Delay Bounds of Peer-to-Peer Video Streamniing

Yong Liu
Electrical & Computer Engineering Department
Polytechnic Institute of NYU
Brooklyn, NY, 11201
email: yongliu@poly.edu

January 8, 2009

Abstract

Peer-to-Peer (P2P) systems exploit the uploading bandwfdhdividual peers to distribute content
at low server cost. While the P2P bandwidth sharing desigerg efficient for bandwidth sensitive ap-
plications, it imposes a fundamental performance congtfai delay sensitive applications: the upload-
ing bandwidth of a peer cannot be utilized to upload a pieasoatent until it completes the download
of that content. This constraint sets up a limit on how fasieggof content can be disseminated to all
peers in a P2P system. In this paper, we theoretically stuelynipact of this inherent delay constraint
and derive the minimum delay bounds for P2P live streamirsgesys. We show that the bandwidth
heterogeneity among peers can be exploited to significantlyove the delay performance of all peers.
We further propose a simple snow-ball streaming algoritbragproach the minimum delay bound in
P2P live video streaming. Our analysis and simulation ssigtheit the proposed algorithm has better
delay performance and more robust than existing tree-tstsegiming solutions. Insights brought forth
by our study can be used to guide the design of new P2P systémsherter streaming delays.

1 Introduction

Video-over-IP applications have recently attracted adamgmber of users on the Internet. YouTube [4], the
popular user-generated-content (UGC) video streamieg sgrved 00 million distinct videos and5, 000
uploads daily. While Youtube employs content distributimetworks to stream video to end users, Peer-
to-Peer (P2P) video streaming solutions utilize the uplzadandwidth of end users to distribute video
content at low server infrastructure cost. Several P2Rusiirgy systems have been deployed to provide
on-demand or realtime video streaming services over therriat [6, 23, 17, 18, 20]. Our measurement
studies have verified that hundreds of thousands of usersicartaneously participate in these systems
[7]- While the initial successes of P2P streaming are ingivescompared with the traditional TV services
provided by cable companies, all current P2P streamingsyssuffer from long video startup delays and
highly variable playback lags among peers [8]. The delaywéenh a video object is chosen by a user and the
actual playback starts on his/her screen ranges from $eegrands to a couple of minutes. The playback
progresses of peers watching the same channel are asyaohkraith lags up to tens of seconds.

In traditional client-server based video streaming systahe video startup delay perceived by a client
is determined by the delay and the available bandwidth omtghmnnection with the server. To deal with
delay and bandwidth variations, client-side video buffgris necessary to ensure smooth playback. In
P2P video systems, a video stream is divided into viclamksand peers collaboratively download/upload

*Conference version of this paper appeared in ACM Multim&baference 2007 [13]

video chunks from/to each other in P2P fashion to reduceaghesworkload. While the P2P bandwidth
sharing design has been very efficient for bandwidth seesitpplications, such as file sharing, it imposes
a fundamental performance constraint for delay sensifiy®i@ations:the uploading bandwidth of a peer
cannot be utilized to upload a piece of content until it castgs the download of that contefitis constraint
sets up a limit on how fast video chunks can be disseminatell peers.

In this paper, we theoretically study the impact of this irem delay constraint and derive the minimum
delay bounds for generic P2P live video streaming systenus.a@alytical results unveil the impact of the
bandwidth distribution among peers on their streamingydpkxformance. We show that the bandwidth
heterogeneity among peers can be exploited to improvede&iy performance. Even a very small percent-
age of super peers can significantly reduce the video stregpdglays for all peers. We further propose a
simple snow-ball streaminglgorithm to approach the minimum delay bound in P2P livegidtreaming.
The delay performance of the proposed algorithm is compartdexisting tree-based streaming solutions.
Through analysis and simulation, we demonstrate that thggsed snow-ball streaming algorithm not only
can achieve a close-to-optimum delay performance, butlesothe potential to do so in face of realis-
tic network impairments, such as long propagation delagsrandom bandwidth fluctuations. The delay
bounds derived in our analysis can serve as delay perforeragrechmarks for various proposed/deployed
P2P streaming systems. Insights brought forth by the st@idiyeosnow-ball streaming algorithm can be
used to guide the design of new P2P streaming systems wittesistart-up delays and playback lags.

The paper is organized as follows. In Section 2, we provideo# ®verview on the existing P2P stream-
ing solutions. The bounds on the delay for a single chunkedigsation is established in Section 3 for both
homogeneous and heterogeneous P2P network environmestswAball chunk dissemination algorithm
is introduced to achieve the delay bound for a single chusgetihination. In Section 4, we show that the
snow-ball chunk dissemination algorithm can be extendedstwow-ball streaming algorithm to achieve the
delay bounds in continuous video streaming. The performafthe snow-ball chunk dissemination algo-
rithm under realistic network environment is studied int®ec5. A dynamic snow-ball streaming algorithm
is presented in Section 6. Through simulations, we dematesthat the dynamic snow-ball streaming algo-
rithm can approach the minimum delay bounds in highly vaeiaetwork environments with a small peer
upload bandwidth overhead. The paper is concluded witlrdutwork in Section 7.

2 Background and Related Work

Existing P2P streaming solutions can be classified intodteWing categories.

2.1 Single-Tree Streaming

In a single-tree based approach, peers are organized iree sobted at the server. Each peer receives the
stream from its parent peer and forward to its children peEne fan-out degree of a peer is limited by its
uploading bandwidth. An early example is Overcast [9]. Oragomdrawback of the single-tree approach
is that all the leaf nodes don’t contribute their uploadirmmdiwidth. Since leaf nodes account for a large
portion of peers in the system, this largely degrades thelgeedwidth utilization efficiency.

2.2 Multi-Tree Streaming

To solve the leaf nodes problem, Multi-Tree based appraablge been proposed [3, 10]. In multi-tree
streaming, the server divides the stream imtgub-streams. Instead of one streaming tresub-trees are
formed, one for each sub-stream. In a fully balanced midg-streaming, the node degree of each sub-tree
is m. Each peer joins all sub-trees to retrieve sub-streamsndlespeer is positioned on an internal node in
only one tree and only uploads one sub-stream taitshildren peers in that tree. In each of the remaining

m — 1 sub-trees, the peer is positioned on a leaf node and dowslatib-stream from its parent peer.
Figure 1(a) shows an example of two-tree streaming foeers.

For any tree-based streaming approach, a chunk is dissienima hierarchical way. As illustrated in
Figure 1(b), for an—degree tree olN peers, peed sends a chunk to its: children peers at levdl, each of
which then is responsible for disseminating the chunk imte subtree wit{ N — 1)/m peers (including
themselves). In terms of time, after transmissions by pe@r the task of disseminating a chunkibpeers
becomesn sub-tasks of disseminating the chunkﬁﬁnéb—1 peers.

stream 1 @ stream 2 @
AN AVEENAY
%) ® S "\

I\ A
Sbdb dbdd [\ [
I S A

(@) 7-nodes example (b) hierarchical view

Figure 1: Multi-Tree Based Streaming

2.3 Mesh-based Streaming

The management of streaming trees is challenging in faceeqfiént peer churns. Mesh-based streaming
systems are more robust against peer dynamics. Many re@éhstreaming systems adopt mesh-based
streaming approach [23, 16, 21, 14, 22]. In a mesh-basedrmyshere is no static streaming topology.
Peers establish and terminate peering relationship dyr@dimiA peer may download/upload video from/to
multiple peers simultaneously. A recent simulation stutly] [suggests that mesh-based systems have su-
perior performance than tree-based systems. Howeveraitipe, the delay performance of mesh-based
streaming is still not satisfactory. Our analytical resuttdicate that mesh-based systems have a lower de-
lay bound than that can be achieved by the optimal tree-bsysgdms. One important motivation of the
study presented in this paper is to provide some guidelioethe design of peering strategies and chunk
scheduling schemes in mesh-based streaming systems.

2.4 Related Work on Delay Performance

Despite of P2P streaming systems’ popularity, few stude® laddressed their delay performance analyt-
ically. One related work was presented in [19]. Authors of][4tudied the trade-off between the server
bandwidth cost, the maximum number of peers that can be sigoh@nd the minimum number of stream-
ing hops experienced by a peer. We study the optimal strepstiategy when the server only plays a
minimum role in video uploading. The delay bounds obtairtedugh our analysis is much tighter than that
predicted in [19], and can be achieved by the proposed sradvstoeaming algorithm. A recent paper [12]
studied how one can improve P2P streaming delay performaycenstructing streaming trees with min-
imum depth. Our work focuses on the minimum delay bound iragdsy the content bottleneck in P2P
streaming. As will be demonstrated in the following sectiomesh-based topologies have shorter delay

bounds than tree-based topologies and the proposed srbalgmithm can achieve the minimum delay
bound for generic streaming topologies.

3 Bound on Single Chunk Dissemination

In a P2P live video streaming session, a sequence of videtkshare continuously generated by the server
and disseminated to all peers in the session. The strearelag i$ determined by how fast all chunks can
be delivered to peers. In this section, instead of devefptia streaming delay bound, we assume that there
is only one chunk to be disseminated in a P2P video system ewelap the delay bound for the single
chunk dissemination. Obviously, the single chunk delayridois a lower bound for streaming delay. We
will generalize the analysis for the single chunk dissetimato continuous streaming in Section 4.

Given a P2P system with a server aNdpeers, one can answer the questitfrthe server generates
a chunk of content at time = 0, how does one disseminate that chunk to/éllpeers in the shortest
time possible? The answer depends on the size of the chunk, available bdtidand the propagation
delays among all nodes in the system, including the senaalipeers. Without loss of generality, we can
normalize the chunk size to be one, and choose the videarstrgaate as the bandwidth unit. Consequently,
the chosen time unit after the normalization equals to thumkhransmission time on a unit bandwidth link,
which in turn equals to the average playback time of videdaioed in a chunk. For now, let's assume
the propagation delay between any two nodes is dominatetebghunk transmission delay and thus can
be ignored. We will take propagation delays into accountdati®n 5.1 when the chunk transmission delay
becomes small. Without using P2P dissemination, if theesdras a bandwidth a¥, the server can upload
that chunk to all peers biy= 1. However, this is not a scalable solution wh¥ns large. We are interested
in the delay performance when peers upload chunks amongsétess. Throughout this paper, we assume
all peers have enough download bandwidth to receive theamhdéo stream. Therefore, the download part
is never a bottleneck in our analysis.

3.1 Homogeneous case

We start with a homogeneous case where the server and al Ipeax bandwidth of. This corresponds to
theTit-for-Tat case in Bittorrent where peers upload roughly the same anoddata as they download. We
further assume that the server will upload only one copy efdunk to one peer and won't participate the
chunk dissemination afterward.

