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Abstract

Peer-to-Peer (P2P) systems exploit the uploading bandwidth of individual peers to distribute content
at low server cost. While the P2P bandwidth sharing design isvery efficient for bandwidth sensitive ap-
plications, it imposes a fundamental performance constraint for delay sensitive applications: the upload-
ing bandwidth of a peer cannot be utilized to upload a piece ofcontent until it completes the download
of that content. This constraint sets up a limit on how fast a piece of content can be disseminated to all
peers in a P2P system. In this paper, we theoretically study the impact of this inherent delay constraint
and derive the minimum delay bounds for P2P live streaming systems. We show that the bandwidth
heterogeneity among peers can be exploited to significantlyimprove the delay performance of all peers.
We further propose a simple snow-ball streaming algorithm to approach the minimum delay bound in
P2P live video streaming. Our analysis and simulation suggest that the proposed algorithm has better
delay performance and more robust than existing tree-basedstreaming solutions. Insights brought forth
by our study can be used to guide the design of new P2P systems with shorter streaming delays.

1 Introduction

Video-over-IP applications have recently attracted a large number of users on the Internet. YouTube [4], the
popular user-generated-content (UGC) video streaming site, serves100 million distinct videos and65, 000
uploads daily. While Youtube employs content distributionnetworks to stream video to end users, Peer-
to-Peer (P2P) video streaming solutions utilize the uploading bandwidth of end users to distribute video
content at low server infrastructure cost. Several P2P streaming systems have been deployed to provide
on-demand or realtime video streaming services over the Internet [6, 23, 17, 18, 20]. Our measurement
studies have verified that hundreds of thousands of users cansimultaneously participate in these systems
[7]. While the initial successes of P2P streaming are impressive, compared with the traditional TV services
provided by cable companies, all current P2P streaming systems suffer from long video startup delays and
highly variable playback lags among peers [8]. The delay between a video object is chosen by a user and the
actual playback starts on his/her screen ranges from several seconds to a couple of minutes. The playback
progresses of peers watching the same channel are asynchronous with lags up to tens of seconds.

In traditional client-server based video streaming systems, the video startup delay perceived by a client
is determined by the delay and the available bandwidth on theits connection with the server. To deal with
delay and bandwidth variations, client-side video buffering is necessary to ensure smooth playback. In
P2P video systems, a video stream is divided into videochunksand peers collaboratively download/upload

∗Conference version of this paper appeared in ACM MultimediaConference 2007 [13]
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video chunks from/to each other in P2P fashion to reduce the server workload. While the P2P bandwidth
sharing design has been very efficient for bandwidth sensitive applications, such as file sharing, it imposes
a fundamental performance constraint for delay sensitive applications: the uploading bandwidth of a peer
cannot be utilized to upload a piece of content until it completes the download of that content.This constraint
sets up a limit on how fast video chunks can be disseminated toall peers.

In this paper, we theoretically study the impact of this inherent delay constraint and derive the minimum
delay bounds for generic P2P live video streaming systems. Our analytical results unveil the impact of the
bandwidth distribution among peers on their streaming delay performance. We show that the bandwidth
heterogeneity among peers can be exploited to improve theirdelay performance. Even a very small percent-
age of super peers can significantly reduce the video streaming delays for all peers. We further propose a
simplesnow-ball streamingalgorithm to approach the minimum delay bound in P2P live video streaming.
The delay performance of the proposed algorithm is comparedwith existing tree-based streaming solutions.
Through analysis and simulation, we demonstrate that the proposed snow-ball streaming algorithm not only
can achieve a close-to-optimum delay performance, but alsohas the potential to do so in face of realis-
tic network impairments, such as long propagation delays and random bandwidth fluctuations. The delay
bounds derived in our analysis can serve as delay performance benchmarks for various proposed/deployed
P2P streaming systems. Insights brought forth by the study of the snow-ball streaming algorithm can be
used to guide the design of new P2P streaming systems with shorter start-up delays and playback lags.

The paper is organized as follows. In Section 2, we provide a short overview on the existing P2P stream-
ing solutions. The bounds on the delay for a single chunk dissemination is established in Section 3 for both
homogeneous and heterogeneous P2P network environments. Asnow-ball chunk dissemination algorithm
is introduced to achieve the delay bound for a single chunk dissemination. In Section 4, we show that the
snow-ball chunk dissemination algorithm can be extended toa snow-ball streaming algorithm to achieve the
delay bounds in continuous video streaming. The performance of the snow-ball chunk dissemination algo-
rithm under realistic network environment is studied in Section 5. A dynamic snow-ball streaming algorithm
is presented in Section 6. Through simulations, we demonstrate that the dynamic snow-ball streaming algo-
rithm can approach the minimum delay bounds in highly variable network environments with a small peer
upload bandwidth overhead. The paper is concluded with future work in Section 7.

2 Background and Related Work

Existing P2P streaming solutions can be classified into the following categories.

2.1 Single-Tree Streaming

In a single-tree based approach, peers are organized into a tree rooted at the server. Each peer receives the
stream from its parent peer and forward to its children peers. The fan-out degree of a peer is limited by its
uploading bandwidth. An early example is Overcast [9]. One major drawback of the single-tree approach
is that all the leaf nodes don’t contribute their uploading bandwidth. Since leaf nodes account for a large
portion of peers in the system, this largely degrades the peer bandwidth utilization efficiency.

2.2 Multi-Tree Streaming

To solve the leaf nodes problem, Multi-Tree based approaches have been proposed [3, 10]. In multi-tree
streaming, the server divides the stream intom sub-streams. Instead of one streaming tree,m sub-trees are
formed, one for each sub-stream. In a fully balanced multi-tree streaming, the node degree of each sub-tree
is m. Each peer joins all sub-trees to retrieve sub-streams. A single peer is positioned on an internal node in
only one tree and only uploads one sub-stream to itsm children peers in that tree. In each of the remaining
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m − 1 sub-trees, the peer is positioned on a leaf node and downloads a sub-stream from its parent peer.
Figure 1(a) shows an example of two-tree streaming for7 peers.

For any tree-based streaming approach, a chunk is disseminate in a hierarchical way. As illustrated in
Figure 1(b), for am−degree tree ofN peers, peer0 sends a chunk to itsm children peers at level1, each of
which then is responsible for disseminating the chunk in itsown subtree with(N − 1)/m peers (including
themselves). In terms of time, afterm transmissions by peer0, the task of disseminating a chunk toN peers
becomesm sub-tasks of disseminating the chunk toN−1

m peers.

0

1

43

2

65

3

4

10

5

62

S
stream 1 stream 2

(a) 7-nodes example

1 m

0

N−1

m

N−1

m

m

m m

(b) hierarchical view

Figure 1: Multi-Tree Based Streaming

2.3 Mesh-based Streaming

The management of streaming trees is challenging in face of frequent peer churns. Mesh-based streaming
systems are more robust against peer dynamics. Many recent P2P streaming systems adopt mesh-based
streaming approach [23, 16, 21, 14, 22]. In a mesh-based system, there is no static streaming topology.
Peers establish and terminate peering relationship dynamically. A peer may download/upload video from/to
multiple peers simultaneously. A recent simulation study [15] suggests that mesh-based systems have su-
perior performance than tree-based systems. However, in practice, the delay performance of mesh-based
streaming is still not satisfactory. Our analytical results indicate that mesh-based systems have a lower de-
lay bound than that can be achieved by the optimal tree-basedsystems. One important motivation of the
study presented in this paper is to provide some guidelines for the design of peering strategies and chunk
scheduling schemes in mesh-based streaming systems.

2.4 Related Work on Delay Performance

Despite of P2P streaming systems’ popularity, few studies have addressed their delay performance analyt-
ically. One related work was presented in [19]. Authors of [19] studied the trade-off between the server
bandwidth cost, the maximum number of peers that can be supported, and the minimum number of stream-
ing hops experienced by a peer. We study the optimal streaming strategy when the server only plays a
minimum role in video uploading. The delay bounds obtained through our analysis is much tighter than that
predicted in [19], and can be achieved by the proposed snow-ball streaming algorithm. A recent paper [12]
studied how one can improve P2P streaming delay performanceby constructing streaming trees with min-
imum depth. Our work focuses on the minimum delay bound imposed by the content bottleneck in P2P
streaming. As will be demonstrated in the following sections, mesh-based topologies have shorter delay
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bounds than tree-based topologies and the proposed snow-ball algorithm can achieve the minimum delay
bound for generic streaming topologies.

3 Bound on Single Chunk Dissemination

In a P2P live video streaming session, a sequence of video chunks are continuously generated by the server
and disseminated to all peers in the session. The streaming delay is determined by how fast all chunks can
be delivered to peers. In this section, instead of developing the streaming delay bound, we assume that there
is only one chunk to be disseminated in a P2P video system and develop the delay bound for the single
chunk dissemination. Obviously, the single chunk delay bound is a lower bound for streaming delay. We
will generalize the analysis for the single chunk dissemination to continuous streaming in Section 4.

Given a P2P system with a server andN peers, one can answer the question:If the server generates
a chunk of content at timet = 0, how does one disseminate that chunk to allN peers in the shortest
time possible?The answer depends on the size of the chunk, available bandwidth and the propagation
delays among all nodes in the system, including the server and all peers. Without loss of generality, we can
normalize the chunk size to be one, and choose the video streaming rate as the bandwidth unit. Consequently,
the chosen time unit after the normalization equals to the chunk transmission time on a unit bandwidth link,
which in turn equals to the average playback time of video contained in a chunk.1 For now, let’s assume
the propagation delay between any two nodes is dominated by the chunk transmission delay and thus can
be ignored. We will take propagation delays into account in Section 5.1 when the chunk transmission delay
becomes small. Without using P2P dissemination, if the server has a bandwidth ofN , the server can upload
that chunk to all peers byt = 1. However, this is not a scalable solution whenN is large. We are interested
in the delay performance when peers upload chunks among themselves. Throughout this paper, we assume
all peers have enough download bandwidth to receive the whole video stream. Therefore, the download part
is never a bottleneck in our analysis.

3.1 Homogeneous case

We start with a homogeneous case where the server and all peers have bandwidth of1. This corresponds to
theTit-for-Tat case in Bittorrent where peers upload roughly the same amount of data as they download. We
further assume that the server will upload only one copy of the chunk to one peer and won’t participate the
chunk dissemination afterward.

3.1.1 Single-Tree Chunk Dissemination

Given the unit bandwidth on all peers, a peer can only have onechild. The only possible single-tree based
streaming solution is a chain: the server uploads the chunk to peer0, then peer0 uploads it to peer1, and so
on until peerN − 2 uploads it to peerN − 1. The chunk propagates along the chain from the server to all
peers in timeN . The average delay is(N + 1)/2.

