RTT of one path with two wired NICs is about 0.1ms
while the paths from the wireless NIC is about 0.5ms. The
RTT difference is large enough to generate out-of-order packet

40, 200
| 180
30|

‘ | 16071

5
—Path 1

—Path 2
100 4 a
80 .
0 M g D i [Py
£ ool /™ W Ll A
s W ! | \/
4OMM%WWMWWW
—Path 1
20 —path 2

—total

2 } 2
£ 201 J il H\\ H S140

A ¢
. \ \\ i i . \ ‘ 120

10 l
—without out-of-order process 100]
o —with out-of-order process 80
0 200 400 600 800 1000 1200 0 100 200 300

Seconds Seconds

(a) (b)

Fig. 4: a) TCP throughput w./w.o. out-of-order packet pro-
cessing; b) Dynamic Addition and Removal of Paths

deliveries. Also, to make sure that there are significant load
of packets to be assigned to the wireless NIC card, instead of
using the standard path selection algorithm in Section IV-E,
we fixed the weight of all the four paths to be the same. Then
we made sure that 50% of outbound packets will be assigned
to the wireless NIC. With this configuration, we ran a regular
TCP session that lasts for 20 minutes with MPIP out-of-order
processing enabled and disabled respectively. The result is
shown in Figure 4(a). With all the other configurations being
the same, the average throughput achieved by TCP/MPIP
with and without out-of-order process were 28.2Mbps and
19.4Mbps respectively. This shows that TCP throughput is
vulnerable to out-of-order packet delivery, and the proposed
solution at MPIP is effective in mitigating the negative im-
pact. In all the following experiments, we enable out-of-order
process by default.

2) Resilience to Path Addition and Removal: We conducted
experiments to test MPIP’s capability to handle dynamic
path addition and removal. We conducted one experiment for
TCP over MPIP, another experiment for MPTCP over IP, in
which MPTCP handles the addition and removal of paths.
As illustrated in Figure 4(b), each experiment lasted for six
minutes with three stages. We started an experiment with the
four paths fully functional. After two minutes, we unplugged
the wire of one NIC on the client to reduce the number of
paths to two. The wire was plugged back for the last two
minutes. In both cases, MPIP and MPTCP adapted to the
changes smoothly. The transmission of Iperf3 didn’t stop even
though its throughput varied with the number of available
paths. Because of the overhead of closing and opening new
TCP subflows, when the available paths changed, MPTCP’s
adaption was slower than MPIP, especially when paths were
added back. Also MPTCP throughput has larger oscillations
than MPIP even when the paths were stable. We will come
back to this issue later.

3) TCP Throughput Improvement: To test the effectiveness
of MPIP load-balancing, we enable only two parallel paths
between the two desktops so that they don’t share any NIC to
prevent traffic coupling. We limited the bandwidth of path 1
to 80Mbps and path 2 to 40Mbps. From the throughput trend
in Figure 5(a), both paths converged close to their capacities

0 200 400 600 800 1000 1200 GO 200 400 600 800 1000 1200
Seconds Seconds

(a) Path Throughput (b) Queuing Delay

Fig. 5: Load Balancing between Available Paths

and remained stable for the whole experiment. Figure 5(b)
shows the inferred one-way queuing delay along each path
using the feedback mechanism in Section IV-D2. The linear
drift is due to the clock difference between the two nodes.
Since both paths experience the same clock difference, and the
path weight adjustment in Section IV-E is based on relative
delays, MPIP was able to allocate packets to the two paths
proportionally so that their queue lengths remained stable.

1 PP a1
I - ¢ Cwerer Nl Cpah2
+ E o Eoeher & Pah3

Path 4

O Nolint Bandhich it AddedDelyy Wireless Nolimt BandwidhLimit AddedDelay Wireless

(@ (b)

Fig. 6: Lab Experiments: a) Session Throughput Comparison;
b) MPIP Traffic Allocation

Next we conducted side-by-side comparison between
TCP/MPIP, MPTCP/IP and MPTCP/MPIP. Figure 6(a) shows
the average throughput comparison results for multiple config-
urations. The error stick on top of each bar is the standard devi-
ation over 20 minutes experiment. To avoid unnecessary errors
in the initial transition phase, we didn’t include throughput
data in the first 100 seconds. We first conducted experiments
without any bandwidth limiting. The aggregate capacity for
the four paths is 200Mbps. We can see that TCP/MPIP
achieved the highest throughput of 171Mbps, MPTCP/IP got
129.5Mbps. When we combine MPIP and MPTCP together
as stated in Section V-C, we got a throughput of 164.6Mbps.
To increase path capacity diversity, we limited the bandwidth
of one client NIC so that its capacity to each server NIC
is 20Mbps. The total capacity along all four paths became
140Mbps. TCP/MPIP got the lowest bandwidth here, followed
by MPTCP/IP. This suggests that as the capacity diversity
among paths increases, MPTCP does better than MPIP. When
we combined MPTCP with MPIP, the highest throughput
was achieved. In our local testbed, with wired connections,

the round trip time is trivial (about 0.1ms). To emulate a
connection with longer delay, we manually added 5ms delay
to each NIC on the client and plotted the results as the third
bar group in Figure 6(a). The results are consistent with the
first group with short delays. By replacing one NIC on the
client by a WiFi NIC, we evaluated the performance of MPIP
with hybrid wireless and wireline connections. In this case,
MPTCP achieves higher throughput than MPIP, but still, when
they worked together, the highest throughput was achieved.

