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ABSTRACT
We are witnessing the unprecedented popularity of User-Generated-
Content (UGC) on the Internet. While YouTube hosts pre-recorded
video clips, in near future, we expect to see the emergence ofUser-
Generated Live Video, for which any user can create its own tem-
porary live video channel from a webcam or a hand-held wireless
device. Hosting a large number of UG live channels on commercial
servers can be very expensive. Server-based solutions alsoinvolve
various economic, copyright and content control issues between
users and the companies hosting their content. In this paper, lever-
aging on the recent successes of P2P video streaming, we study the
strategies for end users to directly broadcast their own live channels
to a large number of audiences without resorting to any server sup-
port. The key challenge is that end users are normally bandwidth
constrained and can barely send out one complete video stream
to the rest of the world. Existing P2P streaming solutions can-
not maintain a high level of user Quality-of-Experience (QoE) with
such a highly constrained video source. We propose two strate-
gies to address this challenge. We first propose a proactive-push
based source-side scheduling algorithm to increase the scale of P2P
broadcasts that can be driven by end users. We then propose a
novel layered P2P streaming architecture that introduces peer play-
back delay differentiations to further boost end users’ capability of
driving large-scale video streaming. Through detailed packet-level
simulations and PlanetLab experiments, we show that the proposed
strategies enable a source with upload bandwidth slightly higher
than the video streaming rate to stream video to tens of thousands
of peers with premium quality of experience.

1. INTRODUCTION
User-Generated-Content (UGC) has become tremendously pop-

ular on the Internet in recently years. The global connectivity pro-
vided by the Internet makes it extremely easy for users to share
a wide variety of UGC, including blogs, photos and video clips.
YouTube [1], the popular UGC video streaming site, serves100
million distinct videos and attracts65, 000 uploads daily. While
Youtube offers pre-recorded video, in the upcoming years, we ex-
pect to see the emergence ofUser-Generated Live Video, for which
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any user can create its own temporary live video channel froma
webcam or a hand-held wireless device. The live channel could
be a professor’s lecture, a little-league baseball game, a wedding,
an artistic performance, or a political demonstration. Unlike pre-
recorded video, live video streaming has to meet the stringent video
playback deadlines. The dissemination of user-generated live video
to a large number of audience is a challenging problem, and isthe
focus of this paper.

One may naturally resort to a server-based solution and build a
live version of YouTube. Server farms and CDN networks can be
employed to host UG live channels and stream videos directlyto
viewers. However, the server and network infrastructure cost grows
proportionally to the number of viewers. YouTube is estimated to
pay over1 million dollars per month to content distribution net-
work (CDN) for distributing videos [2]. Similarly, it will be very
expensive to host a large number of UG live channels. Peer-to-Peer
(P2P) technology has recently been adopted to offload servers by
efficiently utilizing the upload bandwidth of end users. Dozens of
commercial P2P video streaming systems, such as PPLive [3] and
PPStream [4], have been deployed on the Internet to deliver live
and on-demand video services. Although existing P2P solutions
can offload server efficiently, a reasonably large server bandwidth
is still assumed to achieve good streaming performance, such as
low startup delay and chunk loss ratio, in large scale P2P streaming.
Current commercial P2P IPTV systems still invest considerably on
servers that track peers, host video and bootstrap P2P videoshar-
ing. Technically, it is possible for those companies to provide a
service to host UG live channels in the near future. However users
and companies will have to reach agreement on various economi-
cal, legal, copyright and content control issues to make it happen.

In this paper, we investigate a “pure" P2P streaming solution
that enables a user to broadcast his/her UG live video to a large
number of audiences without any server support.In our solution,
any user generating a live video can act as a video source and di-
rectly drive a P2P live broadcast to users interested in his/her video.
Unlike a commercial video streaming server, the user generating
the video only has an upload bandwidth slightly higher than the
encoded video rate and can barely send out one complete video
stream to the rest of the world. The challenge is how to drive a
small, medium or even large scale P2P live streaming using such a
constrained source. We propose two strategies to address this chal-
lenge. First we investigate the impact of source-side chunkschedul-
ing on the system streaming performance. We show that, by simply
switching the source-side chunk scheduling frompassiveto proac-
tivemode, a source with upload bandwidth slightly higher than the
streaming rate can drive a small or medium scale P2P live broad-
cast. In P2P streaming, a certain amount of video playback delay on
peers is necessary to facilitate video sharing. The playback delays



tolerated by peers in current commercial P2P IPTV systems are on
the order of tens of seconds [5]. Leveraging on peer’s playback
tolerance, we propose a Layered P2P Streaming (LPS) architecture
that introduces peer playback delay differentiations and constructs
virtual servers out of peers to drive large-scale streaming. In LPS,
a small fraction (e.g.,5%) of peers are assigned to anamplifier
layer, and the rest of peers are assigned to abaselayer. Peers at
the amplifier layer have shorter target playback delays thanpeers at
the base layer. The source only serves a small number of amplifier
layer peers, which will then forward downloaded video to peers at
the base layer. Effectively, there are multiple virtual “servers” from
the amplifier layer that collaboratively deliver a high level of video
Quality-of-Experience to a large number of peers at the baselayer.

The contribution of this paper is three-fold:

1. We study the impact of source-side chunk scheduling and
propose a proactive push-based algorithm to increase of the
scale of P2P broadcast that can be driven by a bandwidth-
constrained source.

2. We dissect various delay components in P2P streaming. By
differentiating peer playback delays, we propose a layered
P2P streaming architecture to further boost source’s capacity
in driving large-scale P2P streaming. We develop a robust
mesh-based implementation for the proposed LPS architec-
ture. A set of peer assignment and management algorithms
are also developed. To the best of our knowledge, our work
is the first one to explicitly differentiate peer playback delays
to improve the performance of P2P streaming.

