On Routing Optimization in Networks with
Embedded Computational Services

Lifan Mei*, Jinrui Gouf, Jingrui Yangi, Yujin Caif, and Yong Liu Fellow, IEEE"
Department of Electrical and Computer Engineering, New York University
Email: *lifan@nyu.edu, 'jr6226@nyu.edu, ¥jy2823 @nyu.edu, $yc4090@nyu.edu, Yyongliu@nyu.edu

Abstract—Modern communication networks are increasingly
equipped with in-network computational capabilities and ser-
vices. Routing in such networks is significantly more complicated
than the traditional routing. A legitimate route for a flow not
only needs to have enough communication and computation
resources, but also has to conform to various application-specific
routing constraints. This paper presents a comprehensive study
on routing optimization in networks with embedded compu-
tational services. We develop a set of routing optimization
models and derive low-complexity heuristic routing algorithms
for diverse computation scenarios. For the dynamic demands,
we also develop an online routing algorithm with performance
guarantees. Through evaluations over emerging applications on
real topologies, we demonstrate that our models can be flexibly
customized to meet the diverse routing requirements of different
computation applications. Our proposed heuristic algorithms
significantly outperform baseline algorithms and can achieve
close-to-optimal performance in various scenarios.

Index Terms—Routing, Edge Computing, In-Network Compu-
tation, Network Function Virtualization

I. INTRODUCTION

Modern communication networks are increasingly equipped
with in-network computational capabilities and services.
Software-Defined Networking (SDN) [1] [2] technology can
decouple data plane and control plane, and the routing decision
can be made in a centralized fashion rather than hop-by-hop,
utilizing more information for better routing decision. Traffic
flows traversing such networks are processed by different
types of middle-boxes in-flight. For example, in a 5G [3]
core network, traffic from/to mobile user devices must pass
through special network elements, including eNodeB, serving
gateways, and packet data network gateways. To improve
security and/or boost application performance, an applica-
tion flow may also traverse other types of middle-boxes for
application-specific processing, e.g., intrusion detection and
prevention, content caching to reduce latency and network
traffic, rendering of VR/AR objects to offload user devices,
object detection from video/lidar camera data acquired by
autonomous vehicles, etc. In a cloud-native network, to im-
prove performance and resilience, middle-boxes are replicated
throughout the network, and can be elastically provisioned on
commodity servers through Network Function Virtualization
(NFV) [4] [5].

Routing is a critical component of networking. The main
goal of the traditional network routing is to forward user traffic
to their destinations with the lowest possible delay, while
maintaining the network-wide load balance and resilience.

Routing in networks with embedded computational services
is significantly more complicated. It has to find a path for
each flow that simultaneously has sufficient bandwidth and
computation resources to meet the flow’s traffic and computa-
tion demands. Load balance and resilience have to be main-
tained on both communication links and computing nodes. To
further complicate matters, application-specific computational
services will introduce diverse additional routing requirements.
Some application flows have to traverse multiple types of
middle-boxes in certain preset orders, and the routing path
may have to contain cycles. The traffic volume of a flow might
increase or decrease after processing, consequently, the flow
conservation law no longer holds. Some applications require
the computation to be done on a single computation node,
while some applications can split their computation load to
multiple paths and multiple nodes to achieve the parallelization
gain. How traffic and computation are split directly impacts the
load balance and resilience of the whole network. The existing
routing models cannot directly address these new challenges
and requirements. The goal of our study is to comprehensively
explore the design space of routing in networks with embedded
computational services. We develop a set of routing opti-
mization models and derive low-complexity heuristic routing
algorithms for diverse computation scenarios. Towards this
goal, we made the following contributions.

1) For routing with non-splittable flows, we show that
the problem is NP-Hard, and develop a loop-friendly
mixed integer program (MIP) model to characterize
the interplay between traffic routing, computation load
distribution, and network delay performance. We further
design a Metric-TSP type of heuristic algorithm to
achieve close-to-optimal performance.