In Figure 6(b), we plot the throughput shares of all paths
employed by MPIP. For group 1 and group 3, even though
all paths have identical network configuration, the achieved
throughputs can be quite different. This is due to the traffic
coupling of paths. Different from the independent paths in
Figure 5, the four paths are no longer independent and any
pair of paths share a common NIC, either on the client side,
or the server side. As a result, the queuing delay generated
by one path may also affect the queuing delay on another
path. The throughput order among homogeneous paths are not
predictable. When we limited bandwidth of one NIC (group
2), as expected the two limited paths(1 and 2) have much lower
throughput than those two unlimited paths (3 and 4). Finally,
for the wireless experiment, the two paths from the wireless
interface almost got nothing. This is due to high and unstable
delays on these two paths. The throughput variations on indi-
vidual paths in Figure 6(b) are larger than the variations of the
aggregate throughputs of MPIP sessions in Figure 6(a). Other
than higher average throughput, the improved smoothness is
another advantage of multi-path transmissions.

B. Internet Experiments

Besides the controlled lab experiments, we also conducted
Internet experiments to evaluate MPIP’s robustness and com-
patibility with middle boxes, including NAT routers. We set
up our server on Emulab [16] which is located in Utah while
the client is in a major city in east coast. Because the Emulab
server only has one NIC, there are only 2 paths in this case.

We conducted three sets of experiments with different
bottleneck placement. First, we connected both NICs of our
local client to the same NAT router that connects to Optimum
Cable with 15Mbps bandwidth. Secondly, we connected one
NIC to Optimum and connected the other NIC to Verizon FIOS
with 25Mbps bandwidth. Finally, we connected one NIC to
Optimum and connected the other wireless NIC to T-Mobile
4G network through an iPhone 6 plus’s hotspot.

In our experiments, MPIP can always successfully traverse
the local NAT router and potential middle-boxes inside ISP
and cellular networks and established two paths to the Emulab
server as expected. The end-to-end bandwidth between our
local client and the Emulab server is about 5Mbps through
Optimum, 10Mbps through FIOS, and 900Kbps through T-
Mobile 4G. The results of Iperf3 transmissions over different
transport and network layer combinations are compared in
Figure 7(a) and Figure 7(b). When two paths share the same
Internet access, all three sessions fully utilized the capacity
of the connection with little throughput difference. The two

VPP Path 1
MPTCP Eprah2
ETogether

210 [HIE: H
= 2
i

Optimum & 4G

s hrhes

5 + 1 +
==
Optimum & 4G

oL
Optimum & Optimum ~ Optimum & Verizon Optimum & Optimum ~ Optimum & Verizon

(2) (b)

Fig. 7: Internet Experiments: a) Session Throughput Compar-
ison; b) MPIP Traffic Allocation

paths didn’t have equal throughput share mostly because of
the traffic coupling between them. When Optimum and FIOS
were used, MPTCP got the lowest throughput among the three
sessions, followed by MPIP. Still, when MPIP and MPTCP
worked together, the highest throughput was achieved. In
Figure 7(b), the throughput share along each path is close
to its capacity. This proved that the delay-based path selection
algorithm in Section IV-E1 also works well in real Internet.

For experiments with a 4G connection, MPTCP got the
highest throughput, the throughput of the other two sessions
were slightly lower. According to our observation, compared
with Optimum and FIOS, the delay of the 4G connection
was very unstable, mostly due to varying signal strength and
interference on the 4G link. According to the delay-based path
selection algorithm, the weight of the 4G path was very small.
This can be shown by the throughput share for the 4G path in
Figure 7(b). When MPIP and MPTCP worked together, both
TCP subflows have two paths at the IP level, neither made
good use of the 4G path because of the unstable delay.

C. UDP and Customized Routing

In this section, we demonstrate the gain of UDP over MPIP
and customized routing. We don’t include any throughput
improvement results for UDP here since the result is straight-
forward. We got nearly twice the throughput by running UDP
over MPIP in our lab experiments. Instead, we use Skype as an
example application to demonstrate the existing applications
(TCP or UDP) can benefit from MPIP’s customized routing.

Skype uses direct connection for two-party video calls [17].
All the video and audio packets are transmitted between the
two ends using UDP. During a video call, users are more
sensitive to audio delay than video delay. According to our
experiments, almost all Skype audio packets are less than 200
bytes while video packets are generally larger than 1,000
bytes. To achieve short audio delay, we added one entry
to Table VII to assign packets smaller than 200 bytes with
responsiveness-first priority. In addition to the Skype call, we
also run an Iperf3 TCP session between the two nodes to see
how TCP and UDP coexist over MPIP.