3.1.2 Multi-Tree Chunk Dissemination

If the multi-tree approach with degreem is employed, a chunk propagates from the server to all peers
along a sub-tree with node degree ofm. If there areN peers, the number of levels of each subtree is

1The chunk size in P2P live video systems is typically smallerthan that of P2P file sharing system. However, to reduce the
signaling overhead and chunk scheduling complexity, current P2P live video systems still employ video chunks with considerable
size. Our measurement study [7] of one popular commercial system shows that the chunk size is around10 Kbytes. Given the
video streaming rate of400 Kbps, the playback time of a chunk is around0.2 second.
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K = ⌈logm(N(m − 1) + 1)⌉. The only peer at level0 downloads the chunk directly from the server, a
peer at leveli then uploads a video chunk tom children peers at leveli + 1. Let Ni be the number of peers
at leveli. ThenNi = mi, 0 ≤ i < K − 1, andNK−1 = N − mK−2. Since each peer/server only has
uploading bandwidth of1, if the uploading is done in parallel, all children peers of one peer will receive
the chunkm time slots after their common parent receives the chunk. Thepeer at the top level can always
receive the chunk from the server after one time slot. For parallel uploading, the peers at the very bottom
level will receive the chunk in(K − 1)m + 1 time slots. The average delay among all peers is

D̄p(m) =
1

N

K−1
∑

i=0

(im + 1)Ni (1)

WhenN is large, the average delay and the worst-case delay are bothof the form

Dp(m) = m logm(N) + o(1) =
m

log2 m
log2 N + o(1). (2)

To achieve the shortest delay, one can choose tree degree

m∗ = argmin
m

Dp(m) = 3,

i.e., the server divides the stream into3 sub-streams, and feeds each stream into one sub-tree with node
degree of3. The minimum delay, in both average and worst-case sense, is1.89 log2 N + o(1).

If the uploading is done sequentially, the first child peer will receive the chunk from its parent within1
time slot, and the last child of a peer will receive the chunk after m time slots. The longest delay at leveli is
still im + 1. Therefore the worst-case delay is still(K − 1)m + 1. A degree of3 can achieve the minimum
worst-case delay of1.89 log2 N + o(1). The average delay at leveli is (m + 1)/2 time slots more than the
average delay at leveli− 1. The peer at the top level can always receive the chunk from the server after one
time slot. We can calculate the average delay among all peersas

D̄s(m) =
1

N

K−1
∑

i=0

(i(m + 1)/2 + 1)Ni.

Again, whenN is large, the average delay is

D̄s(m) =
m + 1

2
logm(N) + o(1) =

m + 1

2 log2 m
log2 N + o(1).

To minimize the average delay, the optimal degree is4, and the minimum average delay is1.25 log2 N+o(1),
which is less than2/3 of the average delay of parallel uploading.

3.1.3 Snow-Ball Chunk Dissemination

For single chunk dissemination, peers only need to disseminate one chunk, instead of a continuous stream
of chunks. After downloading the chunk, a peer can keep uploading that chunk to other peers until all
peers receive it. This will largely reduce the chunk dissemination time. The accumulation of the aggregate
uploading bandwidth for the chunk mimics the formation of a snow-ball. We refer it as thesnow-ball chunk
disseminationapproach. Figure 2(a) illustrates the progress of snow-ball chunk dissemination for eight
peers. An arc from nodei to nodej with a labelk represents peeri (or the server) uploads the chunk to
peerj in time slotk. The server uploads the chunk to peer0 in time slot0. In time slot1, peer0 uploads
the received chunk to peer1. In time slot2, both peer0 and peer1 will upload the chunk to peer2 and3
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respectively. Peer0, 1, 2, 3 will upload the chunk to peer4, 5, 6, 7 in time slot3. It takes4 time slots for all
peers receive the chunk.

For general case, the snow-ball approach disseminates a chunk in a recursive way. As illustrated in
Figure 2(b), after peer0 sends a chunk to peer1, the task of disseminating a chunk toN peers becomes two
sub-tasks of disseminating the chunk toN

2 peers. Peer0 continues to lead one sub-task, and peer1 becomes
the leader for the other sub-task. Even though the task splitting degree is only2, compared with degreem
in Figure 1(b), it happens after only1 chunk transmission, instead ofm transmissions in Figure 1(b). We
will show that the snow-ball branching is actually the fastest branching process.
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Figure 2: Snow-ball Chunk Dissemination

Let x(i) denote the number of peers that have the chunk at the beginning of time sloti. In time slot
0, the server uploads the chunk to one peer, therefore,x(1) = 1. Afterward, every peer with the chunk
will upload it to another peer in one time slot, we havex(i) = 2 ∗ x(i − 1) = 2i−1. Therefore it takes
K∗ = 1 + ⌈log2 N⌉ time slots for allN peers receive the chunk. One peer receives the chunk after1 time
slot, 2i−2 peers receive the chunk afteri time slots∀1 < i < K∗, andN − 2K∗−2 peers receive the chunk
afterK∗ time slots. The average delay performance is

D̄ =
1

N

(

1 +

K∗−1
∑

i=2

i2i−2 + K∗(N − 2K∗−2)

)

.

If N = 2K∗−1, the average delay is:̄D = log2 N + 1
N .

Theorem 1 In a homogeneous P2P streaming system, the snow-ball chunk dissemination approach simul-
taneously achieves the minimum average peer delay and the minimum worst-case peer delay.

Proof: For an arbitrary chunk dissemination approach, letx(i) denote the number of peers that have the
chunk at the beginning of time sloti. Since the server will upload the chunk to the first peer at time slot
0, we always havex(1) = 1. x(i) is necessarily a non-decreasing function ofi. We define a peer delay
functionT (k) as the delay for thek-th peer to receive the chunk. Then the worst-case peer delayis T (N)
and the average delay is

∑N
k=1 T (k)/N . Given{x(i), i ≥ 1}, T (k) can be calculated as

T (k) = min{i : x(i) ≥ k}, 1 ≤ k ≤ N. (3)

Due to the homogeneous unit uploading bandwidth among peers, we always havex(i + 1) ≤ 2x(i),
i.e., a peer can at most upload the chunk to another peer within one time slot. By induction,x(i) ≤ 2i−1.
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For the snow-ball approach,x∗(i) = 2i−1. Therefore, for any other chunk dissemination approach,x(i) ≤
x∗(i), i ≥ 1. Let T ∗(k) be the peer delay function for the snow-ball approach. Sincex(i) ≤ x∗(i), i ≥ 1,
due to (3), we haveT ∗(k) ≤ T (k), k ≥ 1. Therefore, the snow-ball chunk approach simultaneously
achieves the shortest average and worst-case chunk dissemination delay.
Table 1 compares the delay performance of snow-ball chunk dissemination with tree-based and the optimal
multiple-tree approach: For a system of1024 peers, if the transmission delay of a chunk is0.2 second,

Table 1: Minimum Delay Achieved by Different Streaming Strategies for Homogeneous Case
Peer Delay Single-Tree Multi-Tree, Parallel Multi-Tree, Sequential Snow-ball Chunk

average N+1
2 1.89 log2 N + o(1), m=3 1.25 log2 N + o(1), m=4 log2 N + 1

N

worst-case N 1.89 log2 N + o(1), m=3 1.89 log2 N + o(1), m=3 log2 N + 1

it takes only2 second for the snow-ball approach to complete chunk dissemination to all peers, while the
minimum delay achieved by multi-tree approach is3.78 second. Since the single-tree approach degrades to
a chain, peers’ average delay is around100 second.

In the snow-ball approach, peers who receive the chunk in thek-th time slot upload the chunk forK∗−k
times, the peers who receive the chunk in the last time slot (about half of the peers) don’t get a chance to
upload the chunk to other peers. Their uploading bandwidth can be utilized to upload other chunks in
continuous video streaming when multiple chunks are in transition simultaneously. We will further show
in Section 4 that the snow-ball chunk dissemination can be extended tosnow-ball continuous streamingto
continuously disseminate a stream of chunks and the worst-case delay for each chunk is still1 + ⌈log2 N⌉.
The snow-ball streaming in Section 4 is designed in an optimal way such that the uploading bandwidth of
all peers are fully utilized to achieve the minimum delay bound for each chunk.

3.1.4 Effect of Increasing Server Bandwidth

If the server bandwidth is increased from1 to C, we can divideN peers intoC clusters, and let the server
upload the chunk to one peer in each cluster within one time slot. Then, within each cluster, we can employ
tree, multi-tree or snow-ball approach to disseminate the chunk. For the chain approach, the delay can be
reduced by a factor ofC. However, for both multi-tree and snow-ball approach, the improvement is only a
constant proportional tolog2 C. If the server participates in the snow-ball dissemination, at each round, the
server can upload the chunk toC peers. Letz(k) be the number of nodes (including the server) with the
chunk, we have

z(k) = 2 ∗ z(k − 1) + C − 1 = (2k − 1)C + 1.

Therefore the finish time is⌈log2(
N
C + 1)⌉. The delay improvement is still bounded by⌈log2 C⌉.

3.1.5 Effect of Increasing Peer Bandwidth

Secondly, if we also increase the bandwidth of each peer from1 to C, in the tree based approach, the server
can simultaneously upload toC peers within one timeslot, and each peer can also upload toC peers within
one timeslot. Therefore, we can construct a streaming tree rooted at the server with node degree ofC.
The delay performance can be calculated in a similar way of the Multi-Tree case. If parallel uploading is
employed, both the average and worst-case delay islogC(N) + o(1). If sequential uploading is employed,
the worst case delay is stilllogC(N) + o(1), the average delay can be reduced toC+1

2C logC(N) + o(1).
Multi-Tree approach can still be utilized. Now all the uploading from a peer to its children can be

accelerated by a factor ofC. The delays can be reduced to1/C of the unit bandwidth case. Then the
optimal degrees for parallel uploading and for sequential uploading remain to be3 and4 respectively.
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For the snow-ball algorithm, at each time slot, each peer canupload toC peers simultaneously, therefore,

x(k) = (C + 1) ∗ x(k − 1) = (C + 1)(k−1).

The finish time isKmin = ⌈logC+1 N⌉ + 1.
In the previous calculation, we assume a peer uploads the chunk simultaneously toC children peers. All

C children peers will receive the chunk at the end of the time slot. From the study of multi-tree approaches,
we learned that sequential uploading can achieve better average delay performance than parallel uploading.
We can adopt sequential uploading in snow-ball approach. A peer uploads the chunk toC other peers
sequentially, so that the peer receive the chunk first can immediately upload to other peers without wait
for the next time-slot. The delay performance in this case isactually ⌈log2 N⌉+1

C . This is because, with
bandwidthC and sequential upload, each peer can finish the upload of one chunk within1/C time slot. If
we change the time unit to be1/C of the original time unit, the server and peer bandwidth becomes1, we
go back to the homogeneous case in Section 3.1 , all peers can receive the chunk within⌈log2 N⌉+ 1 small
time slots, which is⌈log2 N⌉+1

C original time slots.