3.1.1 Single-Tree Chunk Dissemination

Given the unit bandwidth on all peers, a peer can only havechilé. The only possible single-tree based
streaming solution is a chain: the server uploads the chupkér0, then peef) uploads it to peet, and so

on until peerN — 2 uploads it to pee?NV — 1. The chunk propagates along the chain from the server to all
peers in timeV. The average delay {§V + 1)/2.

3.1.2 Multi-Tree Chunk Dissemination

If the multi-tree approach with degree is employed, a chunk propagates from the server to all peers
along a sub-tree with node degreemf If there areN peers, the number of levels of each subtree is

1The chunk size in P2P live video systems is typically smathen that of P2P file sharing system. However, to reduce the
signaling overhead and chunk scheduling complexity, ctifP@P live video systems still employ video chunks with édeable
size. Our measurement study [7] of one popular commercikry shows that the chunk size is arouidKbytes. Given the
video streaming rate af00 Kbps, the playback time of a chunk is arouhd@ second.

K = [log,,(N(m — 1) + 1)]. The only peer at leve) downloads the chunk directly from the server, a
peer at level then uploads a video chunk to children peers at levél+ 1. Let N; be the number of peers
at leveli. ThenN; = m?, 0 < i < K —1,andNx_; = N — m®&—2. Since each peer/server only has
uploading bandwidth of, if the uploading is done in parallel, all children peers aEgeer will receive
the chunkm time slots after their common parent receives the chunk. pEee at the top level can always
receive the chunk from the server after one time slot. Foalf@muploading, the peers at the very bottom
level will receive the chunk itK — 1)m + 1 time slots. The average delay among all peers is

K-1

Dy(m) = = 3 (im + DN, 1)

1=0

WhenN is large, the average delay and the worst-case delay arebtita form

Dy,(m) = mlog,,(N) +o(l) = logy, N + o(1). (2)

loge m

To achieve the shortest delay, one can choose tree degree

m* = argmin Dy,(m) = 3,
m

i.e., the server divides the stream irisub-streams, and feeds each stream into one sub-tree vdéh no
degree oB8. The minimum delay, in both average and worst-case sens&9%it&g, N + o(1).

If the uploading is done sequentially, the first child pedt miceive the chunk from its parent within
time slot, and the last child of a peer will receive the chuftkran time slots. The longest delay at levds
still im + 1. Therefore the worst-case delay is sti{ — 1)m + 1. A degree of} can achieve the minimum
worst-case delay df.891log, N + o(1). The average delay at levéels (m + 1)/2 time slots more than the
average delay at level- 1. The peer at the top level can always receive the chunk frensehver after one
time slot. We can calculate the average delay among all pesers

B 1 K-1
Dy(m) = > (i(m+1)/2+ 1)N;.
=0

Again, whenN is large, the average delay is

_ _m+1 m+1

Dy(m) = = Tog,,(N) + o(1) logy N + o(1).

- 2logam
To minimize the average delay, the optimal degrek &d the minimum average delayli€5 log, N+o(1),
which is less thar2/3 of the average delay of parallel uploading.

3.1.3 Snow-Ball Chunk Dissemination

For single chunk dissemination, peers only need to dissmione chunk, instead of a continuous stream
of chunks. After downloading the chunk, a peer can keep wjgathat chunk to other peers until all
peers receive it. This will largely reduce the chunk dissetion time. The accumulation of the aggregate
uploading bandwidth for the chunk mimics the formation ohaw-ball. We refer it as thenow-ball chunk
disseminationapproach. Figure 2(a) illustrates the progress of snowdbink dissemination for eight
peers. An arc from nodéto node; with a labelk represents peer(or the server) uploads the chunk to
peer; in time slotk. The server uploads the chunk to p@dn time slot0. In time slot1, peer0 uploads
the received chunk to peér In time slot2, both peei0 and peerl will upload the chunk to pee? and3

5

respectively. Ped, 1,2, 3 will upload the chunk to peet, 5,6, 7 in time slot3. It takes4 time slots for all
peers receive the chunk.

For general case, the snow-ball approach disseminatesrk @ recursive way. As illustrated in
Figure 2(b), after peer sends a chunk to peérthe task of disseminating a chunkAbpeers becomes two
sub-tasks of disseminating the chunk%q)eers. Peeb continues to lead one sub-task, and pebecomes
the leader for the other sub-task. Even though the taskisglilegree is only®, compared with degree
in Figure 1(b), it happens after onlychunk transmission, instead of transmissions in Figure 1(b). We
will show that the snow-ball branching is actually the fasteranching process.

CS)~<0) l

@<sf} Q—+—>0

,’ (2) \ /\ /\
o AN A
& [N
o foro /5N 7 5\
D /. N A

(a) 8-nodes (b) recursive view

Figure 2: Snow-ball Chunk Dissemination

Let (i) denote the number of peers that have the chunk at the begiofiitime sloti. In time slot
0, the server uploads the chunk to one peer, therefafe, = 1. Afterward, every peer with the chunk
will upload it to another peer in one time slot, we hav@) = 2 x x(i — 1) = 2i~1. Therefore it takes
K* =1+ [logy, N time slots for allN peers receive the chunk. One peer receives the chunkiaftee
slot, 2—2 peers receive the chunk aftetime slotsv1l < i < K*, andN — 25" ~2 peers receive the chunk
after K* time slots. The average delay performance is

K*-1
H_ 1 2 * K*—2
D=~ <1+ ;:2 272 4 K*(N — 2)).
If N =2K"~1 the average delay i) = log, N + %.

Theorem 1 In a homogeneous P2P streaming system, the snow-ball clissdngination approach simul-
taneously achieves the minimum average peer delay and thisnor worst-case peer delay.

Proof: For an arbitrary chunk dissemination approach g} denote the number of peers that have the
chunk at the beginning of time slat Since the server will upload the chunk to the first peer ae tgiot

0, we always have:r(1) = 1. z(7) is necessarily a non-decreasing function.ofVe define a peer delay
function T'(k) as the delay for thé-th peer to receive the chunk. Then the worst-case peer delayV)
and the average delay¥ss_, T'(k)/N. Given{z(i),i > 1}, T(k) can be calculated as

T(k) = min{i : z(i) > k}, 1<Ek<N. (3)

Due to the homogeneous unit uploading bandwidth among peersilways have:(i + 1) < 2x(i),
i.e., a peer can at most upload the chunk to another peemwatie time slot. By inductiony(i) < 20~!

6

For the snow-ball approach; (i) = 2:~!. Therefore, for any other chunk dissemination approa¢h, <
x*(i),7 > 1. LetT*(k) be the peer delay function for the snow-ball approach. Siff¢e< z*(i),i > 1,
due to (3), we havdg™(k) < T(k),k > 1. Therefore, the snow-ball chunk approach simultaneously
achieves the shortest average and worst-case chunk diggamidelay. [|
Table 1 compares the delay performance of snow-ball chusdediination with tree-based and the optimal
multiple-tree approach: For a system 1824 peers, if the transmission delay of a chunl0i8 second,

Table 1: Minimum Delay Achieved by Different Streaming $tgies for Homogeneous Case

Peer Delay| Single-Tree Multi-Tree, Parallel Multi-Tree, Sequential | Snow-ball Chunk
average N 1.891ogy N + 0(1), m=3 | 1.25logy N 4+ o(1), m=4| logy N + +
worst-case N 1.891ogy N + o(1), m=3 | 1.891ogy N + o(1), m=3 logo N +1

it takes only2 second for the snow-ball approach to complete chunk disssion to all peers, while the
minimum delay achieved by multi-tree approacBB.iZ8 second. Since the single-tree approach degrades to
a chain, peers’ average delay is aroufd second.

In the snow-ball approach, peers who receive the chunk ih-theime slot upload the chunk fat™ — &
times, the peers who receive the chunk in the last time shmiufahalf of the peers) don’t get a chance to
upload the chunk to other peers. Their uploading bandwidih lwe utilized to upload other chunks in
continuous video streaming when multiple chunks are insitem simultaneously. We will further show
in Section 4 that the snow-ball chunk dissemination can benebed tasnow-ball continuous streamirtg
continuously disseminate a stream of chunks and the wasst-delay for each chunk is stilH- [logy, N1.
The snow-ball streaming in Section 4 is designed in an optwaa such that the uploading bandwidth of
all peers are fully utilized to achieve the minimum delay tadior each chunk.

3.1.4 Effect of Increasing Server Bandwidth

If the server bandwidth is increased franto C, we can divideN peers intaC' clusters, and let the server
upload the chunk to one peer in each cluster within one timte $hen, within each cluster, we can employ
tree, multi-tree or snow-ball approach to disseminate thenk. For the chain approach, the delay can be
reduced by a factor af’. However, for both multi-tree and snow-ball approach, thprovement is only a
constant proportional twg, C'. If the server participates in the snow-ball disseminataireach round, the
server can upload the chunk € peers. Let:(k) be the number of nodes (including the server) with the
chunk, we have

2(k)=2xz2(k—1)+C—-1=(2F-1)C + 1.

Therefore the finish time iflog, (& + 1)]. The delay improvement is still bounded fyg, C'].

3.1.5 Effect of Increasing Peer Bandwidth

Secondly, if we also increase the bandwidth of each peer fréox, in the tree based approach, the server
can simultaneously upload t@ peers within one timeslot, and each peer can also uploatpeers within
one timeslot. Therefore, we can construct a streaming teted at the server with node degree(af
The delay performance can be calculated in a similar way @Mhulti-Tree case. If parallel uploading is
employed, both the average and worst-case deligis(/V) + o(1). If sequential uploading is employed,
the worst case delay is stlbg(N) + o(1), the average delay can be reducedg log(N) + o(1).

Multi-Tree approach can still be utilized. Now all the updaay from a peer to its children can be
accelerated by a factor @f. The delays can be reduced 1¢C of the unit bandwidth case. Then the
optimal degrees for parallel uploading and for sequengitdading remain to b8 and4 respectively.

For the snow-ball algorithm, at each time slot, each peeupérad toC' peers simultaneously, therefore,
w(k) = (C+1)sz(k—1) = (C+1)*D,

The finish time iSK,,;, = [logcyq N + 1.

In the previous calculation, we assume a peer uploads thkdionultaneously t@' children peers. All
C children peers will receive the chunk at the end of the tiroe $irom the study of multi-tree approaches,
we learned that sequential uploading can achieve betteagw@elay performance than parallel uploading.
We can adopt sequential uploading in snow-ball approach.eét pploads the chunk @ other peers
sequentially so that the peer receive the chunk first can immediatelyagpto other peers without wait
for the next time-slot. The delay performance in this casacisially %. This is because, with
bandwidthC' and sequential upload, each peer can finish the upload offam&kavithin1/C' time slot. If
we change the time unit to be/C' of the original time unit, the server and peer bandwidth beesl, we
go back to the homogeneous case in Section 3.1, all peergcaine the chunk withifilog, N + 1 small

time slots, which is'222I*1 original time slots.