3. To evaluate the performance the proposed solutions, we build
a detailed packet-level P2P simulator and conduct extensive
simulations driven by traces from real systems. Our sim-
ulation results demonstrate that the proposed strategies en-
able bandwidth-constrained source to stream video to a large
number of peers with excellent video quality and low startup
delay. We also develop a prototype and conduct experiments
on PlanetLab to examine the feasibility and performance of
LPS in real Internet environment.

The remainder of this paper is organized as follows. We briefly
discuss the related work in Section 2. The strategy of source-side
chunk scheduling is discussed in Section 3. The LPS architecture
and detailed system implementation is presented in Section4. The
simulation setting and numerical results are presented in Section 5.
The paper is concluded in Section 6.

2. RELATED WORK
P2P technology has made great progress since its debut, and been

widely applied to various content distribution applications, such as
file sharing and video streaming.Traditionally, P2P live streaming
systems can be broadly classified into two categories, namely tree-
based and mesh-based. In tree-based approach (such as ESM [6]),
peers form multiple multicast trees in application level and relay
traffic as interior nodes. The multiple trees are optimized further in
terms of peer bandwidth, peer load and latency in SplitStream [7]
and Chunkyspread [8]. Compared with tree-based approach, the
mesh-based ones have been widely adopted by current commer-
cial systems due to their lightweight management requirement and
robustness to peer churn. Peers form a overlay network and dy-
namically exchange data with their neighbors. Many mesh-based
P2P streaming systems have been proposed, such as Chainsaw [9],
DONet/CoolStreaming [10] and PRIME [11]. Hybrid streaming
solutions combine tree-push and mesh-pull schemes. The work

in [12] tries to improve video chunk scheduling efficiency with
sub-stream based push method. Peers establish the parent-child
relationships and sub-streams are pushed from parents to their chil-
dren. mTreebone [13] constructs a single tree with stable nodes
rooted at the server and delivers video via a combination of push-
ing through the tree and pulling through the underlying auxiliary
mesh. To assess the stability of nodes, it needs to know thelife-
time of the channel beforehand ??. Frequent tree adaptation is
also needed to optimize the tree performance. Besides the overlay
topology construction and scheduling, other aspects of P2Pstream-
ing have also been investigated in a rich literature [14, 15,16, 17,
18].

However, the previous live streaming systems generally endeavor
to optimize the performance under the assumption that the server
has reasonably large bandwidth to drive the system. From theper-
spective of fluid theory, the authors in [19] have analyzed the sup-
portable streaming rate based on server capacity and peer upload
capabilities. The online server capacity provisioning algorithm pro-
posed inRation [20], dynamically adjusts the server bandwidth
distribution among concurrent channels according to forecasted de-
mands. The strategies with very constrained server bandwidth have
not been explored so far. To support UG live channels, our work
focuses on the scheduling and system architecture design toen-
able source with constrained bandwidth to stream video to a large
number of peers. The proposed LPS architecture is the first one to
deliberately differentiate the playback delays of peers inthe same
channel. We show that peer playback delay differentiation can “am-
plify" source upload capacity and lead to largely improved QoE in
large-scale video streaming.

3. IMPACT OF SOURCE-SIDE CHUNK
SCHEDULING

We first investigate the impact of source-side chunk scheduling
on video streaming quality in the whole system. In traditional
receiver-driven pull-based systems, a specialized serverwith rea-
sonably large bandwidth receives new chunks from video source
and operates as the delivery source of the P2P streaming overlay.
The server broadcasts buffer-map periodically to directlyconnected
peers. After the server receives the pull requests from peers, it
replies with the requested chunks. The server acts passively in the
content distribution process. Generally this works fine when the
server has reasonably large upload bandwidth. New chunks can
be sent out by the server in time and eventually be received byall
peers. However, a source with bandwidth slightly higher than the
streaming rate can be easily overwhelmed by peer requests for old
chunks and cannot send the fresh chunks out. Undoubtedly, this
will reduce the chunk diversity in the network and peer bandwidth
utilization, and finally slow down the whole distribution process.

For a source with constrained bandwidth, passively waitingfor
pull requests is no longer sufficient to send out new chunks in
time. It should be more proactive and push out new chunks to
peers as soon as possible. A proactive source pushes the newly
generated chunks to neighbors without going through the request-
reply process. It is unnecessary for it to broadcast buffer-maps as
well. This broadcast-once-generate procedure not only minimizes
the time that a new chunk is queued on the source side, but also
avoids blocking of new chunk transmissions by pull requestsfor
older chunks. Hence it increases the content diversity in the sys-
tem as well. In P2P streaming system, peers come and go fre-
quently. Suppose the sources’s upload bandwidth equals to the
streaming rate, i.e., the source is only capable of sending one copy
per chunk to its neighbor setN (s). Once one peer receives one



fresh chunk from the source and leaves before it has a chance to
pass it to other peers, this chunk loses the opportunity to bedeliv-
ered to other peers in the system. We call this phenomenondelivery
loss. To avoid delivery loss, the source needs to push complemen-
tary copies to peers. Therefore for a proactive source, its upload
bandwidth should be at least slightly higher than the streaming rate
for complementary push.

Algorithm 1: Chunk Scheduling of Proactive Source

input : s(W,N )
c← GenNewChunk()1

W ← UpdateSlideWin(W, c)2

PushToNbr(c,N)3

while bwavail 6= 0 do4

i← FindRarestChunk(W,N)5

PushToNbr(i, N)6

end7

Algorithm 1 shows the corresponding push-based schedulingal-
gorithm for the proactive source. Once the source generatesa new
chunk, it pushes to one peer from the neighbor setN according
some policy, such as preferring the peer with large bandwidth in
heterogeneous network. The sliding windowW of the source will
be updated to incorporate the new chunk, and also wipe off the
oldest chunk. Meanwhile, source monitors the chunk availabil-
ity on its direct neighbors by examining the received buffer-map
information. Whenever the source has spare bandwidth, it proac-
tively pushes out complementary copies of the rarest chunksto its
neighbors. Generally, the newly generated chunkc would be the
rarest one in case no delivery loss happens. This complementary
source push mechanism can minimize the possibility of delivery
loss without blocking deliveries of fresh chunks. For source with
reasonably large bandwidth, the delivery loss rarely happens and
the corresponding algorithm can be simplified further. The source
just tries to push as many copies as possible in case a new chunk is
generated. Otherwise it needs more protocol messages to prevent
peers from receiving duplicate copies of old but rarest chunks since
source pushes data without coordination with peers. Eventually, a
chunk can be distributed to all peers successfully if no delivery loss
happens to it.