3.2 Heterogeneous Cases

In real network environment, different peers have different types of network access, therefore, different up-
loading bandwidth. From the study so far, the chunk dissemination delay is determined by how quickly
peers’ bandwidth can be utilized to upload the chunk. We define the system-wideusable uploading band-
widthU(t) for the chunk as the aggregate uploading bandwidth that can be utilized to upload the chunk at
any timet. In the homogeneous case, every peer has the same uploading bandwidth.U(t) is proportional
to the number of peers with the chunkx(t). The order at which peers receive the chunk has no impact on
howU(t) grows over time. However, in a heterogeneous environment, the order at which peers receive the
chunk determines the growth speed ofU(t), and consequently the chunk dissemination delay. For the quick
growth ofU(t), the intuition is to upload the chunk to peers with large uploading capacities first.

In this section, we study the impact of uploading bandwidth heterogeneity among peers on the chunk
dissemination delay by studying several typical cases. It will become clear that the peer uploading band-
width heterogeneity enables the snow-ball approach to achieve a shorter chunk dissemination delay than the
homogeneous case.

3.2.1 Case 1: Super-peers and Free-riders

Suppose there areN/C super peers that can upload at rateC > 1. All the remaining peers are free-riders
and don’t participate in the uploading. The chunk can be disseminated by the snow-ball approach to all
N/C super peers within1 + 1

C ⌈log2(N/C)⌉ time slots. Then all super peers can upload the chunk to the

remaining(1 − 1/C)N free-riders in1 − 1/C additional time slot. The total delay is⌈log2(N/C)⌉−1
C + 2.

In this case, the average uploading bandwidth of peers areū = 1. If all peers have the average uploading
bandwidth1, the shortest delay is⌈log2 N⌉ + 1, which is aroundC times of the heterogeneous case. This
shows that the heterogeneity of peer uploading bandwidth helps reduce the chunk dissemination delay.

3.2.2 Case 2: Multi-level Bandwidth Hierarchy

In the previous case, peers form a two-level hierarchy according to their uploading contribution. A fraction
of 1/C super peers with uploading bandwidthC stay at the top level and feed video chunk to the free-riders
at the bottom level. In real network environment, peers can be clustered based on the types of their network
access. In this case, we extend the two-level hierarchy to accommodate multiple levels and show that even
a very small percentage of super peers can bootstrap the chunk dissemination.
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Suppose there areN1 super peers with bandwidthC1, N1N2 medium peers with bandwidthC2 and
N1N2N3 slow peers with bandwidthC3. To quickly disseminate the chunk to all peers, the following chunk
scheduling algorithm can be employed:

1. use the snow-ball algorithm to upload toN1 super peers within time1 + 1
C1

⌈log2 N1⌉;

2. each of thoseN1 super peers acts as a server with bandwidthC1 and uploads toN2 other medium
peers. As studied in Section 3.1.4, the uploading can finish within time1 +

⌈log2(N2/C1)⌉
C2

, nowN1N2

medium peers have the chunk;

3. each of thoseN1N2 medium peers acts as a server with bandwidthC2 and uploads toN3 other slow
peers within time1 + ⌈log2(N3/C2)⌉

C3
, nowN1N2N3 slow peers have the chunk.

The total delay is

3 +
log2 N1

C1
+

log2 (N2/C1)

C2
+

log2 (N3/C2)

C3
.

Without those super and medium peers, the fastest chunk dissemination toN1N2N3 slow peers takes time
1 + 1

C3
(log2 N1 + log2 N2 + log2 N3).

This suggests that the existence of super peers (even if a very small percentage) can dramatically reduce
the chunk dissemination delay. For example, to disseminatea chunk to32k = 215 peers with bandwidth
1 need at least15 time slots. Meanwhile, ifN1 = N2 = N3 = 32, andC1 = 10, C2 = 5, C3 = 1, in
other words,32 (only 0.1%) of them have bandwidth of10 and1024 (only 3%) of them have bandwidth of
5, the time to disseminate a chunk to all33k peers is less than5.2 time slots. The example can be easily
extended to incorporate more than3 levels. Another insight obtained from this example is that:peers should
be organized into tiers according to their uploading bandwidth, peers within each tier should help each other
to obtain the chunk in the shortest possible time, then pass it down to the neighboring lower tier. This way,
the delay of dissemination to the whole network can be reduced.

3.2.3 General Heterogeneous Case

For general heterogeneous case, one can index peers according to the decreasing order of their uploading
capacities. Suppose the sorted uploading capacities of peers are: u1, u2, ...uN . To derive a lower bound
on the shortest chunk dissemination time, let’s allow chunkstripping, namely, multiple peers can upload
different portions of a chunk to the same peer simultaneously. If the firstk peers have the chunk at timet,
the uploading to peerk + 1 can finish by 1

Pk
j=1

uj

, therefore the lower delay bound can be calculated as

D̂ = 1 +

N−1
∑

i=1

1
∑i

j=1 uj

.

However, this is a loose bound. For example, for the homogeneous case, the bound iŝD = 1 +
∑N−1

i=1
1
i ≤

2 + ln(N − 2). We know the shortest delay without chunk stripping is instead1 + log2(N). In this section,
we study several variations of the snow-ball algorithm to accelerate the chunk dissemination in general
heterogeneous case.
Heterogeneous Parallel Snow-ball Approach:

Assume{ui} are all integers. letx(k) be the number of peers with the chunk at the beginning of time
slotk.

1. In time slot0, the server uploads the chunk to peer1. x(1)=1;
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2. In time slotk ≥ 1, any peer with IDj, 1 ≤ j ≤ x(k), uploads the chunk in parallel to peers with IDs
from x(k) +

∑j−1
i=1 ui to x(k) +

∑j
i=1 ui;

3. x(k + 1) = x(k) +
∑x(k)

i=1 ui. If x(k + 1) < N , k = k + 1, go back to step 2; otherwise finishes.

This way, peers with larger uploading bandwidth will receive the chunk first and continuously upload the
chunk to other peers until all peers receive the chunk. Letū = (

∑N
i=1 ui/N) be the average uploading band-

width among peers. Since peers are sorted according to the decreasing order of their uploading capacities,
we have

x(k + 1) = x(k) +

x(k)
∑

i=1

ui ≥ x(k) + x(k)ū = (ū + 1)x(k).

By induction, we will havex(k) ≥ (ū+1)k−1. Therefore the finish time is less than⌈logū+1 N⌉+1, which
is the delay of the parallel snow-ball approach in a system with homogeneous peer uploading bandwidth
of ū as studied in Section 3.1.5. This again demonstrates that snow-ball chunk dissemination approach has
even better delay performance when peers have heterogeneous uploading bandwidth.

In this approach, due to parallel uploading, peers receive the chunk at the end of some time slot. Since we
know sequential uploading has superior delay performance than parallel uploading, we can also develop a
sequential snow-ball approach for heterogeneous systems.After receive the chunk, a peer will continuously
upload it to other peers one after another. Since peers have different uploading bandwidth, the finish time of
chunk uploading by different peers are no longer aligned. This makes it difficult to coordinate the uploading
scheduling among peers. Here we develop a greedy snow-ball scheduling algorithm to achieve short delays
in heterogeneous uploading.
Heterogeneous Sequential Snow-ball Approach:Again, index peers in the decreasing order of their upload-
ing capacities. At any time instantt, let E(t) be the ordered set of peers without the chunk, andU(t) the
ordered set of uploading peers. At any time, the status of a peer inU(t) can be in eitherbusy, meaning it is
uploading the chunk to some peer, orready, meaning it is available for next uploading.

1. Initialization: U(1) = {1}, set peer1’s status toready; E(1) = {2, · · · , N};

2. Choose the first peeri in the ordered setU with statusready, pick the first peerj from the ordered set
E, let peeri upload the chunk to peerj using its uploading bandwidthui, set peeri’s status tobusy,
and remove peerj from setE. Repeat this step until either no peers arereadyin U or E is empty;

3. After peeri completes the uploading to peersj, addj to U , setj’s status toready, also set peeri’s
own status toready. If E is not empty yet, go back to step 2.

However, due to the misalignment of the finish time of uploading events, this algorithm cannot guarantee to
achieve the minimum delay. For example, for a system with5 peers, if peer1’s uploading bandwidth is 10,
other peer uploading capacities are1, 1, 1, 1. When peer1 finishes the upload to peer2, peer1 will upload
the chunk to peer3, and peer2 will upload the chunk to peer4. Then peer4 will receive the chunk after1.1
time slots. However, if we just let peer1 upload the chunk to all other peers, every peer can get the chunk
by 0.4 time slots. It is possible to develop an optimal uploading schedule for peers by carefully calculating
the finish time instants for all possible upload combinations for all peers. We skip the discussion here.

4 Snow-ball Streaming

In single chunk dissemination, any peer can be utilized to upload the chunk after it has downloaded the
chunk. In continuous streaming, one new chunk is generated every time slot. When the server capacity is
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less thanN , one chunk cannot be disseminated to all pees within one timeslot. Therefore, there will be
more than one chunk in transition at any given time. IfK∗ is the minimum transmission delay for a single
chunk, there will be at leastK∗ chunks in transition at any given time. If the chunk scheduling is not set up
appropriately, some chunks cannot be disseminated to all peers withinK∗ time slots.

4.1 Homogeneous Environment

In this section, we show that, for the homogeneous case, it ispossible to set up a chunk schedule such
that all chunks can be disseminated to all peers within the minimum delay time. In the snow-ball chunk
dissemination approach, the server uploads the chunk to thefirst peer at time slot0. Before the beginning
of time slotK∗ = ⌈log2(N)⌉+ 1, all N peers will receive the chunk. Letφ(j) be the number of peers with
the chunk at the beginning of time slotj and will upload that chunk in time slotj. We have

φ(j) =











2j−1 1 ≤ j ≤ K∗ − 2

N − 2⌈log2(N)⌉−1 j = K∗ − 1

0 j ≥ K∗

We callΦ∗ , {φ(j) : j = 1 · · ·K∗ − 1} thesnow-ball chunk dissemination profile.

Theorem 2 For a homogeneous P2P streaming system, there exists a continuous streaming schedule such
that all chunks in the stream will be disseminated to all peers with the shortest delayK∗ achieved by the
snow-ball algorithm for single chunk dissemination.