3.2 Heterogeneous Cases

In real network environment, different peers have diffetgpes of network access, therefore, different up-
loading bandwidth. From the study so far, the chunk dissatiin delay is determined by how quickly
peers’ bandwidth can be utilized to upload the chunk. We defie system-widesable uploading band-
width ¢ (t) for the chunk as the aggregate uploading bandwidth that eartilized to upload the chunk at
any timet. In the homogeneous case, every peer has the same uploadidyitth. Z/(¢) is proportional

to the number of peers with the chumkt). The order at which peers receive the chunk has no impact on
how{(t) grows over time. However, in a heterogeneous environmeeatotder at which peers receive the
chunk determines the growth speedAif), and consequently the chunk dissemination delay. For tho& qu
growth ofi/(t), the intuition is to upload the chunk to peers with large agiog capacities first.

In this section, we study the impact of uploading bandwidttelogeneity among peers on the chunk
dissemination delay by studying several typical cases.illtacome clear that the peer uploading band-
width heterogeneity enables the snow-ball approach teeaetd shorter chunk dissemination delay than the
homogeneous case.

3.2.1 Case 1: Super-peers and Free-riders

Suppose there a¥/C super peers that can upload at rate> 1. All the remaining peers are free-riders
and don't participate in the uploading. The chunk can beedmsated by the snow-ball approach to all
N/C super peers within + £ [log,(N/C)] time slots. Then all super peers can upload the chunk to the

remaining(1 — 1/C)N free-riders inl — 1/C additional time slot. The total delay i@% + 2.
In this case, the average uploading bandwidth of peers atel. If all peers have the average uploading
bandwidthl, the shortest delay idog, N + 1, which is around”' times of the heterogeneous case. This
shows that the heterogeneity of peer uploading bandwidfislieduce the chunk dissemination delay.

3.2.2 Case 2: Multi-level Bandwidth Hierarchy

In the previous case, peers form a two-level hierarchy aiegrto their uploading contribution. A fraction
of 1/C super peers with uploading bandwidthstay at the top level and feed video chunk to the free-riders
at the bottom level. In real network environment, peers eaolbstered based on the types of their network
access. In this case, we extend the two-level hierarchydonamodate multiple levels and show that even
a very small percentage of super peers can bootstrap th& dmsemination.

8

Suppose there ar®; super peers with bandwidifY;, Ny Ny, medium peers with bandwidté’s and
N1 N, N3 slow peers with bandwidtt's. To quickly disseminate the chunk to all peers, the follapahmunk
scheduling algorithm can be employed:

1. use the snow-ball algorithm to uploadg super peers within time + - ﬂog2 Ny;

2. each of thoséV; super peers acts as a server with bandwidthand uploads taV, other medium
peers. As studied in Section 3.1.4, the uploading can finighiimtime 1 + %, now N1 N,
medium peers have the chunk;

3. each of thoseévV; N, medium peers acts as a server with bandwi@dihand uploads tavs other slow

peers within timel + W now N1 N, N3 slow peers have the chunk.

The total delay is
log2 N1 n log2 (NQ/Cl) n log2 (N3/02)

C Cy Cs '
Without those super and medium peers, the fastest chunéndiisation to/N; N, N3 slow peers takes time

+ 2= (logy N1 +1ogy Ny + logy N3).

This suggests that the existence of super peers (even if@well percentage) can dramatically reduce

the chunk dissemination delay. For example, to dissemiaateunk to32k = 2'° peers with bandwidth
1 need at least5 time slots. Meanwhile, ifV; = Ny = N3 = 32, andC; = 10, Cy = 5, C3 = 1, in
other words32 (only 0.1%) of them have bandwidth afd and1024 (only 3%) of them have bandwidth of
5, the time to disseminate a chunk to 384 peers is less thah.2 time slots. The example can be easily
extended to incorporate more thatevels. Another insight obtained from this example is tipgers should
be organized into tiers according to their uploading baxthyipeers within each tier should help each other
to obtain the chunk in the shortest possible time, then paksiin to the neighboring lower tier. This way,
the delay of dissemination to the whole network can be retluce

3+

3.2.3 General Heterogeneous Case

For general heterogeneous case, one can index peers agctvdhe decreasing order of their uploading
capacities. Suppose the sorted uploading capacities of pee: u1, uo,...uy. To derive a lower bound
on the shortest chunk dissemination time, let's allow chsinipping, namely, multiple peers can upload
different portions of a chunk to the same peer simultangouisthe first & peers have the chunk at timg
the uploading to peet + 1 can finish byZ , therefore the lower delay bound can be calculated as

]1J

N—
i=1 j 1 Uy
However, this is a loose bound. For example, for the homameiease, the bound I3 = 1 + ZN ! 1 <
2 +In(N — 2). We know the shortest delay without chunk stripping is iadte+ log, (V). In this sectlon
we study several variations of the snow-ball algorithm toederate the chunk dissemination in general
heterogeneous case.
Heterogeneous Parallel Snow-ball Approach:
Assume{u;} are all integers. let(k) be the number of peers with the chunk at the beginning of time
slot k.

1. In time slot0, the server uploads the chunk to peex(1)=1;

2. Intime slotk > 1, any peer with IDj, 1 < j < z(k), uploads the chunk in parallel to peers with IDs
from (k) + 377 wi to (k) + S0 wi;

3. z(k+1)=x(k)+ Zx(kl w. If x(k+1) < N, k =k + 1, go back to step 2; otherwise finishes.

This way, peers with larger uploading bandwidth will reeethe chunk first and continuously upload the
chunk to other peers until all peers receive the chunkuL:et(ZZ 1 u;/N') be the average uploading band-
width among peers. Since peers are sorted according to theadgng order of their uploading capacities,
we have

z(k+1) +Zu2 > x(k) + z(k)a = (@ + (k).

By induction, we will haver(k) > (@ -+ 1)¥~1. Therefore the finish time is less thélog;, ; N+ 1, which

is the delay of the parallel snow-ball approach in a systeth wbomogeneous peer uploading bandwidth
of @ as studied in Section 3.1.5. This again demonstrates tbat-ball chunk dissemination approach has
even better delay performance when peers have heterogeoplmading bandwidth.

In this approach, due to parallel uploading, peers recbehunk at the end of some time slot. Since we
know sequential uploading has superior delay performamae parallel uploading, we can also develop a
sequential snow-ball approach for heterogeneous sysifes.receive the chunk, a peer will continuously
upload it to other peers one after another. Since peers liffedt uploading bandwidth, the finish time of
chunk uploading by different peers are no longer aligneds firfakes it difficult to coordinate the uploading
scheduling among peers. Here we develop a greedy snoweballlsling algorithm to achieve short delays
in heterogeneous uploading.

Heterogeneous Sequential Snow-ball Approadyain, index peers in the decreasing order of their upload-
ing capacities. At any time instantlet E(¢) be the ordered set of peers without the chunk, &iit) the
ordered set of uploading peers. At any time, the status oéaipé/(¢) can be in eithebusy meaning it is
uploading the chunk to some peer,ready, meaning it is available for next uploading.

1. Initialization: U (1) = {1}, set peed’s status taeady, (1) = {2,--- , N};

2. Choose the first peetin the ordered sdt’ with statusready; pick the first peey from the ordered set
E, let peeri upload the chunk to pegrusing its uploading bandwidth;, set peeri’s status tdbusy
and remove peei from setE. Repeat this step until either no peers i@&dyin U or F is empty;

3. After peeri completes the uploading to peetsadd;j to U, setj’s status taready, also set peei's
own status taeady If £ is not empty yet, go back to step 2.

However, due to the misalignment of the finish time of uplogdévents, this algorithm cannot guarantee to
achieve the minimum delay. For example, for a system Witkeers, if peei’s uploading bandwidth is 10,
other peer uploading capacities ard, 1, 1. When peeil finishes the upload to pe@r peerl will upload

the chunk to pees, and peee will upload the chunk to peet. Then peet will receive the chunk aftet.1
time slots. However, if we just let peérupload the chunk to all other peers, every peer can get thekchu
by 0.4 time slots. It is possible to develop an optimal uploadinigesitile for peers by carefully calculating
the finish time instants for all possible upload combinatitor all peers. We skip the discussion here.

4 Snow-ball Streaming

In single chunk dissemination, any peer can be utilized toagthe chunk after it has downloaded the
chunk. In continuous streaming, one new chunk is generatexy éme slot. When the server capacity is

10

less than, one chunk cannot be disseminated to all pees within one glote Therefore, there will be
more than one chunk in transition at any given timeKlf is the minimum transmission delay for a single
chunk, there will be at leagt™ chunks in transition at any given time. If the chunk schewyuls not set up
appropriately, some chunks cannot be disseminated toes pethin K* time slots.

4.1 Homogeneous Environment

In this section, we show that, for the homogeneous case,pibssible to set up a chunk schedule such
that all chunks can be disseminated to all peers within thermim delay time. In the snow-ball chunk
dissemination approach, the server uploads the chunk tiirshg@eer at time slod. Before the beginning
of time slotK™ = [log,(N)] + 1, all N peers will receive the chunk. Le{j) be the number of peers with
the chunk at the beginning of time slpaind will upload that chunk in time slgt We have

2i—1 1<j<K*-2
#(j) = { N — 2Mlog2(N)1=1 5 — fr*
0 j>K*

We call®* = {4(j) : 5 = 1--- K* — 1} thesnow-ball chunk dissemination profile

Theorem 2 For a homogeneous P2P streaming system, there exists angont streaming schedule such
that all chunks in the stream will be disseminated to all pesith the shortest delai(™ achieved by the
snow-ball algorithm for single chunk dissemination.

Proof: Without loss of generality, the server uploads chunk 0 to some peer at time slot Let y;(k) be
the number of peers that have churdnd will upload chunk to other peers at time slét For any feasible
schedule, we should have;”, vi(k) < N, VE, i.e., at any time slot the aggregate uploading bandwidth fo
all chunks is at mos, andy; (k+1) < 2xy;(k), i. e., each peer can upload to at most one peer within any
time slot. A streaming schedule can achieve the optimaldglafor each chunk if and only if each chunk
can be uploaded according to the snow-ball chunk disseioimptofile ®* after it is uploaded to some peer
by the server, i. e.,

(k) = {qﬁ(k—i) (i+1)<k<i+K

0 otherwise

It can be verified that such a schedule satisfies the feagibdnstraints:

00 k—1 K 1
Zyi(k) = Z yi(k) = Z #(j)=N—1
=0 i—h—K*+41 =

andy;(k+ 1) < 2 xy;(k).