To compare the performance of passive source and proactive
source scheduling, we conducted detailed packet-level simulations.
As will be shown in Section 5, the proactive push-based scheme
greatly improves the system performance and enables a bandwidth
constrained source to drive medium size network with satisfactory
performance. Even with only 10 second buffer window size, the
average delivery ratio of all2, 000 peers can be kept above97%
by the source with bandwidth slightly higher than the streaming
rate. However, as scale of the system continues to grow, the system
performance with proactive source drops inevitably. The average
delivery ratio drops to around90% with the same setting when the
population is more than10, 000. To support a larger number of
peers with premium quality of experience, we propose the layered
P2P streaming architecture and discuss it in the following section.

4. LAYERED P2P STREAMING ARCHITEC-
TURE

In this section, we introduce the layered streaming architecture
for bandwidth constrained source to drive large-scale P2P video
streaming. We further present a mesh-based implementationfor
this architecture.

4.1 Taxonomy of P2P Streaming Delay
First we dissect different delay components of P2P streaming

systems. Fig. 1 presents the instantaneous buffer status ofa peer
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Figure 1: Delay Dissection in P2P Streaming System

and a source. The newest chunk with the highest sequence number
is distributed into the P2P streaming overlay network by thesource.
The lifetimeof a chunk is defined as how long it has existed in the
system since it was generated at the source. At the peer side,the
oldest chunk with the smallest sequence number is played andthen
disposed. Three different delay definitions in P2P streaming are
listed as follows:

• Playback delay(dpb) represents the lag of a peer’s viewing
progress from the source. If at timet, a peer is playing a
video chunk generated by the source at timet′ < t, the play-
back delay ist− t′.

• Start-up delay(dst) represents how fast the video playback
starts on user side after the application is launched. If a user
launches the streaming application at timet, the playback
starts at timēt > t, then the start-up delay is̄t− t. Normally,
the start of playback is triggered when the downloaded con-
tent in video streaming buffer reaches certain threshold dur-
ing the start-up phase.

• Chunk delay(dcp) measures how fast a chunk can be dis-
tributed to a peer after it is delivered to the network. If a
chunk is delivered to the network at timet and a peer re-
ceives the chunk at timêt > t, the corresponding chunk
delay to this peer iŝt− t.

Playback delay indicates how closely the user viewing process is
synchronized with the source progress. It is important for the broad-
casting of live events, such as real-time news, sports events. Gen-
erally in current P2P IPTV system, the user playback delay toler-
ance may be more than ten seconds. Instead, users are more con-
cerned with the following two performance metrics that influence
their video experiences directly: 1) start-up delay. Everyone ex-
pects to get fast response from the application instead of waiting
for a long time buffering. 2) playback quality. All chunks should
be received before their corresponding playback deadlinesto en-
sure smooth and continuous playback. Our layered P2P streaming
architecture introduces small peer playback delay differentiations
in order to shorten video start-up delays and chunk delays.

4.2 Architecture Overview
In LPS, peers are assigned to two different layers: theamplifier

layer and thebase layer. The majority of the peers are assigned to
the base layer and the amplifier layer only consists of a very small
fraction of strong peers. Peers at the same layer have the same tar-
get playback delay. The target playback delayda

pb of the amplifier
layer is shorter than that of the base layerdb

pb. The delay difference
δ = db

pb − da
pb > 0 is kept small. In LPS, peers within the same

layer form a streaming overlay and exchange data chunks. The



source only needs to drive a small scale P2P video streaming at the
amplifier layer. Peers at the amplifier layer download and playback
the new data content first. Then they become the potential seeds,
named assuppliers, to serve the peers at the base layer. As a result,
the large scale P2P streaming at the base layer is driven by multiple
seeds in the “server cluster” at the amplifier layer. Effectively, peers
at the amplifier layer amplify the bandwidth constrained source’s
capability in driving large-scale P2P streaming.

In this way, the peers at both layers experience largely shortened
start-up delays and chunk delays. At the amplifier layer, thesource
now only serves a much smaller P2P streaming overlay network
compared with the single flat large overlay network with the tra-
ditional approach. At the base layer, P2P streaming is driven by
multiple seeds from the upper layer “server cluster”. This design
brings multiple advantages. Firstly, it eliminates the source band-
width bottleneck by leveraging multiple seeds from upper layer
whose aggregate capacity is far more than that of the bandwidth
constrained source. Secondly, peers can choose a source nearby to
download data from. It will reduce the number of hops that chunks
have to traverse. Furthermore, although the playback progresses of
the base layer peers are delayed byδ, with much improved stream-
ing efficiency, we will show that a relatively shortδ can achieve
the most gain of LPS. This makes LPS an appealing solution for
broadcasting of live events with moderate real-time requirement.
Fig. 2 shows an simple example of the architecture. A bandwidth
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Figure 2: LPS Architecture

constrained source distributes nearly one copy of the videostream
to the peers at amplifier layer. Peersna

i at the amplifier layer have
abundant bandwidth and distribute one copy of data receivedto
peersnb

i at the base layer. Thenb
i peers then broadcast chunks to

other peers at the base layer. In this case, the peers at the base layer
receive three copies of data at streaming rate3r, and the source
bandwidth amplified ratio reachesαamp = 3.