Proof: Without loss of generality, the server uploads chunki ≥ 0 to some peer at time sloti. Let yi(k) be
the number of peers that have chunki and will upload chunki to other peers at time slotk. For any feasible
schedule, we should have

∑∞
i=0 yi(k) ≤ N,∀k, i.e., at any time slot the aggregate uploading bandwidth for

all chunks is at mostN , andyi(k +1) ≤ 2∗yi(k), i. e., each peer can upload to at most one peer within any
time slot. A streaming schedule can achieve the optimal delay K∗ for each chunk if and only if each chunk
can be uploaded according to the snow-ball chunk dissemination profileΦ∗ after it is uploaded to some peer
by the server, i. e.,

yi(k) =

{

φ(k − i) (i + 1) ≤ k < i + K∗

0 otherwise

It can be verified that such a schedule satisfies the feasibility constraints:

∞
∑

i=0

yi(k) =

k−1
∑

i=k−K∗+1

yi(k) =

K∗−1
∑

j=1

φ(j) = N − 1

andyi(k + 1) ≤ 2 ∗ yi(k).
To complete the proof, for each time slot, we need to construct a uploading schedule for all active

chunks. LetS be the set of all peers. Denote bySi(k) the set of peers with chunki at the beginning of
time slotk and will upload the chunk to|Si(k)| other peers without chunki in the time slot. To follow the
optimal dissemination profileΦ∗, it is sufficient to have|Si(k)| = yi(k) and{Si(k), k ≥ 1} are pairwise
disjoint (since each peer can only upload one chunk in one time slot). We call the previous condition the
sufficient conditionΛ to achieve the minimum delay streaming. We complete the proof of the theorem by
constructing a chunk uploading schedule for each time slot through inductions:
Initial condition: The server uploads chunk0 to peer0 in time slot0. Therefore, at the beginning of time
slot1, S0(1) = {0}, andSi(1) = ∅, i > 0. It can be easily verified that the sufficient conditionΛ is satisfied
at the beginning of time slot1.
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Induction: If at the beginning of time slotk ≥ 1, the conditionΛ is satisfied, we can construct a schedule
in time slotk, such thatΛ is still satisfied at the beginning of time slotk + 1.

At the beginning of time slotk, according toΛ, ko = max(k −K∗ + 1, 0) is the ID of the oldest chunk
that needs to be uploaded in time slotk. ThenSi(k) = ∅, ∀i < ko,∀i ≥ k; and{Si(k), ko ≤ i < k} are
pairwise disjoint,|Si(k)| = yi(k). Define a setF(k) = S − ∪k−1

i=ko
Si(k), i.e., the set of peers that don’t

need to upload any chunk at the beginning of time slotk. The following scheduling will guarantee theΛ
condition is still satisfied at the beginning of time slotk + 1.
I. If k1 = k − K∗ + 1 ≥ 0, chunkk1 will be uploaded for the last time in slotk. Since the chunk has been
uploaded1 +

∑K∗−2
i=1 φ(i) times by the server and peers in the previousK∗ − 1 time slots, onlyφ(K∗ − 1)

peers don’t have it. Let all peers in setSk1
(k) upload chunkk1 to those peers and finish the upload of chunk

k1. Peers inSk1
(k) can be used to upload other chunks in time slotk + 1. We setF(k) = F(k) ∪ Sk1

(k).
Then|F(k)| ≥ φ(K∗ − 1).
II. If k2 = k − K∗ + 2 ≥ 0, chunkk2 will be uploaded for the second-to-last time in slotk. According to
Φ∗, φ(K∗−2) peers in setSk2

(k) will upload chunkk2 to other peers that don’t have chunkk2. In addition,
the schedule should guarantee that there will beφ(K∗−1) peers available in time slotk+1 to upload chunk
k2.

If φ(K∗ − 1) ≤ φ(K∗ − 2), let each peer inSk2
(k) upload chunkk2 to any peer without chunkk2,

then pickφ(K∗ − 1) peers out ofSk2
(k) to form the set of peers to upload chunkk2 in next time slot,

i.e., Sk2
(k + 1). Other peers inSk2

(k) can be used to upload other chunks in time slotk + 1. We set
F(k) = F(k) ∪ Sk2

(k) − Sk2
(k + 1). We have|F(k)| ≥ φ(K∗ − 2)

If φ(K∗ − 1) > φ(K∗ − 2), from step 1,|F(k)| ≥ φ(K∗ − 1), we can take a subsetM(k) of
φ(K∗−1)−φ(K∗−2) peers out ofF(k), and letφ(K∗−1)−φ(K∗−2) peers inSk2

(k) upload chunkk2 to
peers inM(k). Remaining peers inSk2

(k) then upload chunkk2 to arbitrary peers without chunkk2. Now
peers inM(k) are ready to upload chunkk2 in time slotk+1, therefore, we setSk2

(k+1) = Sk2
(k)∪M(k);

F(k) = F(k) −M(k). We also have|F(k)| ≥ φ(K∗ − 2).
III. Let k3 = max(k −K∗ + 3, 0). Any chunki, i ∈ [k3, k − 1], needs to be uploaded toφ(k − i) peers by
peers in setSi(k). We have

k−1
∑

i=k3

|Si(k)| ≤
K∗−3
∑

j=1

φ(j) = φ(K∗ − 2) − 1 ≤ |F(k)| − 1. (4)

Then∀i ∈ [k3, k − 1], take a subsetUi(k) of |Si(k)| peers out ofF(k), let all peers inSi(k) upload chunk
i to peers inUi(k), and setSi(k + 1) = Si(k) ∪ Ui(k), F(k) = F(k) − Ui(k). At the end, due to (4), we
will have |F(k)| ≥ 1.
IV. The server uploads chunkk to some peermk in F(k), and setSk(k + 1) = {mk}.

Following the previous scheduling steps, the sufficient condition Λ will be satisfied at the beginning of
time slotk + 1.
Conclusion: There exists a schedule such that all chunks can be disseminated with snow-ball chunk dissem-
ination profileΦ∗ and achieve the optimal delayK∗.
For the special case ofN = 2m, we assign each peer an IDn, 0 ≤ n ≤ N − 1, and each chunk an IDi,
i ≥ 0. Chunki will be injected to the system by the server in time sloti. At the beginning of time slotk, half
of the peers have chunkk − m and will upload it to the other half in time slotk. The snow-ball streaming
schedule can be setup as follows.

1. Let l(j) = (k + j) mod m, 0 ≤ j < m;

2. For chunki = k − m + j, 0 ≤ j < m, Si(k) ={peers withbit(l(j)) = 1, andbit(l(w)) = 0, 0 ≤
w < j};
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3. A peer inSi(k) with ID x uploads chunki to a peer with IDx + 2l(0);

4. Sever uploads chunkk to the peer with ID2l(0).

Figure 3 illustrates the previous snow-ball streaming schedule in a system with8 peers. We use a sequence
of 9 subfigures to show the snow-ball chunk schedules among all peers within9 consecutive time slots.
Blocks represent chunks and circles represent peers. For time slotk, a white chunk beside a peer is the
chunk that the peer has and will be uploaded to another peer within that time slot. An arc from peeri to j
indicates peeri uploads its chunk to peerj. A black chunk beside a peer indicates the server will injectthat
chunk to the peer in time slotk. Chunk0 is uploaded to all peers by the end of time slot3 and chunk1 is
uploaded to all peers by the end of time slot4. The example shows that all chunks can be disseminated to all
peers3 time slots after it is injected by the server. Figure 4 shows the sets of IDs of peers that have different
chunks at the beginning of three consecutive time slots.

4.2 Heterogeneous Environment

For heterogeneous case, the delay bound for single chunk dissemination cannot always be achieved in
streaming. For example, if the server’s upload capacity is1, and7 peers’ upload capacities are2, 1, 1, 1, 1, 1, 0,
a single chunk dissemination can be done in3 time slots, however, no streaming algorithm can achieve this.
If peer0 is still uploading chunk0 at timeslot2, chunk1 cannot be uploaded according to the greedy chunk
profile Φ∗. In this case, the first peer with bandwidth2 becomes the scheduling bottle-neck for adjacent
chunks. For the two special heterogeneous cases consideredin Section 3.2, we are able to prove the exis-
tence of snow-ball streaming to achieve the minimum chunk dissemination delay for all chunks.

Theorem 3 For a P2P streaming system withN/C super peers and(1 − 1/C)N free-riders, there exists a
continuous streaming schedule such that all chunks in the stream will be disseminated to all peers within a
delay of⌈log2(N/C)⌉

C + 2 time slots.

Proof: The idea is to first make sure all chunks can be streamed to all super peers within1+ 1
C ⌈log2(N/C)⌉

time slots. Then super peers will upload to free-riders whenever they have spare bandwidth. To achieve this,
we change the time unit to1/C of the original time slot. Measured in the new time slot, the server generates
one new chunk everyC time slots. Suppose server only has uploading capacity of1, and uploads chunki
to some super peer by the end of time slotC(i + 1). For time slotk, let yi(k) be number of super peers
uploading chunki to other super peers. To achieve the minimum streaming delayamong all super peers, let
K∗ = ⌈log2(N/C)⌉, we need

yi(k) =

{

φ(k − C(i + 1)) C(i + 1) + 1 ≤ k ≤ C(i + 1) + K∗

0 otherwise

Let i1(k) = ⌈k−K∗

C ⌉ − 1 andi2(k) = ⌊k−1
C ⌋ − 1, yi(k) > 0 iff i1(k) ≤ i ≤ i2(k). Then

∞
∑

i=0

yi(k) =

i2(k)
∑

i=i1(k)

φ(k − C(i + 1)) < N/C − 1

andyi(k + 1) ≤ 2 ∗ yi(k). According to Theorem2, there exists a streaming schedule such that all super
peers can receive the chunk within1 + 1

C ⌈log2(N/C)⌉ time slots. In addition, it can be shown that

C−1
∑

j=0

∞
∑

i=0

yi(k + j) =
C−1
∑

j=0

i2(k+j)
∑

i=i1(k+j)

φ(k + j − C(i + 1)) = N/C − 1.
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Figure 3: Evolution of Chunk Scheduling of Snow-ball Streaming among8 Peers
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Figure 4: Evolution of the Set of Peer IDs for Different Chunks

In other words, in anyC consecutive time slots, the aggregate number of uploading to super peers equals
the number of super peers minus one. Since all super peers canuploadN times inC time slots (one original
time slot), therefore, we have(1 − 1/C)N + 1 spare super peer uploading available everyC time slots.
After all super peers get chunki at time slotC(i + 1) + K∗, in the followingC time slots, any super peer
that is not responsible for uploading new chunks to other super peers can be utilized to upload chunki to a
free-rider, and all free-riders can get the chunk by time slot C(i + 1) + K∗ + C. The achieved streaming
delay is2C + K∗ sub-time slots, which is⌈log2(N/C)⌉

C + 2 original time slots.
We list the chunk schedule for a system with8 super-peers and8 free-riders in Table 2. Super-peers are
indexed from0 to 7, each super peer has uploading capacity of2, free-riders are labeled froma to h. An
tuple (x, y) at row i columnj means super peeri will upload chunkx to peery in time slotj. A chunk is
uploaded to all super peers first, then it will be uploaded to all free-riders within one additional round. The
overall chunk dissemination delay is3.5 time slots.