To complete the proof, for each time slot, we need to constaugploading schedule for all active
chunks. LetS be the set of all peers. Denote Sy(k) the set of peers with chunkat the beginning of
time slotk and will upload the chunk t@S;(k)| other peers without chunkin the time slot. To follow the
optimal dissemination profilé*, it is sufficient to havdS; (k)| = v;(k) and{S;(k),k > 1} are pairwise
disjoint (since each peer can only upload one chunk in one slot). We call the previous condition the
sufficient conditionA to achieve the minimum delay streaming. We complete thefmbthe theorem by
constructing a chunk uploading schedule for each time Bfough inductions:

Initial condition: The server uploads churikto peer0 in time slot0. Therefore, at the beginning of time
slot1, Sp(1) = {0}, andS;(1) = 0,7 > 0. It can be easily verified that the sufficient conditibiis satisfied
at the beginning of time sldt

11

Induction: If at the beginning of time sldt > 1, the conditionA is satisfied, we can construct a schedule
in time slotk, such thatA is still satisfied at the beginning of time sfott 1.

At the beginning of time slot, according to\, k, = max(k — K* + 1,0) is the ID of the oldest chunk
that needs to be uploaded in time stotThenS; (k) = 0, Vi < ko, Vi > k; and{S;(k),k, < i < k} are
pairwise disjoint,|S;(k)| = yi(k). Define a setF(k) = S — uf:‘,josi(k), i.e., the set of peers that don't
need to upload any chunk at the beginning of time &loThe following scheduling will guarantee the
condition is still satisfied at the beginning of time slot- 1.

. If &y =k — K*+1 >0, chunkk; will be uploaded for the last time in slét Since the chunk has been
uploaded! + 5272 ¢(i) times by the server and peers in the previéiis— 1 time slots, onlyp(K* — 1)
peers don’t have it. Let all peers in 8, (k) upload chunkk; to those peers and finish the upload of chunk
k1. Peers inSi, (k) can be used to upload other chunks in time &lat 1. We setF (k) = F(k) U Sk, (k).
Then|F(k)| > ¢(K* —1).

Il If ks =k — K* 4+ 2 > 0, chunkks will be uploaded for the second-to-last time in stotAccording to
o*, p(K* —2) peers in seby, (k) will upload chunkk; to other peers that don’t have chukk In addition,
the schedule should guarantee that there withE™* — 1) peers available in time slét+ 1 to upload chunk
ks.

If p(K* — 1) < ¢(K* — 2), let each peer 5y, (k) upload chunkk, to any peer without chunks,
then pick¢(K* — 1) peers out ofSy, (k) to form the set of peers to upload chukk in next time slot,
i.e., Sk, (k + 1). Other peers irS;, (k) can be used to upload other chunks in time glot 1. We set
F(k) = F(k) USky (k) — S, (k +1). We havel F (k)| > ¢(K* — 2)

If o(K* — 1) > ¢(K* — 2), from step 1,|F (k)| > ¢(K* — 1), we can take a subse¥!(k) of
O(K*—1)—¢(K*—2) peers out ofF (k), and letp(K* —1) — ¢(K* —2) peers inS, (k) upload chunkk; to
peers inM (k). Remaining peers iy, (k) then upload chunks to arbitrary peers without churf,. Now
peers inM (k) are ready to upload churil in time slotk+1, therefore, we sefy, (k+1) = S, (k)UM(k);
F(k) = F(k) — M(k). We also haveF (k)| > ¢(K* — 2).

. Letks = max(k — K*+ 3,0). Any chunki, i € [k3, k — 1], needs to be uploaded #¢k — i) peers by
peers in ses; (k). We have

k—1 K*-3
SISk < D 6() = oK™ —2) —1 < [F(k)| — 1. (4)
i=ks j=1

ThenVi € [ks, k — 1], take a subse¥;(k) of |S;(k)| peers out ofF (k), let all peers inS;(k) upload chunk
i to peers in4;(k), and setS;(k + 1) = S;(k) UU;(k), F(k) = F(k) — U;(k). Atthe end, due to (4), we
will have | F (k)| > 1.
IV. The server uploads churikto some peemy, in F(k), and setS(k + 1) = {my}.

Following the previous scheduling steps, the sufficienddmn A will be satisfied at the beginning of
time slotk + 1.
Conclusion: There exists a schedule such that all chunks can be disstrdinéth snow-ball chunk dissem-
ination profile®* and achieve the optimal deldy*. [|
For the special case df = 2™, we assign each peeran D0 < n < N — 1, and each chunk an IQ
1 > 0. Chunk: will be injected to the system by the server in time sgloht the beginning of time slat, half
of the peers have chunk— m and will upload it to the other half in time slé The snow-ball streaming
schedule can be setup as follows.

1. Letl(j) = (k+j) mod m,0<j<m;

2. Forchunki = k —m + 5,0 < j < m, S;(k) ={peers withbit(I(j)) = 1, andbit(l(w)) = 0,0 <
w<j}h

12

3. A peer inS;(k) with ID z uploads chunk to a peer with IDz + 2(0);

4. Sever uploads churikto the peer with [D24(?).

Figure 3 illustrates the previous snow-ball streaming daleein a system witlg peers. We use a sequence
of 9 subfigures to show the snow-ball chunk schedules among @tk peithin 9 consecutive time slots.
Blocks represent chunks and circles represent peers. merdiotk, a white chunk beside a peer is the
chunk that the peer has and will be uploaded to another pdleinvihat time slot. An arc from peérto j
indicates peef uploads its chunk to peer A black chunk beside a peer indicates the server will injleat
chunk to the peer in time sldt. ChunkO is uploaded to all peers by the end of time slaind chunkl is
uploaded to all peers by the end of time glofThe example shows that all chunks can be disseminated to all
peers3 time slots after it is injected by the server. Figure 4 shdvessets of IDs of peers that have different
chunks at the beginning of three consecutive time slots.

4.2 Heterogeneous Environment

For heterogeneous case, the delay bound for single chuskndisation cannot always be achieved in
streaming. For example, if the server’s upload capacityand7 peers’ upload capacities &2el, 1,1,1, 1,0,

a single chunk dissemination can be don8 time slots, however, no streaming algorithm can achiew thi
If peer0 is still uploading chunk at timeslot2, chunk1 cannot be uploaded according to the greedy chunk
profile @*. In this case, the first peer with bandwidtfbecomes the scheduling bottle-neck for adjacent
chunks. For the two special heterogeneous cases consideSsttion 3.2, we are able to prove the exis-
tence of snow-ball streaming to achieve the minimum chusgedhination delay for all chunks.

Theorem 3 For a P2P streaming system wifti/C super peers andl — 1/C)N free-riders, there exists a
continuous streaming schedule such that all chunks in tlearst will be disseminated to all peers within a
delay ofw + 2 time slots.

Proof: Theidea s to first make sure all chunks can be streamed topat eers within + & [logy (N/C)]
time slots. Then super peers will upload to free-riders veienthey have spare bandwidth. To achieve this,
we change the time unit to/C of the original time slot. Measured in the new time slot, tee/er generates
one new chunk everg' time slots. Suppose server only has uploading capacity ahd uploads chunk

to some super peer by the end of time glgt + 1). For time slotk, let y;(k) be number of super peers
uploading chunk to other super peers. To achieve the minimum streaming @afeng all super peers, let
K* = [logy(N/C)], we need

pk—C(i+1) Cli+1)+1<k<C(i+1)+K*
yi(k) = 0 .
otherwise

Letiy (k) = [E45] — Landis(k) = [E5L] — 1, yi(k) > 0iff i1(k) < i < ia(k). Then

00 iz (k)
> yilk)= Y ¢(k—C(i+1)) <N/C -1
i=0

i=i1 (k)

andy;(k + 1) < 2 = y;(k). According to Theoren?, there exists a streaming schedule such that all super
peers can receive the chunk within- 2 [log, (N/C)] time slots. In addition, it can be shown that

—1 i2(k+7)

Zyzkﬂ Z Y 6(k+j—C(i+1)=N/C—1.

i=0 J=0 i=i1 (k+j)

Q

<.
Il
=)

13

(9) Time 6 (h) Time 7 (i) Time 8

Figure 3: Evolution of Chunk Scheduling of Snow-ball Stréagramong Peers

14

chunk O |

chunk

chunk

chunk3[1 [0 [o] o] chunkafo|ofo]| 1] chunks[o]o[1] of

(@) Time 3 (b) Time 4 (c) Time5

Figure 4: Evolution of the Set of Peer IDs for Different Chank

In other words, in any’' consecutive time slots, the aggregate number of uploadirsyiper peers equals
the number of super peers minus one. Since all super peetplzad NV times inC time slots (one original
time slot), therefore, we have — 1/C)N + 1 spare super peer uploading available ewv@riime slots.
After all super peers get churilat time slotC (i + 1) + K*, in the following C' time slots, any super peer
that is not responsible for uploading new chunks to otheesppers can be utilized to upload churtio a
free-rider, and all free-riders can get the chunk by timé &l@ + 1) + K* + C. The achieved streaming
delay is2C + K* sub-time slots, which i€2220/91 9 original time slots. m
We list the chunk schedule for a system wittsuper-peers ang free-riders in Table 2. Super-peers are
indexed from0 to 7, each super peer has uploading capacit®,dfee-riders are labeled fromto ~. An
tuple (z,y) at row: column;j means super peeémwill upload chunkz to peery in time slotj. A chunk is
uploaded to all super peers first, then it will be uploadedItfvee-riders within one additional round. The
overall chunk dissemination delayds time slots.

Table 2: Schedule between Super-peers and Free-riders

ID| 1 |15 2 | 25| 3 (35| 4 45| 5
01(0,1({0,2(0,4/0,a|2,1|2,2|2,4|2,a|4,1
1 0,3/0,5/0,b 2,312,5(2,b

2 0,6/ 0,c/0,g|1,a|26]|2¢c|2¢g
3 0,7(0,d|0,h|1,b|2,7]|2,d|2,h
4 0,e|1,0|1,c|1l9g]|2e]|30
5 o,f|1,1/1,d{1,h| 2|31
6 1,411,2|1,e 3,4|3,2
7 1,6|1,5|1,3|1,f|3,6|35]|3,3

Corollary 4 If peers in a streaming system form\é-level hierarchy With}"[;:1 N, peers on level with
uploading capacity of’;, (C; > C; 1 > 1), there exists a continuous streaming schedule such thatksh
can be streamed to all peers with a delay\df+ Z;‘il “0g2(Ni/éfi*1_1m , whereC, = 2.

Proof: We can construct the chunk scheduling iteratively. Pedevat1 pick (C; — 1) Ny peers from level

2 as their free-riders. Construct a streaming schedule etleaccording to theorem 3 such th@t; —1)NV;
peers from level will receive all chunks with delag + %. Then each of those peers can lead the
snow-ball streaming t&Vs/(C, — 1) peers at leve? and(Cy — 1) N2 /(C1 — 1) free-riders from leves, by

time 3 + 1°g2c(1N1) + 1082(N264501—1)), (Cy — 1)N1 N, peers at leves will receive the chunk. They continue to

15

do snow-ball streaming from levalto 4. The process can continue until all peers at the bottom feeelve
the chunk. [|

5 Impact of Network Impairments

In real networks, the performance of P2P video streamingbgest to various network impairments. In this
section, we evaluate the performance of the snow-ball cldisdemination in network settings with long
propagation delays and random bandwidth variations.