We used only one NIC on the server and two NICs on the
client. For path 1, we set the bandwidth to 2Mbps and the
delay to 50ms. For path 2, we set the bandwidth to 300Kbps

0.5¢ —Ww.0. customized routing —Ww.0. customized routing
o —with customized routing o —with customized routing
(0] 100 200 300 400 (6] 100 200 300 400
Seconds Seconds

(a) Iperf3 TCP Throughput

(b) Skype Audio Delay

40
o it l
w \ M \
20 \
{ H “}
10
—w.o. customlzed routing
o —with customized routing
(6] 200 400 600 800 1000 1200
Seconds

(c) Throughput with ACK Optimization

Fig. 8: Responsiveness-first Routing for Skype UDP Packets and TCP ACK Packets

and the delay to 20ms. Then we have one high bandwidth-
delay product path and one low bandwidth-delay product path.
By enabling and disabling customized routing, we got the
results in Figure 8. Figure 8(a) shows the throughput of Iperf3
TCP session; Figure 8(b) shows Skype’s audio round trip time
which was extracted from Skype’s real-time technical report
window during the experiments. It shows the amount of delay
the user experienced during the call. From Figure 8(b), we see
the huge reduction of audio delay. The average audio RTT is
82ms and 119 ms with and without responsiveness-first routing
for short packets. Meantime, from Figure 8(a), we see that the
TCP session got roughly the same throughput in both cases.

Similar to Skype audio packets, TCP ack packets are
normally short, but are delay sensitive. If a ACK packet is
overly delayed or lost, the TCP congestion control will be
triggered and degrade the throughput performance. We can
also apply customized routing and assign ACK packets to
paths with short delay and low loss rate. To demonstrate this,
we conducted an experiment using the same configuration as in
Figure 4(a), by replacing one wired NIC with wireless NIC.
Without customized routing, we assign the same weight to
all paths. In Figure 8(c), we compare the throughput of the
same TCP session when enabling and disabling responsive-
first routing for small packets in MPIP. We can see obvious
throughput improvement. Customized routing in MPIP im-
proved the average throughput from 24.2 Mbps to 28.5 Mbps.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed MPIP, a complete design of
multipath transmission at the network layer. MPIP consists of
signaling, session and path management, multipath routing,
and NAT traversal. MPIP can be used by both TCP and
UDP applications. It also works seamlessly with MPTCP, and
supports user-defined customized routing. We implemented
MPIP in the latest Linux kernel. Through lab and Inter-
net experiments, we demonstrated that MPIP can effectively
achieve various multipath gains at the network layer. The
best performance can be obtained when MPIP and MPTCP
work together. MPIP is just our first attempt for implementing
multipath transmission at the network layer. The signaling and
feedback mechanisms can be further optimized to reduce its
overhead and improve its robustness. The delay-based load
balancing routing algorithm can be improved to better address

path diversity, especially for WiFi and cellular paths. MPIP
makes it possible to coordinate multipath routing for a mix
of TCP and UDP traffic. We are also interested in extending
the user-defined multipath routing framework to support finer
routing granularity and more flexible forwarding actions. We
are currently working on the Android implementation of MPIP.
IPv6 support is another feature on its way.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in NSDI, 2012.

[2] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath tcp performance
over wireless networks,” in IMC, 2013.

[3] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Cellnet, 2012.

[4] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath tcp schedulers,” in ACM SIGCOMM Capacity
Sharing Workshop (CSWS), 2014.

[5] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts,” in MobiCom,
2002.

[6] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath
congestion control,” Commun. ACM, vol. 54, no. 1, Jan. 2011.

[71 Y. Dong, D. Wang, N. Pissinou, and J. Wang, “Multi-path load balancing
in transport layer,” in Next Generation Internet Networks, 3rd EuroNGI
Conference on, May 2007.

[8] A. Singh, G. Ormazabal, H. Schulzrinne, Y. Zou, P. Thermos, and
S. Addepalli, “Unified heterogeneous networking design,” in /PTComm,
2013.

[9] S. Deng, A. Sivaraman, and H. Balakrishnan, “All your network are

belong to us: A transport framework for mobile network selection,” in

HotMobile, 2014.

S. Barre, C. Raiciu, O. Bonaventure, and M. Handley, “Experimenting

with multipath tcp,” in SIGCOMM 2010 Demo, September 2010.

G. Detal, C. Paasch, S. van der Linden, P. Merindol, G. Avoine, and

O. Bonaventure, “Revisiting flow-based load balancing: Stateless path

selection in data center networks,” Computer Networks, vol. 57, no. 5,

April 2013.

C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying

experimental design to improve multipath tcp,” in CoNEXT, 2013.

Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath

tep,” in ICNP, 2012.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New

techniques for congestion detection and avoidance,” in SIGCOMM,

1994.

S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp

variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, Jul. 2008.

Emulab-Team, “Emulab - Network Emulation Testbed Home,”

www.emulab.net/.

Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:

Measurement study of google+, ichat, and skype,” in ACM Internet

Measurement Conference, 2012.

[10]

(11]

[12]
[13]

[14]

[15]
[16] http://

(17]