Table 2: Schedule between Super-peers and Free-riders
ID 1 1.5 2 2.5 3 3.5 4 4.5 5
0 0, 1 0, 2 0, 4 0, a 2, 1 2, 2 2, 4 2, a 4, 1
1 0, 3 0, 5 0, b 2, 3 2, 5 2, b
2 0, 6 0, c 0, g 1, a 2, 6 2, c 2, g
3 0, 7 0, d 0, h 1, b 2, 7 2, d 2, h
4 0, e 1, 0 1, c 1, g 2, e 3, 0
5 0, f 1, 1 1, d 1, h 2, f 3, 1
6 1, 4 1, 2 1, e 3, 4 3, 2
7 1, 6 1, 5 1, 3 1, f 3, 6 3, 5 3, 3

Corollary 4 If peers in a streaming system form aM -level hierarchy with
∏i

k=1 Nk peers on leveli with
uploading capacity ofCi, (Ci > Ci+1 ≥ 1), there exists a continuous streaming schedule such that chunks
can be streamed to all peers with a delay ofM +

∑M
j=1

⌈log2(Ni/(Ci−1−1))⌉
Ci

, whereC0 = 2.

Proof: We can construct the chunk scheduling iteratively. Peers atlevel1 pick (C1 −1)N1 peers from level
2 as their free-riders. Construct a streaming schedule at level 1 according to theorem 3 such that(C1−1)N1

peers from level2 will receive all chunks with delay2 + log2(N1)
C1

. Then each of those peers can lead the
snow-ball streaming toN2/(C1 − 1) peers at level2 and(C2 − 1)N2/(C1 − 1) free-riders from level3, by
time3+ log2(N1)

C1
+ log2(N2/(C1−1))

C2
, (C2 − 1)N1N2 peers at level3 will receive the chunk. They continue to
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do snow-ball streaming from level3 to 4. The process can continue until all peers at the bottom levelreceive
the chunk.

5 Impact of Network Impairments

In real networks, the performance of P2P video streaming is subject to various network impairments. In this
section, we evaluate the performance of the snow-ball chunkdissemination in network settings with long
propagation delays and random bandwidth variations.

5.1 Impact of Propagation Delays

From the analysis in the previous sections, using smaller chunks in P2P video streaming leads to smaller
chunk transmission delay, consequently smaller overall dissemination latency. On the other hand, using
smaller chunks increases the signaling overhead and the scheduling complexity among peers. Meanwhile,
as the chunk transmission delay getting smaller, the propagation delay between peers will play a more
important role. We still use the transmission time of a chunkas the time unit. Now suppose the propagation
delay isP = d − 1 time slots (d ≥ 2). The time between a sender begins to upload the chunk and the
receiving peer get the whole chunk isd time slots. For the multi-tree approach, if parallel uploading is
employed, the chunk transmission delay from a peer to all itschildren increases fromm to d + m − 1,
the delay performance ism+d−1

log2 m log2 N ; if sequential uploading is employed, the worst case delay is still
m+d−1
log2 m log2 N , and the average delay is2d+m−1

2 log2 m log2 N .
Again, denote byx(k) the number of peers with the chunk at the beginning of time slot k. All the chunks

received right before the beginning of time slotk were sent out at the beginning of time slotk−d. Therefore
we have

x(k) = x(k − 1) + x(k − d).

x(k) is a Fibonacci series with time lagd (d = 2 is the standard Fibonacci series). We can solvex(k) by
taking Z-Transform:

X(z) =
Z−1

1 − Z−1 − Z−d
,→ x(k) ∼ αk

∗ ,

where α∗ is the largest root of1 − Z−1 − Z−d. The finish time is approximatelylogα∗

N , which is
ln 2/ ln α∗ times of the snow ball delay without propagation delay. We plot the evolution of chunk dis-
semination for at different propagation delays in Figure 5.Among them,P = 0 corresponds to the case
when the propagation delay is ignored as studied in Section 3. As predicted by the Z-transform analysis, the
number of peers with the chunk grows exponentially after thefirst few time steps. For any propagation delay,
the exponential growth rate, i.e., the slope of the curve in semi-log plot, is determined by the dominating
root ofX(z).

We compare the delay performance of multi-tree based strategies and the snow ball strategy in Table 3.
The delay performance is measured in the unit of the average delay of snow-ball approach when there is no
propagation delay. For parallel multi-tree strategy, we fixthe node degreem = 3 that minimizes the average
and worst-case delay when there is no propagation delay. Forsequential multi-tree strategy, at different
propagation delays, the node degree is optimized for the average delay. The associated worst-case delay is
also calculated. As the propagation delay increases, the delay performance of all three strategies degrades.
For parallel multiple tree with fixed degree, its delay increases fastest among the three. As the propagation
delay increases, the optimal node degree for sequential multi-tree also increases. This is because propagation
delays provide additional chance for pipelining chunk transmissions from a peer to its children. Sequential
multi-tree strategy explore this pipelining gain. It increases node degree and a peer will spend more time
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Figure 5: Chunk dissemination speed at different propagation delays.

to upload the same chunk to all its children. This makes it closer to the uploading philosophy of snow-ball
streaming:a peer should keep uploading the same chunk until all peers have it. As a result, sequential
multi-tree has better delay performance than the fixed-degree parallel multi-tree. However, its worst-case
delay performance is much worse than that of the snow-ball approach. This is because leaf peers at the
bottom level have large delay variations. And leaf peers don’t contribute to the uploading of the chunk even
if they receive the chunk early. To the contrary, in the snow-ball approach, a peer always contributes to the
uploading as long as the chunk is still missing on some peers.

Table 3: Minimum Delay Achieved by Different Streaming Strategies with Propagation Delays.
Prop. M-Tree, Para., Fix M-Tree, Seq., Opt. Snow
Delay degree delay degree average worst Ball

0 3 1.89 4 1.25 2.0 1.0
1 3 2.52 5 1.72 2.58 1.44
2 3 3.15 6 2.13 3.10 1.81
3 3 3.79 7 2.49 3.56 2.15
4 3 4.43 8 2.83 4.0 2.47

More generally, if the propagation delays are random with and the p.m.f of chunk delay (transmission
delay of1 plus a random propagation delay) is(pi,∆i), 1 ≤ i ≤ M , i.e., a chunk uploaded by a peer at the
beginning of time slotk will be received by a peer before the beginning of time slotk + ∆i with probability
pi, then in average sense we have

x(k) = x(k − 1) +

M
∑

i=1

pix(k − ∆i),

Then the average number of peers that receive the chunk in time slotk can be calculated as:

X(z) =
X(1)Z−1

1 −
∑M

i=1 piZ−∆i

If the propagation delay is not a multiple of chunk transmission time, we can pick a fine time unit such
that the chunk transmission time isd1 time units and the propagation delay isd2 time units. Note that, in
this case, a peer can finish the transmission of a chunk ind1 time units. At the beginning of time slotk,
let x(k) be the number of peers with the chunk andy(k) the number of peers that are ready to transmit the
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chunk. The system evolution can be characterized by:

x(k) =

d1−1
∑

i=0

y(k − i), y(k) = y(k − d1) + y(k − d1 − d2),

where the first equation is due to the fact that each peer with the chunk will transmit it everyd1 time units;
the second equation is because all peers that receive the chunk at the end of time slotk − 1 are ready to
transmit the chunk at the beginning of time slotk, and the received chunk was sent by a peer at the beginning
of time slotk − d1 − d2. We have

Y (z) =
Y (1)Z−1

1 − Z−d1 − Z−(d1+d2)
(5)

X(z) =
X(1)(Z−1 + · · · + Z−(d1−1))

1 − Z−d1 − Z−(d1+d2)
(6)

Again, whenk is large,x(k) grows exponentially with some fixed rate.
To study the chunk dissemination speed with random propagation delays, we developed a time-stepped

simulator that simulates the progress of snow-ball chunk dissemination with random propagation delays
among peers. We simulate a network of4, 000 peers. At timet = 0, a peer receives a chunk from a server.
Then peers employ snow-ball chunk dissemination to distribute the chunk until all peers receive it. At each
time step, we record the number of peers that have received the chunk. The chunk transmission time among
peers is constant and set to be8 simulation time-steps. The propagation delay between two peers follow a
truncated normal distribution with mean of8P and standard deviation of4P , the upper and lower bound
for the random delay is16P and1 respectively. We conducted simulations forP = 0 (no delay),P = 1
andP = 2. For each case we ran100 iterations and record the max, min and average number of peers
with the chunk at each time step among all iterations. We compare the chunk dissemination speed under
random propagation delays with the corresponding constantdelay case forP = 1 and2. Figure 6 plots the
numbers of peers with the chunk at every round of eight time-steps (one chunk transmission time) for all the
simulated cases. As predicted by the Z-transform analysis,with constant propagation delays, the number
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Figure 6: Chunk dissemination speed with constant and random propagation delays.

of peers with the chunk grows exponentially after the first few time steps. For any propagation delay, the
exponential growth rate, i.e., the slope of the curve in semi-log plot, is determined by the dominating root
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of X(z). Random delays did introduce variance in the disseminationspeed. However, the snow-ball chunk
dissemination still follows the exponential growth trend and the completion time is very close to the constant
delay case.

5.2 Impact of Bandwidth Variations

In the previous sections, we assume that peers have constantuploading bandwidth and a chunk transmission
completes in constant time: in sequential transmission, a chunk can be transmitted from a peer to another
peer in one time slot, in parallel transmission with degreem, a peer can transmit a chunk simultaneously
to m children inm time slots. Due to network traffic variations, the availablebandwidth on a connection
between two peers varies over time. Consequently, the transmission time of a chunk is not constant. In
this section, we investigate the robustness of different streaming strategies against the randomness in chunk
transmissions.

For the clarity of presentation, we assume all transmissiondelays are independent and follow the same
distribution. We introduce random variableτ s for sequential transmission time, withE[τ s] = 1 and
V ar[τ s] = σ2; them-parallel transmission time isτp, with E[τp] = m andV ar[τp] = mσ2.

For the chain-based approach, if peer0 receives the chunk from the server at time0, the time for thei-th
peer to receive the chunk is

∑i
j=1 τi, whereτi is the transmission delay from peeri − 1 to i. And {τi} are

i.i.d following the distribution ofτ s. Then for the worst-case delayDc
N is the time for peerN to receive the

chunk:
E[Dc

N ] = N, V ar[Dc
N ] = Nσ2.

The average delay among all peers is

D̄c =
1

N

N
∑

j=1

j
∑

i=1

τi =
1

N

N
∑

j=1

(N + 1 − j)τi.

Then we have

E[D̄c] =
N + 1

2
; V ar[D̄c] =

1

N2

N
∑

k=1

k2σ2 ∼
Nσ2

3
.

This suggests that, in a chain topology, the impact of the randomness of individual chunk transmission on
the average and worst-case chunk delay performance of all peers is proportional to the number of peersN
in the chain.

For the parallel multi-tree approach, all peers at the bottom level will receive the chunk afterlogm N
independent parallel chunk transmissions. Then we have forworst-case delay:

E[Dp
N ] = m logm N, V ar[Dp

N ] = m logm Nσ2.