5.1 Impact of Propagation Delays

From the analysis in the previous sections, using smallenk$in P2P video streaming leads to smaller
chunk transmission delay, consequently smaller overaiatination latency. On the other hand, using
smaller chunks increases the signaling overhead and tleelsling complexity among peers. Meanwhile,
as the chunk transmission delay getting smaller, the prtdpay delay between peers will play a more
important role. We still use the transmission time of a chaskhe time unit. Now suppose the propagation
delay isP = d — 1 time slots § > 2). The time between a sender begins to upload the chunk and the
receiving peer get the whole chunkdstime slots. For the multi-tree approach, if parallel upioadis
employed, the chunk transmission delay from a peer to alihtklren increases fromm to d + m — 1,

the delay performance F%?;gj—‘nf logy N; if sequential uploading is employed, the worst case dedastiil

T;éj;nl log, N, and the average delay% logy N.
Again, denote by (k) the number of peers with the chunk at the beginning of timeisldll the chunks
received right before the beginning of time stowvere sent out at the beginning of time stot d. Therefore

we have

z(k) =xz(k—1)+x(k —d).

x(k) is a Fibonacci series with time lag(d = 2 is the standard Fibonacci series). We can sali/e) by
taking Z-Transform:

z-! i
STz g TR e
where o, is the largest root ot — Z~! — Z=¢. The finish time is approximateljog,, N, which is
In2/1n o, times of the snow ball delay without propagation delay. Wt fte evolution of chunk dis-
semination for at different propagation delays in FigureAfnong them,P = 0 corresponds to the case
when the propagation delay is ignored as studied in Sectiés predicted by the Z-transform analysis, the
number of peers with the chunk grows exponentially aftefitkefew time steps. For any propagation delay,
the exponential growth rate, i.e., the slope of the curveemidog plot, is determined by the dominating
root of X (z).

We compare the delay performance of multi-tree based gtestand the snow ball strategy in Table 3.
The delay performance is measured in the unit of the averalge df snow-ball approach when there is no
propagation delay. For parallel multi-tree strategy, wetfxnode degreer = 3 that minimizes the average
and worst-case delay when there is no propagation delay.ségprential multi-tree strategy, at different
propagation delays, the node degree is optimized for theageedelay. The associated worst-case delay is
also calculated. As the propagation delay increases, tlhg gerformance of all three strategies degrades.
For parallel multiple tree with fixed degree, its delay irases fastest among the three. As the propagation
delay increases, the optimal node degree for sequentiéitirad also increases. This is because propagation
delays provide additional chance for pipelining chunk $raissions from a peer to its children. Sequential
multi-tree strategy explore this pipelining gain. It ineses node degree and a peer will spend more time

X(z)

16

10

10

10 r

TPRRR
NP R OO
o o

Number of Peers

0 5 10 15 20 25 30
Time Steps

Figure 5: Chunk dissemination speed at different propagatelays.

to upload the same chunk to all its children. This makes geaildo the uploading philosophy of snow-ball
streaming:a peer should keep uploading the same chunk until all peeve ita As a result, sequential
multi-tree has better delay performance than the fixedesdegarallel multi-tree. However, its worst-case
delay performance is much worse than that of the snow-b@ltcgeh. This is because leaf peers at the
bottom level have large delay variations. And leaf peerstaamtribute to the uploading of the chunk even
if they receive the chunk early. To the contrary, in the srim@MN-approach, a peer always contributes to the
uploading as long as the chunk is still missing on some peers.

Table 3: Minimum Delay Achieved by Different Streaming $#gies with Propagation Delays.

Prop. || M-Tree, Para., Fix M-Tree, Seq., Opt. Snow

Delay || degree| delay degree| average| worst Ball
0 3 1.89 4 1.25 2.0 1.0
1 3 2.52 5 1.72 2.58 1.44
2 3 3.15 6 2.13 3.10 1.81
3 3 3.79 7 2.49 3.56 2.15
4 3 4.43 8 2.83 4.0 2.47

More generally, if the propagation delays are random witth #ue p.m.f of chunk delay (transmission
delay of1 plus a random propagation delay)(is, A;),1 < i < M, i.e., a chunk uploaded by a peer at the
beginning of time slok will be received by a peer before the beginning of time BletA; with probability
pi, then in average sense we have

M
w(k) =a(k—1)+) _ p(k— Ay,

=1
Then the average number of peers that receive the chunk énslioh can be calculated as:

X1zt

=117

If the propagation delay is not a multiple of chunk transimisgime, we can pick a fine time unit such
that the chunk transmission timeds time units and the propagation delaydistime units. Note that, in
this case, a peer can finish the transmission of a chumk time units. At the beginning of time slat,
let z(k) be the number of peers with the chunk aji#) the number of peers that are ready to transmit the

17

chunk. The system evolution can be characterized by:

di—1

w(k) =Y ylk—1), y(k)=ylk—di)+ylk—d —do),
=0

where the first equation is due to the fact that each peer hétlchunk will transmit it everyl; time units;

the second equation is because all peers that receive tiné etishe end of time slot — 1 are ready to
transmit the chunk at the beginning of time stpind the received chunk was sent by a peer at the beginning
of time slotk — d; — dy. We have

Y(1)z—1
Y(Z) - 1— Z_dl . Z_(d1+d2) (5)
X(1)(Z7 4 Zz7 (7D
1 — Z—di — Z—(di+d2)

(6)

Again, whenk is large,z (k) grows exponentially with some fixed rate.

To study the chunk dissemination speed with random projmagedelays, we developed a time-stepped
simulator that simulates the progress of snow-ball chuskeainination with random propagation delays
among peers. We simulate a networkdo®00 peers. At time = 0, a peer receives a chunk from a server.
Then peers employ snow-ball chunk dissemination to didilthe chunk until all peers receive it. At each
time step, we record the number of peers that have receieechtimk. The chunk transmission time among
peers is constant and set to $simulation time-steps. The propagation delay between weygfollow a
truncated normal distribution with mean 8P and standard deviation dfP, the upper and lower bound
for the random delay i$6 P and1 respectively. We conducted simulations 8r= 0 (no delay),P = 1
and P = 2. For each case we rai0 iterations and record the max, min and average number of peer
with the chunk at each time step among all iterations. We @vmfhe chunk dissemination speed under
random propagation delays with the corresponding consdigay case foP = 1 and2. Figure 6 plots the
numbers of peers with the chunk at every round of eight titepss(one chunk transmission time) for all the
simulated cases. As predicted by the Z-transform analysth, constant propagation delays, the number

7" | —— Constant P=0
Random P=1, Max
Random P=1, Min
Random P=1, Avg.

— Constant P=1

- = = Random P=2, Max

-'='Random P=2, Min

—— Random P=2, Avg.

)) | — Constant P=2

0 5 10 15 20 25

Rounds

Number of Peers

Figure 6: Chunk dissemination speed with constant and rargtopagation delays.

of peers with the chunk grows exponentially after the first fane steps. For any propagation delay, the
exponential growth rate, i.e., the slope of the curve in degiplot, is determined by the dominating root

18

of X (z). Random delays did introduce variance in the disseminaj@ed. However, the snow-ball chunk
dissemination still follows the exponential growth tremdiahe completion time is very close to the constant
delay case.

5.2 Impact of Bandwidth Variations

In the previous sections, we assume that peers have congtaatiing bandwidth and a chunk transmission
completes in constant time: in sequential transmissioualc can be transmitted from a peer to another
peer in one time slot, in parallel transmission with degreea peer can transmit a chunk simultaneously
to m children inm time slots. Due to network traffic variations, the availabéndwidth on a connection
between two peers varies over time. Consequently, thenige®mn time of a chunk is not constant. In
this section, we investigate the robustness of differeetsting strategies against the randomness in chunk
transmissions.

For the clarity of presentation, we assume all transmisdalays are independent and follow the same
distribution. We introduce random variabté for sequential transmission time, with[7*] = 1 and
Var[r®] = o?; them-parallel transmission time i, with E[7?] = m andVar[rP] = ma?.

For the chain-based approach, if péeeceives the chunk from the server at tifpehe time for the-th
peer to receive the chunk E§:1 7;, Wherer; is the transmission delay from peer 1 toi. And {7;} are
i.i.d following the distribution ofr®. Then for the worst-case deldy5; is the time for peefV to receive the
chunk:

E[D$] =N, Var[D$]= No>.

The average delay among all peers is

1 XY 1 I
DC:NZ:ZTi:NZ(N—'_l_j)Ti'

j=li

@
Il
—_
.
Il
—

Then we have

2
E[D.] = %; Var[D.] = = > ko’ ~ NT"
This suggests that, in a chain topology, the impact of thdaamess of individual chunk transmission on
the average and worst-case chunk delay performance ofe [proportional to the number of peéys
in the chain.
For the parallel multi-tree approach, all peers at the botkevel will receive the chunk aftdng,, N
independent parallel chunk transmissions. Then we hawedst-case delay:

E[D}] =mlog,, N, Var[D}]=mlog,, No*.

For the sequential multi-tree approach, there is one pdbedtottom level that will receive the chunk after
mlog,,, N independent sequential chunk transmissions. We have fstwwase delay:

E[D3%] = mlog,, N, Var[D%] = mlog,, No*.

Therefore the mean and variance of the worst-case delayutti-tree based approaches are proportional to
mlog,, N.

We can calculate the mean and variance of the average detfyrrpance for multi-tree based ap-
proaches using recursions. As illustrated in Figure 1(by-degree tree oV peers consists of the single
peer at leveD andm sub-trees, each of which is rooted at a levgleer and haéN — 1)/m peers. Denote
by W(NN) the aggregate chunk delay of all peers inalegree tree wittV peers after the root peer receives

19

the chunk. Assume peéreceived the chunk at time= 0, lett; be the time when pegrat levell receives

the chunk. We have
/N -1 N -1
W<N>=Z< —t W <T>> ()

J=1

where the first term indicates the delay of pgarontributes to the delays of all peers in its sub-tree, the
second term is the aggregate delay to disseminate the chuhk j-th subtree. For the parallel multi-tree
approach{t;} is just the parallel transmission time from p@epo j. They follow the distribution of?. For
the sequential multi-tree approach,= Z{Zl 7;, Wherer; is the transmission delay from pegto peeri,
following the distribution ofr®.