2) When flows can be arbitrarily split, we prove the equiv-
alence between the routing with computational services
problem and the regular routing problem using the
segment routing idea. We develop a Linear Program
(LP) routing optimization model by extending the classic
Multi-Commodity-Flow (MCF) model to work with
heterogeneous middle-boxes and traffic scaling resulting
from the processing. The LP model can be further
extended to study the joint optimization of traffic routing
and computation resource provisioning.

3) For come-and-go dynamic traffic demands, we convert
the online routing problem into a flow packing prob-
lem, and develop a primal-dual type of online routing

algorithm with performance guarantees.

4) We evaluate the developed models and algorithms us-
ing emerging computation applications over real net-
work topologies. Through extensive experiments, we
demonstrate that our models can be flexibly customized
to meet the diverse routing requirements of different
computation applications. Our algorithms significantly
outperform baseline routing algorithms, and can achieve
close-to-optimal performance in various scenarios.

II. RELATED WORK

For routing with in-network processing, there are existing
studies to address various application scenarios with different
assumptions. In the context of edge/fog computing, in [6],
besides the computation allocation, they also considered mo-
bility and privacy in the joint optimization problem. In [7],
authors focused on the service allocation problem for AR
offloading. Some papers, [8] [9] [10], focused on approxi-
mation algorithm. The authors of [8] [9] used randomized
rounding with linear programming relaxation as the key idea to
deal with the non-splittable flows. Authors of [10] developed
a fully polynomial-time approximation scheme (FPTAS) for
an NP-Hard problem in IoT scenarios. In [11] [12], the
problem is studied without hard link capacity constraints. For
the middle-box traversal order, [13] focused on the case
where the traversal order is fixed. In the [14], authors used
graph layering to conform to the order of traversal. Authors
of [15] studied the case with arbitrary traversal order. For
routing with cycles, one strategy is to calculate all paths
with a certain number of cycles in advance [15] [16] [17],
and then use the path-based routing formulation to find the
optimal traffic routing and demand allocation. The number of
candidate paths increases exponentially and the pre-calculated
paths may miss some good paths. Among all these studies,
the one that is closest to ours is [15]. The main assumption of
their work is that flows are infinitely splittable. In real world
applications, it is equally important to study non-splittable
and finitely splittable flows. For infinitely splittable flows,
their model assumes universal middle-boxes while our model
can handle heterogeneous middle-boxes. Our segment routing
based formulation also makes it easy to study traffic scaling
after processing and joint routing and provisioning. Table I
summarizes the main differences between our work and the
most related studies.

TABLE 1

KEY DIFFERENCES FROM MOST RELATED WORKS
Traffic Flow Non-Splittable Infinitely-Splittable | Scaling
Middle-box . .
Univ./Hetero. Univ. | Hetero. Univ. | Hetero.
Traversal Order
Fixed or Not n/a ¥ N n/a K N
[15] v
[14] [13] 4 v
Our Paper v v |v |V v v

III. ROUTING WITH IN-NETWORK PROCESSING PROBLEM

We consider a generic network represented by a directed
graph G = (V, &), where V denotes a set of nodes, and &
denotes a set of directed links connecting the nodes. The graph
G is assumed to be mesh-connected, having multiple paths
connecting each pair of nodes. Every link e is associated with
bandwidth capacity of C.. The node set V contains standard
routers and special middle-boxes attached to routers. There
might be different types of middle-boxes. For a type-r middle-
box z, its processing capacity is IN]. A set of flows are
to be routed and processed in the network. Each flow d is
characterized by its source node s4, destination node ¢4, traffic
volume hg, and its demand for type-r processing W. The
Routing with In-Network Processing (RINP) problem is to
find paths with sufficient bandwidth and processing resources
for all flows, subject to bandwidth/resource capacities on all
links/nodes. There are different variations of RINP along
different dimensions.

1) Universal vs. Heterogeneous middle-boxes: In the tra-
ditional networks, different types of middle-boxes are
designed for specific processing tasks. The new trend
is to implement middle-box functions on generic com-
puting servers using NFV. Each computing node can be
configured to process any demand. The capacity of a
middle-box can be measured by its universal computa-
tion power N”, and the flow processing demand can be
characterized by the total computation power needed.