Multiple peers at the amplifier layer act as local video proxyfor
peers at the base layer. This largely reduces the chunk delays and
improves distribution efficiency at the base layer. The collection
of edges used for the delivery of a single chunk from the source
to all participating peers form a source-rooteddelivery tree[21] in
either mesh-based or tree-based approaches. Suppose the source
and all peers have homogeneous bandwidth ofu = 2r, each node
can have two children in the chunk delivery tree. Next we analyze
the impact of amplified source bandwidth on chunk delay in single
chunk delivery tree. With single source, there are2i peers at the
ith level andnx =

Px

i=1
2i peers for the tree withx levels in

total. Given totalN peers, we havenx = N and the distance
from leaf peers to the root isxmax = log

2
(N/2 + 1) hops. When

N = 2000, xmax ≈ 10. The majority of peers are located at the
bottom level of the tree. We haven6/n10 = 6.2%, i.e., only6.2%
peers receive a chunk after6 hop transmissions from the root. In

LPS, each supplier at the amplifier layer can be a root for a delivery
tree at the base layer. If there areα suppliers, (corresponding to the
source bandwidth amplified ratio ofα), there are2iα peers at the
i-th level of all delivery trees. Correspondingly the numberof peers
up tox levels isnlps

x =
Px

i=1
2iα. The maximum level to cover

N peers isxlps
max = log

2
(N/2α + 1) ≈ xmax − log

2
α. We have

xlps
max ≈ 4 whenα = 64 (In later simulation,α reaches70 when

N = 2000). All peers can receive the data in less than4 hops in
LPS, less than half of the previous one. In a nutshell, the amplified
source bandwidth could tremendously increase the fan-out of data
delivery trees and significantly reduce chunk delays.

4.3 Peer Assignment among Layers
In LPS, peers need to be properly assigned to the two layers to

balance the bandwidth availability. For the amplifier layer, peers
should have sufficient upload bandwidth to exchange video data
among themselves. In addition, they should have extra bandwidth
to upload video to peers at the base layer. Suppose there areM
types of peers with different upload capacities{ui, 1 ≤ i ≤ M}.
Let pi be the fraction typei peers, the average bandwidth isū =
PM

i=1
piui. For totalN peers, the target sizes of the amplifier layer

and base layer areNa andNb respectively, withNb = βNa, where
β denotes the normalized load of the amplifier layer andβ >>
1. Given a streaming rater and source upload bandwidthus, the
resource indexfor the entire system is defined as the ratio of the
aggregate resource over aggregate demand.

ρ =
us + Nū

Nr
≈ ū/r (1)

To let all peers receive the full video,ρ should be larger than1. Let
S ⊂ M be the subset of types of peers that can be the potential
suppliers for the base layer peers andui > r, i ∈ S . For aith type
supplier, it would contributeλi copies of streaming rater to the
base layer. And we definepa

i as the fraction of typei peers at the
amplifier layer. To achieve a source bandwidth amplify ratiolarger
thanα0, we should have

αamp =
X

i∈S

Napa
i λir/us > α0. (2)

To assure peers at the amplifier layer also achieve good perfor-
mance, we assume the network size of amplifier layer should be
less thanN0

a and the resource index larger thanρ0

a. Correspond-
ingly we obtain

Na =
1

β + 1
N < N0

a (3)

ρa =
us +

PM

i=1
Napa

i ui −
P

i∈S Napa
i λir

Nar
> ρ0

a (4)

Peers should be assigned to amplifier layer to satisfy equations (2),
(3) and (4).

To simplify the analysis, we choose only somekth type of peers
to be the potential suppliers for the base layer peers, anduk >
r, k ∈ S . Every supplier would contributeλ copies of streaming
rater to the base layer. We adjust thekth type peer distribution at
the amplifier layer topa

k, and then the resource indexes of the two
layers can be listed as follows.

ρa =
us + Napa

k(uk − λr) + Na(1− pa
k)ū′

Nar
(5)

Equation (5) shows the resource index of the amplifier layer,where
ū′ denotes the average bandwidth of peers at amplifier layer exclud-
ing thekth type, ū′ =

P

i6=k pa
i ui/

P

i6=k pa
i . Correspondingly,



we have the resource index of the base layer as follows:

ρb =
Nū−Napa

k(uk − λr)−Na(1− pa
k)ū′

Nbr
(6)

Next we discuss the impact of the distribution of the supplier on
the resource indexes of two layers. Equation (5)(6) show that the
resource indexes of two layers change linearly withpa

k, the fraction
of k-th type peers at the amplifier layer. There are two extreme
cases.

Case 1: There is no differentiation among peer distribution of
two layers, then we havepa

i = pi for ith type peer. In this case,
peers could be randomly assigned to these two layers. The resource
indexes of the two layers are

ρ1

a =
us + Naū−Napkλr

Nar
≈ ρ− pkλ

ρ1

b =
Nbū + Napkλr

Nbr
= ρ + pkλ/β

Case 2: The amplifier layer is formed only by the supplier type
of peers, then we havepa

k = 1. And Npa
k > Na assures that there

are enough number of supplier type of peer for the amplifier layer.
Then we have the resource indexes

ρ2

a =
us + Nauk −Naλr

Nar
≈ uk/r − λ

ρ2

b =
Nū−Nauk + Naλr

Nbr
=

β + 1

β
ρ−

uk/r − λ

β

Whenβ >> 1, the resource index of the base layer at both cases
ρ1

b andρ2

b can be approximated byρ. We only need to take care of
the resource index of the amplifier layer. Based on Equation (5), we
know that if the following condition holds, then theρa will increase
as thepa

k increases.

uk > λr + ū′ (7)

The range of resource index of the amplifier layer is[ρ−pkλ, uk/r−
λ] as we increase the fraction of thekth type of peers. The above
analysis gives guidelines on setting the appropriate valueof param-
eters. Supposeβ = 20 andus = r = 400kbps, we pick the1Mbps
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Figure 3: Resource Indexes of Two Layers

bandwidth peers as suppliers with original distributionpk = 28%
andλ = 1. The average bandwidth of̄u and ū′ are475kbps and
270kbps respectively (same as later simulation setting). Fig.3
shows the resource indexes of these two layers. The resourcein-
dex of the base layer almost remains unchanged, while that ofthe
amplifier layer can be adjusted as thepa

k changes.
As we know from Equation (2), the source bandwidth amplified

ratio will be increased if we increase the size of the amplifier layer
Na. However, since the source has constrained bandwidth and can
only drive P2P streaming with limited scale at the amplifier layer,
Na should be kept small. In addition, one should always try to
assign peers with larger bandwidth to the amplifier layer to increase

the number of copies contributed to the base layer.