The average delay of all peers is simglf V) = W(N)/N. It can be verified that for both parallel and
sequential multi-treeE[D,(N)] and E[D;s(N)] are the same as the deterministic case. Based on (7), we
also calculate the variandéar(Dy,, ,3(N)] recursively:

_ 1,1 % 1 - N -1
For parallel uploadingVar[} 7", t;] = m*0?, then
_ 1 1 - N-—1
VarlDy()] = (1=) (7 + var(D)) ©
Consequently,
log,, (V) 1 m
A 2 _ 2
Var[Dy(N)] ~ o ; — =0 (10)
For sequential uploading/ar[>_7", ;] = 0® Y7, 52, then
A g L 2mizi A~ N -1
Var[Dy(N)] = (1 -) (a ;m) + —Var[Dy(——)] |, (11)
Consequently,
m] lOgm(N) 1 m j m
> 2 2 _ 2 2
Var[Dg(N)] ~ o Z(E) Z w0 Z(E) —1 (12)
7j=1 =0 7j=1
In summary,
m -2
— . m 9 A 2=
Var[D,(N)] = —° ,Var[Ds(N)] ~ m(m — 1)0 (13)

In both cases, the impact of the variability of individuarsmissions on the average delay performance is
independenbf the number of peers. And the average delay variavmet diminishesas NV grows. This is
due to the variability at the first few transmission stepd affect almost all peers.

For the snow-ball approach, following the procedure forttee-based approach, one would calculate
the mean and variance of the worst-case delay as propdrt®ha, (V). And referring to Figure 2(b), one
would derive a recursive delay formula similar to (7) for trtidee cases:

N

W) = (Y~ D+ W)+ (),

20

10'

|
Peer0 | T T T T R i
[L " o
1 1
Peerl | | T | T T T &
» ()
| T Ll a
: : § 10°F
Peer2 | 1 T T T 2) —— Constant BW
I T > g) - - Exponential, Max
1 ’ - - Exponential, Min
Peer3 | I T T T = w0t —— Exponential, Avg. | |
! ») - -Normal, Max
I o ,/’ == Normal, Min
/;/ —— Normal, Avg.
Agor A A \
ggregate | » Time 05 5 10 15
51 (52 53 (54 Rounds
(a) Chunk dissemination point process with random (b) Chunk dissemination speed with random trans-
transmission time. mission time.

Figure 7: Impact of random transmission time on delay peréorce of the snow-ball chunk dissemination
algorithm.

wherer, is the random transmission delay from péeto 1, and WO(%) and Wl(%) are the aggregate
delays in the sub-tree rooted at péaand1 respectively. By solving it, one would conclude

E[D] = logy N + %, Var[D] ~ 2072, (14)

However, the previous calculation missed the inheaglsiptivenessf the snow-ball approach to bandwidth
variations. In the snow-ball approach, a peer will keep aging a chunk until all peers have the chunk.
Within one time period, a peer has more bandwidth will uplé@dhore peers than a peer with less band-
width. Over time, the workload of the same peer is naturalgpdive to its bandwidth: upload more if it has
more bandwidth; upload less if its bandwidth reduces. AgHerrecursive view in Figure 2(b), due to the
workload self-adaptiveness, the number of peers in eadhesuis no Iongen%v. What remains to be true is
that the uploading in both subtrees will finish around theestime.

To further illustrate, let's assume the chunk transmissime between two peers follows exponential
distribution with meanl. As illustrated in Figure 7(a), after obtaining the chunéicle peer uploads it to
other peers. Each arrow on the line for a peer representsibaristant when a chunk delivery completes.
Consequently, an arrow on the aggregate line represenigth@astant when a new peer receives the chunk.
Denote byd, the time interval between the time instants whenkkib and thek + 1-th peer receive the
chunk. 47 is the transmission time from pe@rto peerl, it is an exponential random variable with rdte
For k > 2, due to the memoryless property of exponential distrilmjtia. follows an exponential distri-
bution with ratek. Therefore the worst case delaylisy = fo:l 0, which follows a hyper-exponential
distribution. We have

—_

N N 1
:kZ:lE<l+lnN Var[Dy] = ;ﬁ

The expected chunk dissemination finish time is dnlg = 69.3% of the deterministic case. Due to the
constant bounded delay variance, for lafgesnow-ball approach has better delay performance in random
case than in the deterministic case. Similarly, we can tatlethe average delay performance

2

k

1 N
— N— 1)ds..
Z:: Nk: k+ 1),

k: 1

21

Then
N

_ N-k+1 1+IhN
ED] = Y < +InN (15)
£ Nk N
N 2 N
_ N-k+1 1
Var[D] = <7> <N <2 (16)
k=1 Nk k=1 k

Again, the average delay performance is better than therdigistic case. For chunk transmission time
follows general distribution with meanh the interval between two chunk upload finish times is no éwng
exponential. However, the superposition of a large numbgoimt processes converges to a Poisson pro-
cess [2]. For largé:, o, approximately follows an exponential distribution witha&. We can apply the
previous exponential distribution analysis to study theawéor of large system with generally distributed
chunk transmission time. It is our conjecture that for aceable largeV, e.g.,IN > 1000, one can expect
snow-ball approach achieves better delay performancetkteatieterministic case.

This result is somehow counter-intuitive at the first sigfithe study in Section 3.2 shows thiue
bandwidth heterogeneity among peers will reduce the chisdedhination delayThe result obtained here
can be considered agemporalheterogeneity result, i.ehe peer bandwidth variations over time will also
reduce the chunk dissemination deldy bridge these two results, we can consider an artificiaingte:
for a continuous streaming amog peers over time period &F, divide T" into two halves, if in the first
half peer0 to peerdy — 1 have bandwidth o2, peer to peerN — 1 have no bandwidth; for the second
half, peer0 to peer% — 1 have bandwidth o6, peer% to peerN — 1 have bandwidth of. The average
bandwidth of all peers are jus$t According to Theorem 3, the streaming delaydflog, N + 1.5 can be
achieved in both halves, while the minimum delay for the wheteistic case when every peer always has
uploading bandwidth of islog, N + 1.

Using the time-stepped simulator, we simulate the snowwehahk dissemination when the upload band-
width of peers are random and follow truncated exponentidl @ormal distributions respectively. Again,
we simulate a network of, 000 peers and assume no propagation delay among peers. In stamomand-
width case, the chunk transmission time&isme-steps. For the case of truncated exponential disioiou
the mean chunk transmission timesisime-steps, the upper bound and lower bound2drand 1 respec-
tively. For the case of truncated normal distribution, theam chunk transmission time§gime-steps, the
standard deviation i$ time-steps, and the upper bound and lower boun®4mnd1 respectively. We run
100 iterations for each distribution and record the max, min avetage statistics for all iterations.

Figure 7(b) plots the numbers of peers with the chunk at exaumpd of eight time-steps (one average
chunk transmission time) for all the simulated cases. Ih@a that snow-ball chunk dissemination can
indeed exploit random bandwidth variations and achievetshdelays than the case with constant band-
width.

5.2.1 Bandwidth fluctuations on streaming delay performane

So far, we analyze the impact of bandwidth variations on glsichunk dissemination. For continuous
streaming, bandwidth variation may cause contention bexvaifferent chunks. The impact of bandwidth
variations on the performance of continuous chunk stregroan be studied through analysis and experi-
ments. Letr; (k) be the number of peers with chuilat the beginning of time slak, y;(k) be the number

of peers that will upload chunkin time slotk, and letu; (i, k) be the uploading bandwidth of pegused

to upload chunk in time slotk. Then we have

yi(k) = min(z;(k), N — x;(k)); xi(k+1) =z;(k) + uj(i, k).

22

If we assumeu; (i, k) ~ ug, with E[ug] = @ andV ar[ug] = o2, then

Elxi(k+1)] = E|[Ezi(k+ 1)|a;(k)]] = Elzi(k) + az;(k)] = (14 0)E[z;(k)] = (1 +)%
Var[zi(k+1)] = Var[Ez;(k+ 1|z;(k)]] + E [Var[z;(k + 1)|x;(k)]]
Var[(1+ a)z;(k)] + Elzi(k)o?] = (1 + @)*Varz; (k)] + o2(1 + a)F!
Then

SL’Z(]{? + 1) .)

die=2
xi(k+1) o xi(k) O'Z B (1_;_111)2 - (1+$)k+2

ver [(1+a)k } - Y [(1 +ﬁ)’f—1] * (14 @)kt o 1_ 1

The dissemination delay for churikcan be calculated as

. e z;(k) N
D(i) = min{k : z;(k) > N} = mln{k‘ A+ o)t > § —l—ﬂ)k—l}
The finish time will have constant variance, which is mostig do the uploading variances at the first few
steps of the chunk dissemination.

As special cases, let’s investigate how ON-OFF bandwidtidhtions affect the delay performance.
Case 1: Synchronized ON-OFFAIl peers have uploading capacity 2fin odd time slot and) in even
time slot. To deal with this, let's focus on odd time slotsthat beginning of each odd time slots, two new
chunks are generated. If each peer uploads those two chuiplesallel, effectively, one unit of bandwidth
is allocated to each chunk on each peers, we hggdV odd time slots to finish each chunk, therefore the
total delay i log, IV time slots, which is twice the streaming delay when all peaxe uploading capacity
of 1 at each time slot. To fully utilize the bursty uploading ceipa with each odd time slot, a peer can
upload two chunks sequentially. Effectively, we divideleadd time slot into two sub-slots, one new chunk
is generated at the beginning of each sub-slot, and a peepdasd a chunk within each sub-slot, according
to the study in Section 4, all chunks can be streamed Wwith N sub-slots, that ié"gg—N original odd time
slots, consequentlypg, /N original time slots.

Case 2: Alternative ON-OFF: Half of the peers with odd ID have uploading capacity2ah odd time slot
ando0 in even time slot, the other half of the peers with even ID haveading capacity o? in even time
slot and0 in odd time slot. The uploading strategy is as follows:

1. Within an odd time slot, server uploads an odd chunk to awéhk an even ID, each peer with odd
ID uploads its chunk to two peers with even IDs;

2. Within an even time slot, server uploads an even chunk teawith an odd ID, each peer with even
ID uploads its chunk to two peers with odd IDs;

It can be shown that

yilk+1) = xi(k) —yi(k) +2*y;(k) = yi(k — 1) + 2y, (k)
The uploading of chunkwill finish wheneverZ’*K i(4) > N/2. Sincey;(k +1) > 2 xy;(k), the finish

time will be much shorter thatog,(N/2). Itis schedulable among chunks since at mi¥gR peers are
actively uploading chunks within each time slot.