2) Non-splittable vs. Infinitesimal Flow/demand: When the
flow granularity is small, e.g., one flow for each user
application session, splitting the flow to multiple net-
work paths and multiple middle-boxes will be inef-
ficient/impractical. On the other hand, in a backbone
network, each flow is indeed the aggregated user traffic
from city A to city B. It is therefore more flexible to split
the traffic as well as the associated processing demand to
multiple paths, and if a path contains multiple middle-
boxes, the processing demand can be further split to
utilize all available resources.

3) Constant vs. Elastic Traffic Volume: Certain types of in-
network processing will increase or decrease the traffic
volume of the processed flow. For example, after an
edge server rendered online game updates, the size
of the rendered video stream will typically be larger
than the game updates. On the other hand, after an
edge server processed the Lidar data captured by an
autonomous vehicle, it only needs to upload the learned
representations to the cloud server, which has a volume
much lower than the raw data.

4) Fixed vs. Reconfigurable Processing Capacity: The tra-
ditional middle-boxes have fixed capacities, while the
software based virtual middle-boxes can be reconfigured
on-demand to match the processing needs. The RINP
problem can be more efficiently solved by jointly routing
flows and provisioning middle-boxes.

(a) Non-splittable

(b) Infinitely-splittable

(c) Segment Routing

Fig. 1. Routing with In-Network Processing (RINP) Basic Examples

TABLE II
KEY PARAMETERS AND NOTATIONS
Symbol Description
4 set of all nodes
pPTCV subset of computing nodes with type-r resources
E set of links in a graph
D set of demand flows
T time horizon
Qev 1 if link e originates from node v; 0 otherwise
bew 1 if link e terminates at node v; 0 otherwise
Sd source node of flow d
tq terminal node of flow d
hq traffic volume of flow d
h% traffic volume of virtual sub-flow of d processed by z
Wy type-r resource demand of flow d
Ce bandwidth capacity on link e
fe total traffic rate on link e
Ted traffic of flow d allocated on link e
xZ5 traffic of segment s of d’s subflow processed by z
allocated on link e
Ued integer, number of times flow d traverses link e
Eed binary, whether or not flow d traverses link e
NT type-r resource capacity on node z € P"
Pr upper bound of type-r resource utilization
N resource capacity on node z with universal resources
w’, type-r resource consumption of flow d on node z
Yed unprocessed type-r demand of flow d on link e
Tdy T Ty duration, start time, and finish time of d
Bar binary, = 1if 7 <7 < 7'({, = 0 otherwise

Py set of candidate paths for demand d

dedp non-negative constant, the fraction of traffic of
candidate path p routed on link e

Ydp binary variable, whether demand d is routed on
candidate path p € Py

D(e) variable, set of demands routed on link e

P(e) variable, set of selected paths (yqp, = 1)

passing through link e

IV. RINP OPTIMIZATION MODELS

The optimization objective of RINP depends on the ac-
tual situation. Some popular objectives are to minimize the
link/node delay, minimize the maximum link/node utilization,
maximize the processed flows, and certain combinations of
them. In this paper, we use minimizing network delay as
an example objective for static optimization and maximizing
the processed flows for dynamic optimization. The developed
formulations can be easily customized for other objectives.

A. Non-splittable Flow

We start with the simple case that each flow can only
take a single path, i.e., non-splittable. An example is shown
in Fig. 1(a), there are only two middle-boxes, each with a
capacity of 1, to complete the processing demand of 2, the
flow has to take a path with cycles to pass through the two

middle-boxes before reaching its destination. Similarly, if the
two middle-boxes are of different types, and the flow has
to be processed by both types, the flow again has to take
a path with cycles. In general, we will first show that the
non-splittable RINP problem is NP-Hard by reducing the well-
known Metric-TSP to a simple version of non-splittable RINP.
We then develop a Mixed-Integer Program (MIP) to study
the interplay between traffic routing, demand processing and
network delay optimization.