4.4 Implementation with Mesh-Pull based Ap-
proach

Various scheduling designs can be applied at each layer of LPS.
We use mesh-pull based design as an example to discuss the imple-
mentation of LPS.

4.4.1 Lightweight Tracker-based Peer Assignment
Like regular mesh-pull based system, there is a centralizedtracker

that is responsible for the architecture construction and mainte-
nance. When a new peer joins the system, it needs to register at
the tracker and retrieve the peer list. Tracker determines the layer
to assign the peer and returns the list containing other peers at that
layer. We first introduce two peer assignment methods.

1) Allocation method with fixed amplifier layer size. For most
channels with moderate size, keeping track of the small amplifier
layer would not pose much overhead on the tracker. One approach
is to fix the size and the fractions of different types of peersat the
amplifier layer based on the calculation in the previous section.

Algorithm 2: Peer Assignment with Fixed Amplifier Layer
Size

input : New peern
output: Supplier SetSsup

i← GetPeerType(n)1

Nmax = Napa
i2

if GetPeerNumofType(i)< Nmax then3

AssignToAPLayer(n)4

mark← true5

else6

AssignToBaseLayer(n)7

mark← false8

end9

if i equalsk andmark is truethen10

Ssup = Ssup ∪ {n}11

end12

Algorithm 2 presents the corresponding peer assignment algorithm
for the tracker. Tracker first sets the size of amplifier layerNa and
the fractions of different types of peerspa

i . Then it determines the
target number of each type of peers at the amplifier layer,Napa

i for
peers with typei. When a new peer joins, tracker checks whether
there is enough number of peers with the same type at the amplifier
layer. if the number does no reach the target, the new peer will
be assigned to the amplifier layer. If the new peer assigned tothe
amplifier layer is of the supplier type, the tracker puts it into the
supplier set for later peer request from the base layer.

2) Allocation method with adaptive amplifier layer size. When
the channel population changes dramatically, one should adaptively
change the size of the amplifier layer. The fractions of each type
peers at the two layers can be maintained close to target ratios de-
rived in the previous analysis. For peers of typei, we can determine
the percentage assigned to two layers repectively. The percentage
of theith type peers assigned to the amplifier layer should be

qa
i =

Napa
i

(Na + Nb)pi

=
pa

i /pi

1 + β
. (8)

Correspondingly the percentage of theith type of peers assigned to
the base layer is1 − qa

i . Upon a new arrival of aith type peer,
the tracker assigns it to the amplifier layer with probability qa

i , and
the base layer otherwise. Then the amplifier layer can adapt its



size and source bandwidth amplified ratio automatically with the
current channel population. Furthermore, the tracker doesnot need
to keep track of the amplifier layer status.

In practice, these two methods can be combined for peer assign-
ment. At the system initialization stage, or when the amplifier layer
size is smaller than a certain threshold, the tracker employs the allo-
cation method with fixed amplifier layer size to stabilize theband-
width contribution from the amplifier layer. Otherwise the latter
one could be applied with more flexibility and scalability.

A traditional tracker needs to record the information of allpeers
and respond to peer list request at any time. In addition to the
tracker, peers can also retrieve other peer information from their
neighbors [5]. A lightweight tracker only needs to determine the
layer to be assigned and return initial peer list when a peer just
joins the system. Therefore the source can also play the roleof
tracker. Meanwhile it can only record part of the base layer peer
information to save memory cost.

4.4.2 Adaptive Management against Peer Dynamic
Peers come and go frequently in P2P streaming systems. P2P

streaming systems have to be designed to be robust against peer
churn. With the robustness of the mesh-based streaming, theLPS
architecture can be maintained well in face of peer churn.

1) Cross-Layer Connection Establishment.Suppliers at the am-
plifier layer push video streaming to receivers at the base layer
through cross-layer connections. A peer assigned to the amplifier
layer maybe chosen as a supplier by the previous assignment al-
gorithm. The base layer receivers can be determined according
to certain policy or property, for example, peer bandwidth in this
implementation. Placing large bandwidth peers near the root can
increase the fan-out degree of the date delivery tree and shorten the
chunk delays. If a peer assigned to the base layer meets the crite-
ria, the tracker adds one supplier IP address to its peer list. Then
the peer can establish a direct connection with the supplierat the
upper layer to download a whole video stream. If a supplier has
reached its maximum contribution level (λ copies), it then requests
the tracker to remove it from the supplier set. If a supplier,that was
fully loaded and removed from the supplier set before, has available
bandwidth to contribute again due to the departure of its receiver at
the base layer, it can report to the tracker and to be re-inserted into
the supplier set.

2) Node Promotion upon System Imbalance.The suppliers at the
amplifier layer would be generally fully-utilized, in that the size
of base layer is far larger than that of the amplifier layer. With
the continuous arrivals of new peer, one available supplierwould
be quickly allocated to one of the newly joined peers at the base
layer. In addition, the vacancy of the amplifier layer causedby peer
departure can be easily filled by the new peers assigned provided
that peers continuously come and go. In the case of batch peer
departures, a large number of peers leave the system almost at the
same time, thereby possibly not enough number of peers remain
in the amplifier layer and the system may lose resource balance.
To handle such unusual cases, somepromotionprocedure can be
conducted as follows.