23

The schedule can be further improved using sequential dplgawithin each round, e.g., in the first
half of an odd round, an odd peer uploads the chunk to anottetpeer, then the second half of the odd
round, both peers upload to some even peer, then we have

l’l(k‘ + 1) = wl(k?) + ByZ(k’)
vilk+1) = zi(k) —yi(k) + 2yi(k) = 2i(k) + yi(k)

We list in Table 4 the chunk scheduling betweepeers with ON-OFF uploading capacity. The key

Table 4: Schedule under ON-OFF bandwidth
1 15| 2 25| 3 | 35| 4 | 45

- - 10,4|10,5| - - 12,4]2,5
0,3/0,0| - - 12,3120]| - -

- - 10,6|0,7| - - 12,6]2,7
0,2 - - 2,2 - -
- - 1,5 - - 3,5
- - 114,1|1,0| - -
- - (L4117 - - 13,4]|3,7
- - (14,3112 - -

~Nolahw| N RlolT

for scheduling under ON-OFF bandwidth is to send chunk taspe#o can upload the chunk in the next
round. Itis unrealistic to predict peers’ upload bandwidtrandom network environment. We will propose
a dynamic snow-ball algorithm in Section 6 to adaptively firgbrs with upload bandwidth and push out
old chunks for small streaming delay.
Conservation Law for Streaming Delay

LetY (k) be the aggregate bandwidth utilized by all nodes (includivgserver) to upload chunks, for a
stream ofL chunks toN peers, the average chunk del@yL, N) seen by all peers can be calculated as:

1 e
D(LN_N—ZZ (),
=0 7=0

whereB(j) = j is the time when chunkis generated by the server, aRd;, ;) is time when peei receives
chunkj. Atthe end of time slok, Y (k) chunks will be received by some peers, therefdrg) chunk finish
times arek 4+ 1. Consequently, we have

N)
L—1
D(L, NL Z Y (k)(k+1))=~

whereW (L, N) is the last time slot when peers upload some chunk olditdfunks, and

W (L,N)

> Y(k)=NI,

k=0

i.e., NL copies ofL chunks must have been uploaded to all peers till time8I¢L, N). Therefore the
average peer chunk delay is

W (L,N)
L L-3
D(L, NL Z kY (K

24

If each time slot all nodes’ uploading capacity can be fulijized, thenY' (k) = N, W(L,N) = L — 1,
andD(L,N) = 1. This is only possible if the server has a capacity\of If all nodes have capacity of
1, thenY (k) < 2F,0 < k < log, N andY (k) < N. To makeZZ‘;(OL’N)Y(k) = NL, we must have
SN Y (k) > (logy N — 1) % N, thereforelV (L, N) > L+log, N —2, i.e., the uploading of, chunks
need at leasL. + log, N — 1 time slots. For the case of half super peers with bandwidth ahd half
free-riders, we can set the time unit to the half of the oagtime unit, then the server generates chgai
time 2 * j, then

D(L, NL Z Y(k)(k+1)— (L —1),

Measured in the new time slot, we still havék) < 2,0 < k < log,(N/2) andY (k) < N/2 (assume the
server also has capacity 2, to makeEW(L N) Y(k)=N, ZZV(ZLLN Y (k) > (logy(N/2) — 1) = (N/2),
therefore W (L, N) > 2L + log,(NN/2) — 2, the uploading of. chunks need at leat + % time
slots.

6 Streaming in Dynamic Environment

In the previous section, we studied the delay performancthefsnow-ball single chunk dissemination
scheme under long propagation delays and network bandwaédiftions. However, for continuous stream-
ing, due to the randomness in network bandwidth and projagdelays, we can no longer pre-determine
fixed chunk streaming schedules among peers as in the sttionk case studied in Section 4. Instead,
chunk uploading schedules have to be calculated dynamicedidapt to network bandwidth and delay vari-
ations. Now we extend the static snow-ball streaming algarito Dynamic Snow-Ball (DSB) streaming

algorithm. We will show through simulations that, with a $hpeeer upload bandwidth overhead, the pro-
posed DSB streaming algorithm can approach the minimuny delands in dynamic network environment.

The main purpose of this section is to demonstrate the patefisnow-ball type of streaming algorithms to

achieve the minimum delay bound. The DSB algorithm is dgyeslioas a centralized streaming algorithm.
We defer the distributed implementation of DSB algorithméuture work.

6.1 Dynamic Snow-Ball (DSB) Streaming Algorithm

The philosophy of DSB streaming algorithm follows the stathow-ball streaming algorithm. DSB aims
at pushing out older chunks as quickly as possible to recheeehiunk dissemination delays, as well as the
number of active chunks in transition in the system. At themedime, DSB should also make sure that
newer chunks get enough peer upload bandwidth access tdyggiow the usable upload bandwidth for
them. In a static network environment, as studied in Sectidhese two seemingly conflicting objectives
can be simultaneously achieved by employing a carefullgutaled chunk upload schedule among peers.
The challenge for DSB streaming in a dynamic network enwirent is that the chunk transmission com-
plete time is not predictable. Therefore, there is no ogtstetic streaming schedule that can achieve the
minimum delay bound for all chunks in a video stream. Insteadg DSB algorithm is a simple heuris-
tic algorithm that mimics the static snow-ball streamingogithm and dynamically resolves the conflicts
between active chunks in continuous streaming.

The DSB streaming algorithm works in rounds. At each rouatldl be the set of active chunks that
have been generated by the video source server, but haveaotuploaded to all peers. For any chunk
k € A, let Ry be the number of peers with chuik N, be the number of peers without chukk Define
the demand factor for chunkasd, = Ni /Ry, which is the expected workload for each peer with chunk
k to upload it to some peers without it. Then for any pgdet B; be the set of chunks in its buffer. The

25

Algorithm 1: DSB Scheduling in One Round
Check whether chunk transmissions scheduled in the prevaunds have finished at the beginning
of this round;

for each newly completed chunk transmissiion
mark the source peer of the transmission idle, add the trigieshchunk to the buffered chunk set

of the destination peer of the transmission;
end
for each active chunk € A do
| updateRy, N andd;
end

for each peel do
| update buffer seB;, expected workloadlV;;

end
for chunks;j € A, starting from the oldesio

while some peers miss chugklo
a) find an idle peesrc with the lowest expected workload that has chyink

b) find a peeklst with the lowest expected workload that does not yet havelchiunor have
a scheduled delivery of chunk
c) let peersrc uses all its upload bandwidth to upload chynio peerdst starting from this
round. mark peesrc busy, mark peetist with a scheduled delivery of chunk

end

end

total expected workload for peécan be calculated d%; = >, . 5, & - The DSB algorithm calculates the
chunk uploading schedule among peers round by round. ThedlfgiBithm is outlined in Algorithm 1.

6.2 Performance Study of DSB

We implemented the centralized DSB streaming algorithmcanducted simulations of a P2P video stream-
ing systems withl, 000 peers. For each simulation, a stream @f00 continuous chunks are disseminated to
all peers. We introduce random variations in peer uploadiwaith and propagation delays between peers.
More specifically, for each chunk transmission betweengdbe transmission time follows a truncated
exponential distribution. The propagation delays betweenpeers follow a truncated normal distribution.
We record how long it takes for each chunk to be received bl paer. Then we calculate the average and
worst-case streaming delay for each chunk, and comparewhtnthe single-chunk dissemination delays
obtained using the simulator described in Section 5 in aegystith the same bandwidth and propagation
delay settings.

When there is no bandwidth variation and the propagatioaydehre negligible, the transmission time
of a chunk is set to b& simulation time-steps. The DSB streaming algorithm acgethe minimum
single-chunk delay bound as presented in Section 3. Eadteaf 000 chunks in the stream is delivered to
4,000 peers after exactl9g7 time-steps and the average delay experienced by pe@ssistime-steps. It
demonstrated that the dynamic snow-ball streaming is egbéiynal in static homogeneous environment.

Next, we conduct simulations to evaluate the performand@3B in dynamic network environment.
We first introduce random propagation delays according torecéted normal distribution with the mean
equals taB time-steps (the chunk transmission time), and the stardiari@tion equals td time-steps. The
lower and upper bound for the random propagation delayisd 16 time-steps respectively. In Figure 8(a),
we compare the delay performance of DSB when the averageupdeaid bandwidth varies from to

26

-
a
=]

N
=3
=]
e

B

2 o

S o

N

=3

=]

£l
X |

60

s

s R R M i

——avg. single-chunk delay
——resource index 1

50 resource index 1.125 40 ——resource index 1 resource index 1.125
—resource index 1.25 resource index 1.125 ——resource index 1.25
—resource index 1.25

»

——avg. single-chunk delay

N
Q
=]

——avg. single-chunk delay
——resource index 1

Average Delivery Time
5
o
Average Delivery
Average Delivery Time

a
=)

0 0 0
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Chunk ID Chunk ID Chunk ID

(a) Random Propagation Delay (b) Random Upload Bandwdith (c) Random Delay & Random Band-
wdith

Figure 8: Delay performance of dynamic snow-ball streanailggrithm degrades when there are variations
in propagation delays and peer upload bandwidth. The mimmieiay bounds can be approached by slightly
increasing peer upload bandwidth.

1.125 to 1.25. We use as reference point the single-chunk delays obtémed100 simulation runs of a
single chunk dissemination betwe¢rd00 peers with the same random propagation delay setting using t
simulator described in Section 5. Due to the propagationyl¢he average and worst-case single-chunk
delays arel27.3 and151.6 respectively, which are larger th&8.81 and97 for the zero propagation delay
case. Figure 8(a) plots the average streaming delay foraaotk in DSB. The system resource index in the
figure is defined as the ratio between the average peer uptvatiMdth and the streaming rate [5, 11]. The
single-chunk delays can be approached by the DSB algorfthaers have upload bandwidth slightly higher
than the streaming rate. Statistics of average and wosgt-@alay performance are reported in Table 5

Now we repeat the previous simulation with zero propagadielay and random peer upload bandwidth.
Now each chunk transmission time follows a truncated expoaedistribution, with the mean equals &o
time-steps and the lower and upper limitlisnd 24 respectively. Again, we use the single-chunk dissem-
ination simulation as the reference point. As predictedhgydnalysis in Section 5, with random chunk
transmission time, the average and worst-case singlekathelays (6.8 and91.3 respectively) are smaller
than those for the zero propagation delay c&8e3(and97). The streaming delay performance of DSB is
plotted in Figure 8(b). When the average peer upload baribweglals to the streaming rate, due to conflicts
between chunks, the streaming delay performance is muctewioan the corresponding single-chunk delay
performance. By increasing peer upload bandwidth b$%, the delay performance is reduced29%. If
we further increase the average peer upload bandwidti2totimes the streaming rate (corresponding to
the curve labeled with resource index=1.25 in Figure 8(h)g,delay performance is getting closer to the
single-chunk delay bound. Next, we introduce both randoaopggation delays and random peer upload
bandwidth by combining the random delay and bandwidth tiaria introduced in the previous two sets of
simulations. In Figure 8(c), we compare the delay perforceasf DSB when the average peer upload band-
width varies froml to 1.125 to 1.25. Again, the minimum single-chunk delay bounds can be ambre
by the DSB algorithm if peers have upload bandwidth slightbher than the streaming rate. The summary
statistics of all simulations are presented in Table 5.