Theorem 1: Non-splittable RINP with constant link delays
is NP-Hard. [J

Proof: Given a set of nodes and the distances between
them, the Traveling Salesman Problem (TSP) is to find an
optimal order of traversing all the nodes with the shortest
total distance. Metric-TSP is a special case of TSP where the
distances between nodes form a metric to satisfy the triangle
inequality: d(v1,v2) < d(v1,v3)+d(vs,v2). For a given graph
G = (V,E) and the distance metric d(-), we construct an
special instance of non-splittable RINP on G by: 1) placing
one unit of computing capacity on each node, 2) setting the
propagation delay on link (v, v3) to d(v1, v2), 3) creating one
flow with the same source and destination node, 4) setting the
flow’s traffic volume to € << C, so that the congestion delay
is negligible, and setting the flow’s processing demand to |V].
Obviously, to satisfy the flow’s processing demand, the flow
has to visit all nodes in the graph, and to minimize the total
delay RINP has to find the path with the shortest distance.
The only potential discrepancy between RINP solution and the
Metric-TSP solution is that Metric-TSP solution can only visit
each node once while in principle RINP solution may have to
visit a node multiple times, as illustrated in the example in
Fig. 1(a). However, due to the metric distance, we can easily
show that the RINP solution for the specially constructed
network can be guaranteed to be cycle-free. Suppose the RINP
solution visits some nodes more than once, without loss of
generality, let k£ be the first node that is visited twice, ¢ and j
are the nodes visited before the after the second visit to k. By
removing the second visit of k, i.e., replacing the path segment
1 — k — 7 with ¢ — j, the total path length can potentially be
reduced due to the triangle inequality. Using this process, we
can remove all the duplicate visits to get a cycle-free RINP
path that has either the same length or a shorter length than the
original path. This path is a cycle-free solution for Metric-TSP.
]

For more generic non-splittable RINP, we develop a MIP
model to analytically investigate how traffic routing and
demand splitting impact network-wide performance. The
goal of the modeling is to obtain understandings to develop
heuristic single-path RINP algorithms.

Je

MIP-RINP: min (1a)
{wea,yL 4wl 4} ecE Ce - fe
subject to
|D| |D|
> wea=fo<Cep Y wly<pNI, (1b)
d=1 d=1
1 if v =sq
Z QeyUed — Z bevlUeq = 0 Zf v 7& Sd,td
ecE ecE -1 if v =ty
(lc)
Ted = Uedhd (1d)
€ed < Ued, Ued < BEed> ygd < Bged (le)
Wy if v =usq
Z aevyzd - Z bevyZd = w;;d Zf v 7é Sdytd
ecE e€E 0 ifv =ty
(1)
Ueq > 0 integer; .4 binary; (lg)
Wyq > 0,wy5 =0,Y0 & Pry yry >0, (1h)

where (1a) is the total network delay modeled using the M/M/1
formula. (1b) describes the total traffic rate on a link can not
exceed its bandwidth capacity, and the total type-r resources
consumed on a node can not be larger than its type-r resource
capacity discounted by the target utilization p,. (Ic) is the
flow conservation for single non-splittable path. As illustrated
in Fig. 1(a), non-splittable flow may have to take a path with
cycles. To allow a flow to traverse a link/node multiple times,
routing variable u.q is configured to be non-negative integer,
instead of binary. On a relay node, the total number of times its
outgoing links are traversed should equal to the total number of
times its incoming links are traversed. The difference between
the two numbers should be 1 for the source node, and —1
for the destination. (1d) calculates the total traffic carried by
link e for demand d. Since we only have a single-path for d,
whenever the path traverses link e, the total demand volume
of hg will be added to the link. So the total traffic carried
by a link is proportional to the number of times the link is
traversed by the single path. Meanwhile, the resources on a
node can be accessed by a flow only if the flow passes the
node through links attached to it. Therefore, we want to know
whether or not flow d traverses link e, which is indicated by
a binary variable €.4 in (le). .4 is forced to take value 1
if ueq > 0, and value 0 if u.,q = 0 (B is a large positive
constant). Finally, (1f) is the conservation law for resources:
all the resource demands exit from the source node through
its outgoing links, the unsatisfied demand at the destination
is zero, and on an intermediate node, the difference between
the incoming unprocessed resource demand and the outgoing
unprocessed resource demand is the amount of demand wy,
processed on that node. Similar to x.4 in (1d), if the path
visits a link multiple times, y_; is the sum of the unprocessed
demand from all the visits. (1g) are the traffic routing variables,
and (1h) are the resource demand splitting variables. The two
sets of variables are coupled through (le). By replacing the

convex delay function in (1a) with a piece-wise linear function,
the optimization problem becomes a mixed-integer program.