The peers at the base layer are allowed to be promoted to the
amplifier layer, hence the system resource can be redistributed.
However, the playback delay of peers have been elaborately dif-
ferentiated and peers at different layers are supposed to have dif-
ferent playback progresses. To resolve the conflict of synchronous
download among peers with asynchronous playback progress,we
resort to a VOD-like buffer implementation.Active buffer window
denotes the portion of buffer in use for smoothing peer playback
progress. Figure 4 presents a snapshot of peer buffers. Peers at the
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Figure 4: Buffer Snapshot of Different Peers

amplifier layerna have smaller playback delay and download fresh
chunks first. In this setting, the active buffer windowWab = W/2,
whereW denotes the homogeneous buffer size of all peers. The
base layer peersnb would be only interested in chunks within their
own active buffer window, leaving the latter half of buffer empty
(In practical implementation, the buffer size of base layerpeers can
be set only to beW/2 to prevent memory waste). As for the ampli-
fier layer peers, the content after playback would be kept available
in their buffers for an additionalW−Wab seconds instead of being
removed immediately. Those chunks will be sent to the promoted
nodes to speedup their buffering progress during the promotion
process. After nodesnp are promoted, they maintain their play-
back progress and delay unchanged, while the downloading would
be synchronized with other peers at the amplifier layer gradually.
And the active buffer windows of newly promoted peers would also
move forward since other peers at the amplifier layer can serve as
seeds for the content of previous active buffer window. In this way,
the promoted peers from base layer and the original peers at ampli-
fier layer can coexist with synchronized download progress while
with asynchronous playback progress.

Once tracker detects such system imbalance, it can select resid-
ual suppliers randomly and issue promotion protocol messages to
them. The selected suppliers ask the corresponding receivers to
broadcast a promotion message through limit-hop flooding atthe
base layer. The base layer peers in the flooding range which meet
the criteria, such as bandwidth, then request new neighbor list from
tracker, tear down the old connections and join the amplifierlayer
as a new arrival peer. The tracker can control the number of the
promotions by setting the frequency of promotion messages.

4.4.3 Collaborative Push/Pull Data Delivery
Within each layer, peers broadcast the data availability informa-

tion via buffer-maps and pull data from each other. The source
would push content proactively in the way introduced in Section 3.
Suppliers also push content to their receivers at the base layer. Gen-
erally, we can set the playback delay gap between the two layers to
be the active buffer window size of peers at the amplifier layer.
Then a supplier can directly push the content just played to its re-
ceivers. As illustrated in Fig. 4, the supplier pushes playbacked
content before they fall outside of the active buffer windowregion.
The receivers at the base layer can receive the whole contentif
the corresponding supplier has no data loss. Therefore suppliers
act as seeds for the base layer. The receivers at the base layer push
content directly to their neighbors to accelerate the distribution pro-
cess. They can also complementarily pull from their neighbors in



case certain chunks are not received from their suppliers.

4.4.4 Practical Implementation Considerations
In practical implementation, the information of peer type can be

piggybacked in the initial register message when the peer join the
system. Generally the access type of peer implies the uploadcapa-
bility the peer has. In light of that peer available bandwidth may be
dynamic sharing with other network applications, tracker can mon-
itor the playback performance and adaptively increase the resource
distribution of the amplifier layer accordingly. The basic LPS ar-
chitecture has two layers. It is adequate enough to handle a rea-
sonably large-scale video streaming. To further increase the scale,
two-layer LPS architecture can be extended to multiple layers. The
base layer can easily allocate certain number of peers to drive an-
other layer with even larger playback delay. Powered by the same
mechanism, multiple layers can be linked together. Streaming at
each layer is driven by multiple proxies from the layer immediately
above to achieve premium streaming performance.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed

strategies using extensive simulations and experiments. With packet-
level P2P streaming simulations driven by traces from real systems
and experiments on the PlanetLab , we demonstrate that the pro-
posed strategies can greatly enhance the capability of bandwidth
constrained source in driving large-scale streaming.

5.1 Simulation Setting
We developed a packet-level event-driven simulator in C++ to

examine the performance. Our simulator adopts the architecture
of the simulator engine of [12], which simulates the end-to-end la-
tency between peers using real-world latency measurement results.
We employed two 4-CPU servers to accelerate the simulations.

We follow the common consumption that peer download band-
width is large enough and the bottlenecks happen only at uplinks in
the edge access networks. There are three DSL types of peers with
bandwidth1Mbps, 384kbps and128kbps. And the percentages
of the three types of peers are0.28, 0.40 and 0.32 respectively.
The video streaming rate is400kbps and the size of each chunk is
1, 250 Bytes. The source bandwidth is set to be420kbps as de-
fault, slightly higher than the streaming rate in order to handle the
possible signaling tasks. The resource index of the whole system
is ρ = 1.2. By default peers try to maintain the neighbor size to
be15. In LPS, the size scale ratio of the amplifier and base layer
is set to beβ = 19. We pick the peers with1Mbps bandwidth to
be the supplier at the amplifier layer, which contributes onecopy
of the streaming rate to the base layer, i.e.,λ = 1. Except for
the trace-driven simulation, the simulation duration is set to be300
seconds and data from the first60 seconds, when the system might
be unstable, are not included in the statistics.

5.2 Performance Metrics
The following performance metrics are investigated to evaluate

the system in the simulations.

1. Delivery Ratio: In live streaming, chunks arriving after their
playback deadlines are useless and dropped. Thedelivery
ratio is defined as the number of chunks that arrive in time
over the total number of chunks that the peer should receive.
With homogeneous chunk size, this directly reflects the user
playback quality, also the efficiency of the system distribu-
tion process.

2. Bandwidth Utilization: Thebandwidth utilizationshows how
efficiently the system scheduling utilizes the peer resource.
Higher bandwidth utilization means more resource would be
invested to speed up the distribution process. It is calculated
as the ratio between peers’ upload rate and peers’ upload ca-
pacity.

3. Chunk Delay: As discussed in Section 4.1, thechunk delays
measure how fast the distribution process delivers chunks.It
is computed as the difference between the chunk receive time
and the time when it is firstly delivered to the network.