For the sequential multi-tree approach, there is one peer atthe bottom level that will receive the chunk after
m logm N independent sequential chunk transmissions. We have for worst-case delay:

E[Ds
N ] = m logm N, V ar[Ds

N ] = m logm Nσ2.

Therefore the mean and variance of the worst-case delay for multi-tree based approaches are proportional to
m logm N .

We can calculate the mean and variance of the average delay performance for multi-tree based ap-
proaches using recursions. As illustrated in Figure 1(b), am-degree tree ofN peers consists of the single
peer at level0 andm sub-trees, each of which is rooted at a level1 peer and has(N − 1)/m peers. Denote
byW(N) the aggregate chunk delay of all peers in am-degree tree withN peers after the root peer receives
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the chunk. Assume peer0 received the chunk at timet = 0, let tj be the time when peerj at level1 receives
the chunk. We have

W(N) =
m
∑

j=1

(

N − 1

m
tj + Wj

(

N − 1

m

))

, (7)

where the first term indicates the delay of peerj contributes to the delays of all peers in its sub-tree, the
second term is the aggregate delay to disseminate the chunk in thej-th subtree. For the parallel multi-tree
approach,{tj} is just the parallel transmission time from peer0 to j. They follow the distribution ofτp. For
the sequential multi-tree approach,tj =

∑j
i=1 τi, whereτi is the transmission delay from peer0 to peeri,

following the distribution ofτ s.
The average delay of all peers is simplyD̄(N) = W(N)/N . It can be verified that for both parallel and

sequential multi-tree,E[D̄p(N)] andE[D̄s(N)] are the same as the deterministic case. Based on (7), we
also calculate the varianceV ar[D̄{p,s}(N)] recursively:

V ar[D̄(N)] = (1 −
1

N
)2





1

m2
V ar[

m
∑

j=1

tj] +
1

m
V ar[D̄(

N − 1

m
)]



 (8)

For parallel uploading,V ar[
∑m

j=1 tj] = m2σ2, then

V ar[D̄p(N)] = (1 −
1

N
)2
(

σ2 +
1

m
V ar[D̄p(

N − 1

m
)]

)

, (9)

Consequently,

V ar[D̄p(N)] ∼ σ2

logm(N)
∑

i=0

1

mi
=

m

m − 1
σ2 (10)

For sequential uploading,V ar[
∑m

j=1 tj] = σ2
∑m

j=1 j2, then

V ar[D̄s(N)] = (1 −
1

N
)2



σ2
m
∑

j=1

(
j

m
)2 +

1

m
V ar[D̄s(

N − 1

m
)]



 , (11)

Consequently,

V ar[D̄s(N)] ∼ σ2
m
∑

j=1

(
j

m
)2

logm(N)
∑

i=0

1

mi
= σ2

m
∑

j=1

(
j

m
)2

m

m − 1
(12)

In summary,

V ar[D̄p(N)] ≈
m

m − 1
σ2, V ar[D̄s(N)] ≈

∑m
j=1 j2

m(m − 1)
σ2 (13)

In both cases, the impact of the variability of individual transmissions on the average delay performance is
independentof the number of peers. And the average delay variancewon’t diminishesasN grows. This is
due to the variability at the first few transmission steps will affect almost all peers.

For the snow-ball approach, following the procedure for thetree-based approach, one would calculate
the mean and variance of the worst-case delay as proportional to log2(N). And referring to Figure 2(b), one
would derive a recursive delay formula similar to (7) for multi-tree cases:

W(N) = (N − 1)τs + W0(
N

2
) + W1(

N

2
),
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Figure 7: Impact of random transmission time on delay performance of the snow-ball chunk dissemination
algorithm.

whereτs is the random transmission delay from peer0 to 1, andW0(
N
2 ) andW1(

N
2 ) are the aggregate

delays in the sub-tree rooted at peer0 and1 respectively. By solving it, one would conclude

E[D̄] = log2 N +
1

N
, V ar[D̄] ∼ 2σ2. (14)

However, the previous calculation missed the inherentadaptivenessof the snow-ball approach to bandwidth
variations. In the snow-ball approach, a peer will keep uploading a chunk until all peers have the chunk.
Within one time period, a peer has more bandwidth will uploadto more peers than a peer with less band-
width. Over time, the workload of the same peer is naturally adaptive to its bandwidth: upload more if it has
more bandwidth; upload less if its bandwidth reduces. As forthe recursive view in Figure 2(b), due to the
workload self-adaptiveness, the number of peers in each subtree is no longerN2 . What remains to be true is
that the uploading in both subtrees will finish around the same time.

To further illustrate, let’s assume the chunk transmissiontime between two peers follows exponential
distribution with mean1. As illustrated in Figure 7(a), after obtaining the chunk, each peer uploads it to
other peers. Each arrow on the line for a peer represents the time instant when a chunk delivery completes.
Consequently, an arrow on the aggregate line represents thetime instant when a new peer receives the chunk.
Denote byδk the time interval between the time instants when thek-th and thek + 1-th peer receive the
chunk. δ1 is the transmission time from peer0 to peer1, it is an exponential random variable with rate1.
For k ≥ 2, due to the memoryless property of exponential distribution, δk follows an exponential distri-
bution with ratek. Therefore the worst case delay isDN =

∑N
k=1 δk, which follows a hyper-exponential

distribution. We have

E[DN ] =

N
∑

k=1

1

k
< 1 + lnN, V ar[DN ] =

N
∑

k=1

1

k2
< 2

The expected chunk dissemination finish time is onlyln 2 = 69.3% of the deterministic case. Due to the
constant bounded delay variance, for largeN , snow-ball approach has better delay performance in random
case than in the deterministic case. Similarly, we can calculate the average delay performance

D̄ =
1

N

N
∑

k=1

k
∑

i=1

δk =
1

N

N
∑

k=1

(N − k + 1)δk.
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Then

E[D̄] =

N
∑

k=1

N − k + 1

Nk
<

1 + ln N

N
+ ln N (15)

V ar[D̄] =

N
∑

k=1

(

N − k + 1

Nk

)2

<

N
∑

k=1

1

k2
< 2 (16)

Again, the average delay performance is better than the deterministic case. For chunk transmission time
follows general distribution with mean1, the interval between two chunk upload finish times is no longer
exponential. However, the superposition of a large number of point processes converges to a Poisson pro-
cess [2]. For largek, δk approximately follows an exponential distribution with rate k. We can apply the
previous exponential distribution analysis to study the behavior of large system with generally distributed
chunk transmission time. It is our conjecture that for a reasonable largeN , e.g.,N ≥ 1000, one can expect
snow-ball approach achieves better delay performance thanthe deterministic case.

This result is somehow counter-intuitive at the first sight.The study in Section 3.2 shows thatthe
bandwidth heterogeneity among peers will reduce the chunk dissemination delay.The result obtained here
can be considered as atemporalheterogeneity result, i.e.,the peer bandwidth variations over time will also
reduce the chunk dissemination delay.To bridge these two results, we can consider an artificial example:
for a continuous streaming amongN peers over time period ofT , divide T into two halves, if in the first
half peer0 to peerN

2 − 1 have bandwidth of2, peerN
2 to peerN − 1 have no bandwidth; for the second

half, peer0 to peerN
2 − 1 have bandwidth of0, peerN

2 to peerN − 1 have bandwidth of2. The average
bandwidth of all peers are just1. According to Theorem 3, the streaming delay of0.5 log2 N + 1.5 can be
achieved in both halves, while the minimum delay for the deterministic case when every peer always has
uploading bandwidth of1 is log2 N + 1.

Using the time-stepped simulator, we simulate the snow-ball chunk dissemination when the upload band-
width of peers are random and follow truncated exponential and normal distributions respectively. Again,
we simulate a network of4, 000 peers and assume no propagation delay among peers. In the constant band-
width case, the chunk transmission time is8 time-steps. For the case of truncated exponential distribution,
the mean chunk transmission time is8 time-steps, the upper bound and lower bound are24 and1 respec-
tively. For the case of truncated normal distribution, the mean chunk transmission time is8 time-steps, the
standard deviation is4 time-steps, and the upper bound and lower bound are24 and1 respectively. We run
100 iterations for each distribution and record the max, min andaverage statistics for all iterations.

Figure 7(b) plots the numbers of peers with the chunk at everyround of eight time-steps (one average
chunk transmission time) for all the simulated cases. It is shown that snow-ball chunk dissemination can
indeed exploit random bandwidth variations and achieve shorter delays than the case with constant band-
width.

5.2.1 Bandwidth fluctuations on streaming delay performance

So far, we analyze the impact of bandwidth variations on a single chunk dissemination. For continuous
streaming, bandwidth variation may cause contention between different chunks. The impact of bandwidth
variations on the performance of continuous chunk streaming can be studied through analysis and experi-
ments. Letxi(k) be the number of peers with chunki at the beginning of time slotk, yi(k) be the number
of peers that will upload chunki in time slotk, and letuj(i, k) be the uploading bandwidth of peerj used
to upload chunki in time slotk. Then we have

yi(k) = min(xi(k), N − xi(k)); xi(k + 1) = xi(k) +

yi(k)
∑

j=1

uj(i, k).
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If we assumeuj(i, k) ∼ u0, with E[u0] = ū andV ar[u0] = σ2
u, then

E[xi(k + 1)] = E [E[xi(k + 1)|xi(k)]] = E[xi(k) + ūxi(k)] = (1 + ū)E[xi(k)] = (1 + ū)k;

V ar[xi(k + 1)] = V ar [E[xi(k + 1)|xi(k)]] + E [V ar[xi(k + 1)|xi(k)]]

= V ar[(1 + ū)xi(k)] + E[xi(k)σ2
u] = (1 + ū)2V ar[xi(k)] + σ2

u(1 + ū)k−1

Then

E

[

xi(k + 1)

(1 + ū)k

]

= 1;

V ar

[

xi(k + 1)

(1 + ū)k

]

= V ar

[

xi(k)

(1 + ū)k−1

]

+
σ2

u

(1 + ū)k+1
= σ2

u

1
(1+ū)2

− 1
(1+ū)k+2

1 − 1
(1+ū)

The dissemination delay for chunki can be calculated as

D(i) = min{k : xi(k) ≥ N} = min

{

k :
xi(k)

(1 + ū)k−1
≥

N

(1 + ū)k−1

}

The finish time will have constant variance, which is mostly due to the uploading variances at the first few
steps of the chunk dissemination.