If the processing demand is also non-splittable, we can re-
place w; ; by W;b? ,, where k] ; is a binary variable indicating
whether type-r processing of d is done on node v. Then y7,
and constraint (1f) can be taken out from the formulation. The
added new constraints are:

Zd < Z Gev€ed,

Z k:)‘d =]-7
v ecE

where the first equation requires the processing will be done on
exactly one node, and the second inequality dictates a node’s
processing resources can be used if and only if it is visited by
the flow.

B. Infinitely Splittable Flow

Non-splittable flow is too limiting for large flows. The tradi-
tional Traffic Engineering (TE) of backbone networks assumes
arbitrary traffic splitting and develops Multi-Commodity Flow
(MCF) based convex/linear programming to optimize network
design objectives. The obtained optimal routes are typically
cycle-free. For RINP, if a flow can be arbitrarily split to
multiple paths, the traffic and processing demand splitting
become more flexible. For the example in Fig. 1(b), with traffic
splitting, the flow can utilize two paths, one for traversing each
middle-box. While the bottom path is cycle-free, the upper
path still contains a cycle, i.e., not a simple path. Even with
infinitely splittable flow, RINP still cannot be directly solved
using the MCF model.

We address this challenge using the segment routing idea as
shown in Fig. 1(c) . We start with universal middle-box. Flow
splitting leads to both traffic and processing demand splitting
among multiple paths. We assume that the processing demand
allocated on a path is proportional to the traffic volume
allocated on that path. If there are multiple middle-boxes
on a path, the processing demand allocated on that path
can be further arbitrarily split among these middle-boxes.
In general, a legitimate RINP path can “stop” at multiple
middle-boxes to get processing done before reaching the
final destination. We define an n-stop RINP path as a path
on which n middle-boxes process the flow. Note, since a
middle-box can simply forward traffic without processing it,
an n-stop path may traverse more than n middle-boxes. The
single RINP path in Fig. 1(a) is 2-stop, while the two RINP
paths in Fig. 1(b) are both I-stop.

Theorem 2: Any n-stop RINP path can be decomposed to
n I-stop RINP paths. [

Proof: Let sq ~» z1,--+ ,~ 2z, ~»,tq be any n-stop RINP
path. The traffic flow on this path is f and the total processing
demand is w, and the processing demand allocated to middle-
box z; is w;, and ZZ":I w; = w. For any z;, we can generate
a I-stop RINP path that follows exactly the same route as the

Computing
Nodes

Fig. 2. With universal middle-boxes, any RINP flow can be implemented by
two sets of regular traffic paths

n-stop RINP path, but only stops at z; and gets w; amount of
processing done, and all the other middle-boxes only forward
the traffic. To follow the proportional demand splitting rule,
the traffic allocated on this path is fw;/w. It is easy to check
that the n I-stop RINP paths carry the total traffic of f to g4,
and all the processing demand of w are processed. B

Theorem 3: Traffic routing subproblem of RINP can be
optimally solved by an equivalent Multi-Commodity-Flow
routing problem for pure traffic flows. O

Proof: We prove this by construction. Let R4 be a set of
legitimate RINP routes for flow d with total traffic volume hy
and total processing demand W,. And the total processing de-
mand allocated to middle-box z; is w;. According to Theorem
2, all RINP paths in R4 can be decomposed to /-stop RINP
paths. Any I-stop RINP path stopping at z; can be decomposed
into two segments, sq ~» z; and z; ~» t4. The first segments
of all the /-stop RINP paths stopping at z; share the same
source s, and destination z;, and the total traffic flow must be
hqw; /Wy (due to proportional demand splitting). Similarly,
the second segments of all the /-stop RINP paths stopping at z;
share the same source z; and destination ¢4, and the total traffic
flow is hqw;/Wy. In other words, the bandwidth consumed by
R4 on all links can be used to carry traffic for 2| P| pure traffic
subflows {sq — z;,2; € P} and {z; — tq,2; € P}, both with
traffic demand hgw;/W,. Meanwhile, it is obvious that any
MCF routing solution for the 2|P| traffic subflows, can be
used to carry traffic for R4 to enable processing w; on z;. B