4. Chunk Propagation Hop-count: This measures the path length
chunks traverse in the network to reach peers. A peer in-
creases the hop count field of a chunk before it forwards the
chunk to its neighbors.

To facilitate the comparison, the chunk delay and hop count for
the base layer in LPS would be calculated based on what chunks
experience only within the base layer.

5.3 Numerical Results

5.3.1 Proactive vs. Passive Source
First, we compare the system performance of the proactive source

(PR) and the passive source (PA) schemes under various peer buffer
window sizes and overlay network scales. We increase the net-
work scale from50 to 900 and1800, and change the peer buffer
window from 10 seconds to20 seconds. Fig. 5(a) presents the
delivery ratios of the two schemes under different settings. We
can observe that the delivery ratio drops as the network scale in-
creases. In the passive mode, the source is overwhelmed by peer
requests and has difficulty in delivering content in time. With small
source bandwidth420kbps, only slightly higher than the streaming
rate400kbps, the average delivery ratio of all peers is always kept
below 70% with 10 second buffer window. Increasing the buffer
window to 20 seconds improves the delivery ratio only slightly.
On the contrary, a PR source pushes fresh content without delay.
This guaranteed in-time broadcast of fresh content increases the
chunk diversity which enhances the distribution efficiencyin re-
turn. When the peer buffer window is20 second, all chunks can be
received before their playback deadline. Even with only10 second
buffer window, the average delivery ratio is also above97%. Fig.
5(b) shows the bandwidth utilization of various peer types when
the network scale is1800. PR achieves high bandwidth utilization
of more than90% at both buffer window settings. In contrast, the
peer bandwidth utilization with passive source is low and longer
buffering time helps improve the utilization.

To examine how much source bandwidth is adequate to achieve
universal streaming, we study the system performance with vari-
ous source bandwidth settings. The total number of peer is2, 000,
a moderate network size, in the simulations. Fig. 5(c) showsthe av-
erage delivery ratio is improved as the source bandwidth increases.
For the PA scheme, with longer chunk download deadline allowed
by large buffer window size (20s), the average delivery ratio can ap-
proach100% when the source bandwidth is larger than1.2Mbps.
However, the inefficient scheduling of PA still confines the en-
hancements to some extent. With10 second buffer window, the
average delivery ratio can only reach93% even when the source
bandwidth is increased to2Mbps. We can observe the PR strat-
egy can greatly enhance the performance with very limited band-
width. The average delivery ratio has already reached97% when
the source bandwidth is420kbps and the buffer window size is10
second. All peers can approach universal streaming under other
settings.
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Figure 5: Performance Comparison between Proactive Source and Passive Source

5.3.2 Performance of the LPS Architecture
To understand the effectiveness of LPS, we vary the source band-

width amplified ratio and observe the corresponding performance.
In this set of simulations, there are2, 000 peers in total. With
β = 19, there are100 peers at amplifier layer and1, 900 peers
at base layer. We set the peers with1Mbps bandwidth to be the
suppliers and the corresponding distribution at the amplifier layer
is pa

k = 0.8. In terms of the distribution, the resource index of the
amplifier layerρa ≈ 1.3 when all the suppliers contribute one copy
of the streaming to the base layer. Here we define the control pa-
rameter,cross layer factorφ. We will add1/φ potential suppliers
to the supplier set at amplifier layer.1/φ percentage of the sup-
pliers at amplifier layer would contribute one copy of streaming to
the base layer. Givenφ = 1, all suppliers contribute, while half of
suppliers would contribute withφ = 2, so one and so forth.

Fig. 6(a) shows the actual average number of streaming copies
the amplifier layer contributes to the base layer with different φ.
Naturally it decreases asφ increases. Compared with the theo-
retical calculationαamp = Napa

k/φ, the actual amplified ratio is
slightly less, due to the supplier bandwidth expenditure competi-
tion among the inner-layer data pull request and inter-layer data
push. Nevertheless the amplified ratio reaches70 when all suppli-
ers contribute to the base layer (φ = 1), i.e., the source bandwidth
has been amplified70 times. An aggregate proxy source bandwidth
of 28Mbps will be used to the base layer with95% of peers.

The multiple suppliers at the amplifier layer can greatly shorten
the delivery path length and decrease the chunk delays for peers
at the base layer. Fig. 6(b) and 6(c) show the average chunk de-
lay and hop count with differentφ setting. At the amplifier layer,
the chunk delay and hop-count are kept small, benefiting fromthe
small network scale even though the source bandwidth is limited.
The bandwidth amplified ratioαamp decreases asφ increases. For
the base layer, the chunk hop count increases from around2.7 to
5.2 and the delay increases from2.5 to 5.5 seconds correspond-
ingly. For the convenience of comparison, we also plot the chunk
delay and hop count of the PR scheme with the same network scale
and source setting. It is only comparable atφ = 30 when the ag-
gregate supplier bandwidth contributed to the base layer isthe least,
and almost equals to the original source bandwidth.

Next we investigate the capability of LPS to drive large-scale
streaming. We run simulations for LPS with different network
sizes. In all simulations, we use the same setting of the LPS scheme
andβ = 19. The amplifier layer size adapts correspondingly and
the peers at the amplifier layer can always achieve nearly universal
streaming. Fig. 7(a) shows the average delivery ratio of thediffer-
ent strategies with different buffer window sizes. With10 second

buffer window, the LPS can promisingly achieve above99% de-
livery ratio even when the total peer number reaches12, 000. Fur-
thermore, the LPS is able to achieve satisfactory performance with
smaller buffer window size of6 seconds. The average delivery ra-
tio always remains above96% under the setting. However, as the
network scale increases, the delivery ratio with PR scheme drops
inevitably below93% with 10 second buffer window. The perfor-
mance deteriorates with smaller buffer window size (8s). The deliv-
ery ratio drops even below84% eventually. It turns out that the PR
scheme cannot sustain the system when the system scale is large,
although it outperforms the PA scheme greatly. Fig. 7(b) illustrates
the evolution of chunk propagation hop count as the network scale
increases. The size of amplifier layer increases as the totalnumber
of peers since the ratioβ is fixed. Therefore the chunk propagation
hop counts of the LPS layers and PR network both increase. On the
other hand, the source bandwidth amplify ratio is also increased.
The propagation hop count of the base layer increases slightly, al-
ways below3. In other words, chunks commonly need fewer than
three hops to reach every peer from the suppliers at base layer. This
shows LPS not only is able to support large-scale network butalso
adapts well to the network scale. It is noticeable that in this set of
simulations, the buffer window size of amplifier layer peersis set to
be6 seconds only. Thus the playback delay of base layer is only12
seconds as the buffer window size of base layer peers is6 seconds.
It is the enhanced distribution efficiency that enables users to still
get satisfactory playback delay in LPS.