As special cases, let’s investigate how ON-OFF bandwidth fluctuations affect the delay performance.
Case 1: Synchronized ON-OFF:All peers have uploading capacity of2 in odd time slot and0 in even
time slot. To deal with this, let’s focus on odd time slots, atthe beginning of each odd time slots, two new
chunks are generated. If each peer uploads those two chunks in parallel, effectively, one unit of bandwidth
is allocated to each chunk on each peers, we needlog2 N odd time slots to finish each chunk, therefore the
total delay is2 log2 N time slots, which is twice the streaming delay when all peershave uploading capacity
of 1 at each time slot. To fully utilize the bursty uploading capacity, with each odd time slot, a peer can
upload two chunks sequentially. Effectively, we divide each odd time slot into two sub-slots, one new chunk
is generated at the beginning of each sub-slot, and a peer canupload a chunk within each sub-slot, according
to the study in Section 4, all chunks can be streamed withlog2 N sub-slots, that islog2 N

2 original odd time
slots, consequentlylog2 N original time slots.
Case 2: Alternative ON-OFF:Half of the peers with odd ID have uploading capacity of2 in odd time slot
and0 in even time slot, the other half of the peers with even ID haveuploading capacity of2 in even time
slot and0 in odd time slot. The uploading strategy is as follows:

1. Within an odd time slot, server uploads an odd chunk to a peer with an even ID, each peer with odd
ID uploads its chunk to two peers with even IDs;

2. Within an even time slot, server uploads an even chunk to a peer with an odd ID, each peer with even
ID uploads its chunk to two peers with odd IDs;

It can be shown that

xi(k + 1) = xi(k) + 2yi(k)

yi(k + 1) = xi(k) − yi(k) + 2 ∗ yi(k) = yi(k − 1) + 2yi(k)

The uploading of chunki will finish whenever
∑i+K∗

j=i yi(j) ≥ N/2. Sinceyi(k + 1) > 2 ∗ yi(k), the finish
time will be much shorter thanlog2(N/2). It is schedulable among chunks since at mostN/2 peers are
actively uploading chunks within each time slot.
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The schedule can be further improved using sequential uploading within each round, e.g., in the first
half of an odd round, an odd peer uploads the chunk to another odd peer, then the second half of the odd
round, both peers upload to some even peer, then we have

xi(k + 1) = xi(k) + 3yi(k)

yi(k + 1) = xi(k) − yi(k) + 2yi(k) = xi(k) + yi(k)

We list in Table 4 the chunk scheduling between8 peers with ON-OFF uploading capacity. The key

Table 4: Schedule under ON-OFF bandwidth
ID 1 1.5 2 2.5 3 3.5 4 4.5
0 - - 0, 4 0, 5 - - 2, 4 2, 5
1 0, 3 0, 0 - - 2, 3 2, 0 - -
2 - - 0, 6 0, 7 - - 2, 6 2, 7
3 0, 2 - - 2, 2 - -
4 - - 1, 5 - - 3, 5
5 - - 1, 1 1, 0 - -
6 - - 1, 4 1, 7 - - 3, 4 3, 7
7 - - 1, 3 1, 2 - -

for scheduling under ON-OFF bandwidth is to send chunk to peers who can upload the chunk in the next
round. It is unrealistic to predict peers’ upload bandwidthin random network environment. We will propose
a dynamic snow-ball algorithm in Section 6 to adaptively findpeers with upload bandwidth and push out
old chunks for small streaming delay.
Conservation Law for Streaming Delay

Let Y (k) be the aggregate bandwidth utilized by all nodes (includingthe server) to upload chunks, for a
stream ofL chunks toN peers, the average chunk delayD̄(L,N) seen by all peers can be calculated as:

D̄(L,N) =
1

NL

N−1
∑

i=0

L−1
∑

j=0

(R(i, j) − B(j)),

whereB(j) = j is the time when chunkj is generated by the server, andR(i, j) is time when peeri receives
chunkj. At the end of time slotk, Y (k) chunks will be received by some peers, therefore,Y (k) chunk finish
times arek + 1. Consequently, we have

D̄(L,N) =
1

NL

W (L,N)
∑

k=0

Y (k)(k + 1) −
L − 1

2
,

whereW (L,N) is the last time slot when peers upload some chunk out ofL chunks, and

W (L,N)
∑

k=0

Y (k) = NL,

i.e., NL copies ofL chunks must have been uploaded to all peers till time slotW (L,N). Therefore the
average peer chunk delay is

D̄(L,N) =
1

NL

W (L,N)
∑

k=0

kY (k) −
L − 3

2
.
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If each time slot all nodes’ uploading capacity can be fully utilized, thenY (k) = N , W (L,N) = L − 1,
andD̄(L,N) = 1. This is only possible if the server has a capacity ofN . If all nodes have capacity of

1, thenY (k) ≤ 2k, 0 ≤ k ≤ log2 N andY (k) ≤ N . To make
∑W (L,N)

k=0 Y (k) = NL, we must have
∑W (L,N)

k=L Y (k) ≥ (log2 N − 1) ∗N , thereforeW (L,N) ≥ L+log2 N − 2, i.e., the uploading ofL chunks
need at leastL + log2 N − 1 time slots. For the case of half super peers with bandwidth of2 and half
free-riders, we can set the time unit to the half of the original time unit, then the server generates chunkj at
time2 ∗ j, then

D̄(L,N) =
1

NL

W (L,N)
∑

k=0

Y (k)(k + 1) − (L − 1),

Measured in the new time slot, we still haveY (k) ≤ 2k, 0 ≤ k ≤ log2(N/2) andY (k) ≤ N/2 (assume the

server also has capacity of2), to make
∑W (L,N)

k=0 Y (k) = N ,
∑W (L,N)

k=2L Y (k) ≥ (log2(N/2) − 1) ∗ (N/2),

therefore,W (L,N) ≥ 2L + log2(N/2) − 2, the uploading ofL chunks need at leastL +
log2(N/2)−1

2 time
slots.

6 Streaming in Dynamic Environment

In the previous section, we studied the delay performance ofthe snow-ball single chunk dissemination
scheme under long propagation delays and network bandwidthvariations. However, for continuous stream-
ing, due to the randomness in network bandwidth and propagation delays, we can no longer pre-determine
fixed chunk streaming schedules among peers as in the static network case studied in Section 4. Instead,
chunk uploading schedules have to be calculated dynamically to adapt to network bandwidth and delay vari-
ations. Now we extend the static snow-ball streaming algorithm to Dynamic Snow-Ball (DSB) streaming
algorithm. We will show through simulations that, with a small peer upload bandwidth overhead, the pro-
posed DSB streaming algorithm can approach the minimum delay bounds in dynamic network environment.
The main purpose of this section is to demonstrate the potential of snow-ball type of streaming algorithms to
achieve the minimum delay bound. The DSB algorithm is developed as a centralized streaming algorithm.
We defer the distributed implementation of DSB algorithms to future work.

6.1 Dynamic Snow-Ball (DSB) Streaming Algorithm

The philosophy of DSB streaming algorithm follows the static snow-ball streaming algorithm. DSB aims
at pushing out older chunks as quickly as possible to reduce the chunk dissemination delays, as well as the
number of active chunks in transition in the system. At the same time, DSB should also make sure that
newer chunks get enough peer upload bandwidth access to quickly grow the usable upload bandwidth for
them. In a static network environment, as studied in Section4, these two seemingly conflicting objectives
can be simultaneously achieved by employing a carefully calculated chunk upload schedule among peers.
The challenge for DSB streaming in a dynamic network environment is that the chunk transmission com-
plete time is not predictable. Therefore, there is no optimal static streaming schedule that can achieve the
minimum delay bound for all chunks in a video stream. Instead, our DSB algorithm is a simple heuris-
tic algorithm that mimics the static snow-ball streaming algorithm and dynamically resolves the conflicts
between active chunks in continuous streaming.

The DSB streaming algorithm works in rounds. At each round, let A be the set of active chunks that
have been generated by the video source server, but have not been uploaded to all peers. For any chunk
k ∈ A, let Rk be the number of peers with chunkk, Nk be the number of peers without chunkk. Define
the demand factor for chunkk asdk = Nk/Rk, which is the expected workload for each peer with chunk
k to upload it to some peers without it. Then for any peeri, let Bi be the set of chunks in its buffer. The
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Algorithm 1 : DSB Scheduling in One Round
Check whether chunk transmissions scheduled in the previous rounds have finished at the beginning
of this round;
for each newly completed chunk transmissiondo

mark the source peer of the transmission idle, add the transmitted chunk to the buffered chunk set
of the destination peer of the transmission;

end
for each active chunkk ∈ A do

updateRk, Nk anddk;
end
for each peeri do

update buffer setBi, expected workloadWi;
end
for chunksj ∈ A, starting from the oldestdo

while some peers miss chunkj do
a) find an idle peersrc with the lowest expected workload that has chunkj;
b) find a peerdst with the lowest expected workload that does not yet have chunk j, nor have
a scheduled delivery of chunkj;
c) let peersrc uses all its upload bandwidth to upload chunkj to peerdst starting from this
round. mark peersrc busy, mark peerdst with a scheduled delivery of chunkj.

end
end

total expected workload for peeri can be calculated asWi =
∑

k∈Bi
dk . The DSB algorithm calculates the

chunk uploading schedule among peers round by round. The DSBalgorithm is outlined in Algorithm 1.

6.2 Performance Study of DSB

We implemented the centralized DSB streaming algorithm andconducted simulations of a P2P video stream-
ing systems with4, 000 peers. For each simulation, a stream of1, 000 continuous chunks are disseminated to
all peers. We introduce random variations in peer upload bandwidth and propagation delays between peers.
More specifically, for each chunk transmission between peers, the transmission time follows a truncated
exponential distribution. The propagation delays betweentwo peers follow a truncated normal distribution.
We record how long it takes for each chunk to be received by each peer. Then we calculate the average and
worst-case streaming delay for each chunk, and compare themwith the single-chunk dissemination delays
obtained using the simulator described in Section 5 in a system with the same bandwidth and propagation
delay settings.

When there is no bandwidth variation and the propagation delays are negligible, the transmission time
of a chunk is set to be8 simulation time-steps. The DSB streaming algorithm achieves the minimum
single-chunk delay bound as presented in Section 3. Each of the1, 000 chunks in the stream is delivered to
4, 000 peers after exactly97 time-steps and the average delay experienced by peers is88.81 time-steps. It
demonstrated that the dynamic snow-ball streaming is delay-optimal in static homogeneous environment.

Next, we conduct simulations to evaluate the performance ofDSB in dynamic network environment.
We first introduce random propagation delays according to a truncated normal distribution with the mean
equals to8 time-steps (the chunk transmission time), and the standarddeviation equals to4 time-steps. The
lower and upper bound for the random propagation delay is1 and16 time-steps respectively. In Figure 8(a),
we compare the delay performance of DSB when the average peerupload bandwidth varies from1 to
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(a) Random Propagation Delay
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(b) Random Upload Bandwdith
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(c) Random Delay & Random Band-
wdith

Figure 8: Delay performance of dynamic snow-ball streamingalgorithm degrades when there are variations
in propagation delays and peer upload bandwidth. The minimum delay bounds can be approached by slightly
increasing peer upload bandwidth.