More simulation results are presented in Appendix.

Through simulations, we demonstrated that, with a littleesira peer uploading bandwidth, our dy-
namic snow-ball streaming algorithm can approach the mimirdelay bounds in face of random variations
in peer uploading bandwidth and propagation delays onpgeonnections.

27

Table 5: Delay Performance of DSB under Random Propagataay® and Upload Bandwidth
Algorithms Random Delay Random Bandwidth Random Delay & Bandwidth
worst | average| variance|| worst | average| variance| worst | average| variance
SB Chunk Bound|| 151.6| 127.3 3.38 91.3 66.8 82.4 147.14| 110.59| 89.95

DSB,p=1 245.4| 213.9 74.5 161.7| 129.5 90.8 223.34| 179.8 152.0

DSB,p=1.125 || 185.5| 158.1 60.0 128.0| 98.7 108.5 183.8 | 143.3 161.9

DSB,p=1.25 169.8| 143.8 51.2 116.5| 88.47 93.2 1714 | 132.2 127.8

7 Conclusion and Future Work

In this paper, we analytically study the delay performanicB2P live video streaming systems. We derive
various delay bounds that can serve as delay performancaianks for proposed/deployed P2P streaming
systems. Through our analysis, we quantify the impact obtredwidth distribution among peers on their
delay performance. Insights brought forth by our study @anded to guide the design of new P2P streaming
systems with shorter start-up delays and playback lagsic Staow-ball streaming algorithms is proposed
to achieve the minimum delay bounds in static homogeneodshaterogeneous P2P video systems. A
dynamic snow-ball streaming algorithm is also developedgproach the minimum delay bounds with a
small peer upload bandwidth overhead. Through analysisemdlation, we show that the snow-ball type
of streaming algorithms are robust to network impairmesitgh as long propagation delays and random
bandwidth variations.

The next step is to develop distributed implementation efgtoposed snow-ball streaming algorithms
in mesh-based P2P video systems. We will test its performnamieal network environment and compare it
with the theoretical bounds predicted by our analysis h&nether direction for future work is to extend the
delay performance analysis to take into considerationrdétwtors, such as peer churns, geographic locality
of peers and correlations among individual chunk transomss etc. More broadly, we are interested in
extending our design and analysis of snow-ball type of &lgms to other forms of P2P systems with
stringent delay requirements, such as Content Deliverybiéts and P2P gaming systems [1].

References

[1] BHARAMBE, A., DOUCEUR, J. R., LORCH, J. R., MOSCIBRODA T., PANG, J., SESHAN, S.,AND
ZHUANG, X. Donnybrook: enabling large-scale, high-speed, pegreer games. IRroceedings of
ACM SIGCOMM(2008).

[2] Ca0, J.,AND RAMANAN, K. A poisson limit for buffer overflow probabilities. IRroceedings of
IEEE INFOCOM(2002).

[3] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON A., AND SINGH, A.
SplitStream: High-bandwidth multicast in cooperativeismwments. InProceedings of ACM SOSP
(2003).

[4] CHA, M., KwakK, H., RODRIGUEZ, P., AHN, Y.-Y., AND MOON, S. | Tube, You Tube, Everybody
Tubes: Analyzing the World’'s Largest User Generated Cdnitialeo System. InProceedings of
Internet Measurement Conferen@907).

[5] CHu, Y., RAO, S., ESHAN, S.,AND ZHANG, H. Enabling conferencing applications on the internet
using an overlay multicast architecture. Rroceedings of ACM SIGCOMI2001).

28

[6] CHu, Y.-H., G.RAO, S.,AND ZHANG, H. A case for end system multicast. Pnoceedings of ACM
SIGMETRICS2000).

[7] HEl, X., LIANG, C., LIANG, J., Liu, Y., AND Ross K. W. A Measurement Study of a Large-Scale
P2P IPTV SystemlEEE Transactions on Multimedi@ecember 2007).

[8] HEI, X., Liu, Y., AND Ross K. Inferring Network-Wide Quality in P2P Live Streaming &gms.
IEEE Journal on Selected Areas in Communications, the apissiue on advances in P2P streaming
(December 2007).

[9] JANNOTTI, J., GFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND O'TOOLE, JrR., J. W.
Overcast: Reliable multicasting with an overlay networkPtoceedings of Operating Systems Design
and Implementatioi2000), pp. 197-212.

[10] KosTic, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT, A. Bullet: High bandwidth data
dissemination using an overlay meshProceedings of ACM Symposium on Operating Systems Prin-
ciples(2003).

[11] KumMAR, R., LiU, Y., AND Ross K. Stochastic Fluid Theory for P2P Streaming Systems. In
Proceedings of IEEE INFOCONROQ7).

[12] Liu, S., ZHANG-SHEN, R., JANG, W., REXFORD, J.,AND CHIANG, M. Performance bounds for
peer-assisted live streaming. Pmoceedings of ACM SIGMETRIGZ3008).

[13] Liu, Y. Onthe Minimum Delay Peer-to-Peer Video Streaming: healtime can it be? IRroceedings
of ACM Multimedia(2007). htt p: / / eeweb. pol y. edu/ facul ty/ yongl i u/ docs/ nm07.
pdf .

[14] MAGHAREI, N., AND REJAIE, R. Prime: Peer-to-peer receiver-driven mesh-basednsinga In
Proceedings of IEEE INFOCONROQ7).

[15] MAGHAREI, N., REJAIE, R., AND GuUO, Y. Mesh or multiple-tree: A comparative study of live p2p
streaming approaches. Rroceedings of IEEE INFOCONROQO7).

[16] Pal, V., KUMAR, K., TAMILMANI , K., SAMBAMURTHY, V., AND MOHR, A. Chainsaw: Eliminating
trees from overlay multicast. lfhe Fourth International Workshop on Peer-to-Peer Sysi@085).

[17] PPLvE. PPLive Homepageht t p: / / www. ppl i ve. com
[18] PPSREAM. PPStream Homepagbt t p: / / www. ppstream com

[19] SMALL, T., LIANG, B., AND LI, B. Scaling laws and tradeoffs in peer-to-peer live multirae
streaming. InProceedings of the 14th annual ACM international confeeeon Multimedia(2006),
pp. 539-548.

[20] SopPCAST. SopCast Homepagét t p: / / www. sopcast . or g.

[21] VENKATARAMAN, J. C. V.,AND FRANCIS, P. Multi-tree unstructured peer-to-peer multicast. In
Proceedings of 5th International Workshop on Peer-to-Festem$2006).

[22] ZHANG, M., ZHAO, L., TANG, J. L. Y., AND YANG, S. A peer-to-peer network for streaming
multicast through the internet. Proceedings of ACM Multimedi2005).

[23] ZHANG, X., LIu, J., L, B., AND Yum, T.-S. P. DONet/CoolStreaming: A data-driven overlay
network for live media streaming. Froceedings of IEEE INFOCONROO5).

29

Appendix

A. DSB Performance under Constant Propagation Delay o8 Timesteps.

2501

150

Average Delivery Time

a
o

Figure 9: Delay Performance of DSB with Constant Propagdiielay of8 TimeSteps

Table 6: Delay Performance of DSB with Constant Propagddelay of8 TimeSteps

N
[=3
o

DA AN

-
o
o

——resource index 1

——avg. single-chunk delay

resource index 1.125
——resource index 1.25

Chunk ID

(a) Constant Upload Bandwidth

100 200 300 400 500 600 700 800 900 1000

250

200

15

o

100

Average Delivery Time

501

——avg. single-chunk delay

——resource index 1
resource index 1.125
——resource index 1.25

100 200 300 400 500 600 700 800 900 1000

(b) Random Upload Bandwidth

Chunk ID

Algorithms Constant Bandwidth Random Bandwidth
worst | average| variance|| worst | average| variance
SB Chunk Bound| 145.0(131.5 - 145.1| 114.7 90.7
DSB,p=1 251.8| 227.2 111.8 || 224.2| 186.3 189.1
DSB,p =1.125 || 179.9| 160.5 76.7 180.2| 146.0 151.2
DSB,p=1.25 163.7| 145.8 50.5 168.2| 135.2 148.3

30

B. DSB Performance under Constant Propagation Delay of6 Timesteps.

Average Delivery Time

3001

N
a
o

n
(=}
o

[N
13
o

[N
o
o

3]
o

o

R

——resource index 1

——avg. single—chunk delay

resource index 1.125
—resource index 1.25

Chunk ID

(a) Constant Upload Bandwidth

100 200 300 400 500 600 700 800 900 1000

3001

2501

150

Average Delivery Time

501

0

2001

1001

——avg. single—chunk delay

——resource index 1
resource index 1.125

—resource index 1.25

100 200 300 400 500 600 700 800 900 1000
Chunk ID

(b) Random Upload Bandwdith

Figure 10: Delay Performance of DSB with Constant Propagdiielay of16 TimeSteps

Table 7: Delay Performance of DSB with Constant Propagddelay of 16 TimeSteps
Constant Bandwidth
worst | average| variance

Algorithms

Random Bandwidth

worst | average| variance

SB Chunk Bound| 185.0| 167.7 - 187.7| 152.8 101.2
DSB,p=1 299.2| 270.8 192.2 || 283.0| 240.2 341.9
DSB,p =1.125 | 240.7| 215.5 212.0 || 227.4| 188.9 180.3
DSB,p =1.25 210.2| 187.8 102.3 | 210.3| 173.3 193.1

31

C. DSB Performance under Random Propagation Delays with Meaof 16 Timesteps.

3001

N
a
o

N
o
o

Average Delivery Time
(= =
o a
o o

3]
o

MWWMMWMWWWWW

AR g

i

——resource index 1

——avg. single—chunk delay

resource index 1.125
—resource index 1.25

Chunk ID

(a) Constant Upload Bandwidth

100 200 300 400 500 600 700 800 900 1000

3001

N
a
o

Average Delivery Time
=
a
o

6

I

|

v

——avg. single—chunk delay

——resource index 1
resource index 1.125

——resource index 1.25

100 200 300 400 500 600 700 800 900 1000

Chunk ID

(b) Random Upload Bandwdith

Figure 11: Delay Performance of DSB under Random Propag&tay with Mean ofl6 TimeSteps

Table 8: Delay Performance of DSB under Random Propagatesaylwith Mean ofl6 TimeSteps

Algorithms Constant Bandwidth Random Bandwidth
worst | average| variance|| worst | average| variance
SB Chunk Bound| 196.3(160.2 11.0 193.2| 1453 1111
DSB,p=1 334.5| 289.2 159.8 || 296.5| 240.1 290.8
DSB,p =1.125 | 246.5| 206.3 117.6 || 238.8| 186.5 195.3
DSB,p=1.25 2245| 186.0 90.1 221.2| 1704 192.7

32