5.3.3 Comparison of Start-up Delays
As discussed in [22], different implementations lead to different

start-up delays. Generally, efficient distribution process enables the
peers grab chunks quickly when they first join the system. Here we
compare the peer buffer status with different strategies during the
start-up phase. Peer buffer window size is set to be10 seconds.
When new peers join the system, they are allowed to download
from the middle of other peers’ buffer window, i.e., the last5 sec-
onds content is downloadable. Since the download point has been
synchronized with the source, the download window increases as
time passes.the following sentences are not very clear to me We
will record the percentage of the buffer window that has beenfilled
after5 seconds, at that time the buffer window has been increased
to 10 seconds, same as other peers.2, 000 peers will join the sys-
tem first at the beginning, then another2, 000 peers will gradually
join from time100 second to200 second. Fig. 7(c) shows the CDF
of the percentage of filled buffer window after the first5 seconds
for those2, 000 peers who randomly join the system from time100
to 200 second. We can observe that during the start-up phase, the
peers can fill up, in average,76% of the buffer window in LPS,
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Figure 6: Understand the LPS architecture
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Figure 7: Comparison between the LPS and PR schemes

while 51% and12% for PR and PA respectively. This promising
result also demonstrates that LPS can improve the start-up perfor-
mance, and the start-up delay can be shorten to5 seconds for all
peers if they are configured to start the playback after buffering 5
seconds worth of content.

5.3.4 Trace-driven Evaluation
To examine the system performance under peer churn, we eval-

uate the strategies driven by peer session traces taken froma mea-
surement study of a real P2P streaming system [5]. The trace
records the peer arrival and departure information of one popular
channel on Oct.16, 2006. From this one-day trace, we pick the
data from9 : 00AM to 9 : 30AM period, the corresponding peak
time of that channel. In every minute of this half hour trace,there
are in average around148 new peer joins and135 peer departures.
The minimum and maximum aggregate number of online peers are
around3, 200 and4, 000 respectively. In this trace-driven simu-
lation, the source bandwidth is450kbps, still slightly higher than
the streaming rate of400kbps. And we fix the amplifier layer size
to be200 in LPS. The peer buffer window sizes of the schemes
are all set to be10 seconds. Fig. 8 shows the evolution of the de-
livery ratio of schemes with peer dynamics. The number of peers
changes dramatically, implying intense peer churn throughout the
simulation. We can observe the performance of LPS is very steady
and the chunk delivery ratio remains above98%. On the contrary,
the delivery ratio of the PR scheme oscillates with large amplitude
and finally the delivery ratio drops around80%. The above results
show the LPS scheme is very robust against peer churn. With the
peer assignment algorithm in Section 4.4.1, the amplifier layer can
be well maintained in face of frequent peer arrivals and departures.
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Figure 8: Trace-driven Simulation

To further examine the system performance in real Internet en-
vironments, we developed a prototype and conducted experiments
on the PlanetLab. In the small scale experiment with around300
nodes (constrained by the simultaneously available onlinenodes
of PlanetLab), we still drive the system with the peer arrivals and
departures data of the above trace while scaling down accordingly.
At the beginning, around180 peers join the system simultaneously.
After 200 seconds, peers arrive and leave the system according to
the scaled trace records. Every30 seconds, we either randomly se-
lect a certain number of idle nodes to let them join the system, or
randomly select a certain number of online peers to let them leave
the system. Hence the number of online peers jumps up and down
suddenly every half minute. The minimum and maximum online
peers are around140 and240 respectively. The source pushes only
one copy to the amplifier layer with360kbps bandwidth, slightly
higher than the streaming rate320kbps. The amplifier layer size
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Figure 9: Experiments on PlanetLab

is fixed to be30 and each of the upper suppliers only pushes one
copy to the base layers. And the sizes of all peer buffer map win-
dows are set to be only8 seconds. Fig. 9 shows the evolution of
the average delivery ratios of all peers as new peers join thesystem
driven by the trace. The system can maintain high delivery ratio
(always around98%) with bandwidth constrained source. Besides,
the amplifier size maintains stable with peer churn.

6. CONCLUSION
In this paper, we studied the strategies for users to directly broad-

cast User-Generated live video to a large number of audiences with-
out any server support. First we discussed the impact of source
chunk scheduling on the system performance. We proposed a proac-
tive source scheme to push rarest-first contents. Then we pro-
posed a novel layered P2P streaming architecture (LPS) to amplify
the source bandwidth by introducing peer playback delay differ-
entiations deliberately. We developed a detailed mesh-pull based
LPS implementation, which consists of tracker-based peer assign-
ment, dynamic peer management and cross-layer push-pull data
scheduling. Through extensive trace-driven simulations and ex-
periments, we demonstrated that the proposed strategies enable a
“weak" source with upload bandwidth slightly higher than the en-
coded video rate to drive a P2P streaming session with tens ofthou-
sands of peers. By sacrificing a little bit the playback delays for
peers at the base layer, the proposed LPS architecture can achieve
short start-up delays and low video chunk loss ratios for allpeers at
both the amplifier layer and the base layer.
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