1.125 to 1.25. We use as reference point the single-chunk delays obtainedfrom 100 simulation runs of a
single chunk dissemination between4, 000 peers with the same random propagation delay setting using the
simulator described in Section 5. Due to the propagation delay, the average and worst-case single-chunk
delays are127.3 and151.6 respectively, which are larger than88.81 and97 for the zero propagation delay
case. Figure 8(a) plots the average streaming delay for eachchunk in DSB. The system resource index in the
figure is defined as the ratio between the average peer upload bandwidth and the streaming rate [5, 11]. The
single-chunk delays can be approached by the DSB algorithm if peers have upload bandwidth slightly higher
than the streaming rate. Statistics of average and worst-case delay performance are reported in Table 5

Now we repeat the previous simulation with zero propagationdelay and random peer upload bandwidth.
Now each chunk transmission time follows a truncated exponential distribution, with the mean equals to8
time-steps and the lower and upper limit is1 and24 respectively. Again, we use the single-chunk dissem-
ination simulation as the reference point. As predicted by the analysis in Section 5, with random chunk
transmission time, the average and worst-case single-chunk delays (66.8 and91.3 respectively) are smaller
than those for the zero propagation delay case (88.81 and97). The streaming delay performance of DSB is
plotted in Figure 8(b). When the average peer upload bandwidth equals to the streaming rate, due to conflicts
between chunks, the streaming delay performance is much worse than the corresponding single-chunk delay
performance. By increasing peer upload bandwidth by12.5%, the delay performance is reduced by25%. If
we further increase the average peer upload bandwidth to1.25 times the streaming rate (corresponding to
the curve labeled with resource index=1.25 in Figure 8(b)),the delay performance is getting closer to the
single-chunk delay bound. Next, we introduce both random propagation delays and random peer upload
bandwidth by combining the random delay and bandwidth variations introduced in the previous two sets of
simulations. In Figure 8(c), we compare the delay performance of DSB when the average peer upload band-
width varies from1 to 1.125 to 1.25. Again, the minimum single-chunk delay bounds can be approached
by the DSB algorithm if peers have upload bandwidth slightlyhigher than the streaming rate. The summary
statistics of all simulations are presented in Table 5.

More simulation results are presented in Appendix.
Through simulations, we demonstrated that, with a little bit extra peer uploading bandwidth, our dy-

namic snow-ball streaming algorithm can approach the minimum delay bounds in face of random variations
in peer uploading bandwidth and propagation delays on peering connections.
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Table 5: Delay Performance of DSB under Random Propagation Delays and Upload Bandwidth
Algorithms Random Delay Random Bandwidth Random Delay & Bandwidth

worst average variance worst average variance worst average variance

SB Chunk Bound 151.6 127.3 3.38 91.3 66.8 82.4 147.14 110.59 89.95
DSB,ρ = 1 245.4 213.9 74.5 161.7 129.5 90.8 223.34 179.8 152.0

DSB,ρ = 1.125 185.5 158.1 60.0 128.0 98.7 108.5 183.8 143.3 161.9
DSB,ρ = 1.25 169.8 143.8 51.2 116.5 88.47 93.2 171.4 132.2 127.8

7 Conclusion and Future Work

In this paper, we analytically study the delay performance of P2P live video streaming systems. We derive
various delay bounds that can serve as delay performance benchmarks for proposed/deployed P2P streaming
systems. Through our analysis, we quantify the impact of thebandwidth distribution among peers on their
delay performance. Insights brought forth by our study can be used to guide the design of new P2P streaming
systems with shorter start-up delays and playback lags. Static snow-ball streaming algorithms is proposed
to achieve the minimum delay bounds in static homogeneous and heterogeneous P2P video systems. A
dynamic snow-ball streaming algorithm is also developed toapproach the minimum delay bounds with a
small peer upload bandwidth overhead. Through analysis andsimulation, we show that the snow-ball type
of streaming algorithms are robust to network impairments,such as long propagation delays and random
bandwidth variations.

The next step is to develop distributed implementation of the proposed snow-ball streaming algorithms
in mesh-based P2P video systems. We will test its performance in real network environment and compare it
with the theoretical bounds predicted by our analysis here.Another direction for future work is to extend the
delay performance analysis to take into consideration other factors, such as peer churns, geographic locality
of peers and correlations among individual chunk transmissions, etc. More broadly, we are interested in
extending our design and analysis of snow-ball type of algorithms to other forms of P2P systems with
stringent delay requirements, such as Content Delivery Networks and P2P gaming systems [1].

References

[1] BHARAMBE, A., DOUCEUR, J. R., LORCH, J. R., MOSCIBRODA, T., PANG, J., SESHAN, S., AND

ZHUANG, X. Donnybrook: enabling large-scale, high-speed, peer-to-peer games. InProceedings of
ACM SIGCOMM(2008).

[2] CAO, J., AND RAMANAN , K. A poisson limit for buffer overflow probabilities. InProceedings of
IEEE INFOCOM(2002).

[3] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI , A., ROWSTRON, A., AND SINGH, A.
SplitStream: High-bandwidth multicast in cooperative environments. InProceedings of ACM SOSP
(2003).

[4] CHA , M., KWAK , H., RODRIGUEZ, P., AHN, Y.-Y., AND MOON, S. I Tube, You Tube, Everybody
Tubes: Analyzing the World’s Largest User Generated Content Video System. InProceedings of
Internet Measurement Conference(2007).

[5] CHU, Y., RAO, S., SESHAN, S.,AND ZHANG, H. Enabling conferencing applications on the internet
using an overlay multicast architecture. InProceedings of ACM SIGCOMM(2001).

28



[6] CHU, Y.-H., G.RAO, S., AND ZHANG, H. A case for end system multicast. InProceedings of ACM
SIGMETRICS(2000).

[7] HEI, X., L IANG , C., LIANG , J., LIU , Y., AND ROSS, K. W. A Measurement Study of a Large-Scale
P2P IPTV System.IEEE Transactions on Multimedia(December 2007).

[8] HEI, X., L IU , Y., AND ROSS, K. Inferring Network-Wide Quality in P2P Live Streaming Systems.
IEEE Journal on Selected Areas in Communications, the special issue on advances in P2P streaming
(December 2007).

[9] JANNOTTI , J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND O’TOOLE, JR., J. W.
Overcast: Reliable multicasting with an overlay network. In Proceedings of Operating Systems Design
and Implementation(2000), pp. 197–212.

[10] KOSTIC, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT, A. Bullet: High bandwidth data
dissemination using an overlay mesh. InProceedings of ACM Symposium on Operating Systems Prin-
ciples(2003).

[11] KUMAR , R., LIU , Y., AND ROSS, K. Stochastic Fluid Theory for P2P Streaming Systems. In
Proceedings of IEEE INFOCOM(2007).

[12] L IU , S., ZHANG-SHEN, R., JIANG , W., REXFORD, J., AND CHIANG , M. Performance bounds for
peer-assisted live streaming. InProceedings of ACM SIGMETRICS(2008).

[13] L IU , Y. On the Minimum Delay Peer-to-Peer Video Streaming: how realtime can it be? InProceedings
of ACM Multimedia(2007). http://eeweb.poly.edu/faculty/yongliu/docs/mm07.
pdf.

[14] MAGHAREI, N., AND REJAIE, R. Prime: Peer-to-peer receiver-driven mesh-based streaming. In
Proceedings of IEEE INFOCOM(2007).

[15] MAGHAREI, N., REJAIE, R., AND GUO, Y. Mesh or multiple-tree: A comparative study of live p2p
streaming approaches. InProceedings of IEEE INFOCOM(2007).

[16] PAI , V., KUMAR , K., TAMILMANI , K., SAMBAMURTHY , V., AND MOHR, A. Chainsaw: Eliminating
trees from overlay multicast. InThe Fourth International Workshop on Peer-to-Peer Systems(2005).

[17] PPLIVE. PPLive Homepage.http://www.pplive.com.

[18] PPSTREAM. PPStream Homepage.http://www.ppstream.com.

[19] SMALL , T., LIANG , B., AND L I , B. Scaling laws and tradeoffs in peer-to-peer live multimedia
streaming. InProceedings of the 14th annual ACM international conference on Multimedia(2006),
pp. 539–548.

[20] SOPCAST. SopCast Homepage.http://www.sopcast.org.

[21] VENKATARAMAN , J. C. V., AND FRANCIS, P. Multi-tree unstructured peer-to-peer multicast. In
Proceedings of 5th International Workshop on Peer-to-PeerSystems(2006).

[22] ZHANG, M., ZHAO, L., TANG, J. L. Y., AND YANG, S. A peer-to-peer network for streaming
multicast through the internet. InProceedings of ACM Multimedia(2005).

[23] ZHANG, X., L IU , J., LI , B., AND YUM , T.-S. P. DONet/CoolStreaming: A data-driven overlay
network for live media streaming. InProceedings of IEEE INFOCOM(2005).

29



Appendix

A. DSB Performance under Constant Propagation Delay of8 Timesteps.
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(b) Random Upload Bandwidth

Figure 9: Delay Performance of DSB with Constant Propagation Delay of8 TimeSteps

Table 6: Delay Performance of DSB with Constant PropagationDelay of8 TimeSteps
Algorithms Constant Bandwidth Random Bandwidth

worst average variance worst average variance

SB Chunk Bound 145.0 131.5 - 145.1 114.7 90.7
DSB,ρ = 1 251.8 227.2 111.8 224.2 186.3 189.1

DSB,ρ = 1.125 179.9 160.5 76.7 180.2 146.0 151.2
DSB,ρ = 1.25 163.7 145.8 50.5 168.2 135.2 148.3
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B. DSB Performance under Constant Propagation Delay of16 Timesteps.
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Figure 10: Delay Performance of DSB with Constant Propagation Delay of16 TimeSteps

Table 7: Delay Performance of DSB with Constant PropagationDelay of16 TimeSteps
Algorithms Constant Bandwidth Random Bandwidth

worst average variance worst average variance

SB Chunk Bound 185.0 167.7 - 187.7 152.8 101.2
DSB,ρ = 1 299.2 270.8 192.2 283.0 240.2 341.9

DSB,ρ = 1.125 240.7 215.5 212.0 227.4 188.9 180.3
DSB,ρ = 1.25 210.2 187.8 102.3 210.3 173.3 193.1
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C. DSB Performance under Random Propagation Delays with Mean of 16 Timesteps.
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Figure 11: Delay Performance of DSB under Random Propagation Delay with Mean of16 TimeSteps

Table 8: Delay Performance of DSB under Random Propagation Delay with Mean of16 TimeSteps
Algorithms Constant Bandwidth Random Bandwidth

worst average variance worst average variance

SB Chunk Bound 196.3 160.2 11.0 193.2 145.3 111.1
DSB,ρ = 1 334.5 289.2 159.8 296.5 240.1 290.8

DSB,ρ = 1.125 246.5 206.3 117.6 238.8 186.5 195.3
DSB,ρ = 1.25 224.5 186.0 90.1 221.2 170.4 192.7
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