As illustrated in Fig. 2, based on Theorem 3, we can replace
each RINP flow by two sets of traffic subflows, one set consists
of subflows from the source to all middle-boxes, the other set
consists of subflows from all middle-boxes to the destination.
The traffic volumes of the subflows are set to be proportional
with the processing demand split among the middle-boxes. The
following is an MCF-type convex/linear program for infinitely

splittable RINP.

. e
SR-Infinite: (2a)
{h3, 531 2 ;E Ce — fe
subject to
d

> hj = hq, Zh W, < pN, (2b)
z€P deD
22 (@a+ai) <Ce (2¢)
deD zeP

hi ifv=sq
Z aevx Z bevxpd = —hz ifo=z (2d)
e€E ecE otherwise

hfl ifo=z
Z aevxﬁ - Z beva:j?i =< —h; ifv=ty (2e)
ecE ecE 0 otherwise

1>0,272>0,h5 >0, (2f)

where (2b) is the allocation of processing demand/traffic
among all compute nodes. Here we assume the resource
demand splitting is proportionally to the traffic splitting. (2c)
dictates that the traffic of the first and second segments share
link capacity, (2d) is the flow conservation for the first segment
demand from s; to z, while (2e) is the flow conservation
for the second segment demand from z to t;. Both seg-
ments have identical volume of hJ. If the traffic volume
mcreases/decreases after being processed we only need to
change n 4 10 @gh7 in (2e), where ¢4 is the ratio of the traffic
volume after processing over the original volume. After being
processed by compute node z, all traffic going to the same
destination can be aggregated and routed together. The total
volume of the aggregated demand from z to v is > detg—v M-
To further reduce the number of routing variables and routing
constraints in the formulation, we can replace flow-based
routing variables with destination-based routing variables. Let
Ney be the amount of post-processing traffic (regardless of
the processing node) destined to node v (regardless of the
source), the aggregated second-segment routing constraints on
any node v’ € V can be rewritten as:

zdtd LRy ifueP

Z Aoy’ Nev — Z bev’nev = d ta=v hd Zf U/ =0

e€E e€E 0 otherwise,
(3)

where the left-hand side is the difference between the outgoing
traffic destined to v and incoming traffic destined to v, the
right-hand side means if v’ is one of the compute node, the
difference is simply the total post-processing traffic from v’ to
v, if v’ is the destination itself, then the difference is all post-
processing traffic to v, for other relay nodes, the difference
should be zero. The number of routing variables is reduced
from |V |?| P||E| in (2e) to |V|| E| here. The number of routing
constraints is also reduced from |V [*|P| to |V|?. Both are
reduced by a factor of |V||P|. By replacing (2e) with (3), and
replacing (2c) with

1
DD @it) new < Ce,
deD zeP veV
we have a more compact optimization problem.

C. Joint Routing and Resource Provisioning Problem

The routing optimization models can be easily extended to
study the joint optimization of traffic routing and middle-box
provisioning by making the middle-box capacity N7 in (1b)
and N, in (2b) variables under some total resource budget
constraint. Flexible resource provisioning can make the routing
job easier, and can play an important role in network failure
recovery. We will demonstrate this through case studies in
Section VII-C.

D. Heterogeneous Middle-boxes

When middle-boxes are heterogeneous, each flow can have
multiple types of processing demands.

1) Non-splittable Flow: The MIP optimization model in
Sec. IV-A has already considered different types of demands.
In the optimal solution, the traversal order of different types
of middle-boxes can be arbitrary. This may be not acceptable
for certain application scenarios. For example, in cellular
core networks, there are predefined orders for middle-box
traversal, e.g., mobile traffic has to first go through a firewall
before being routed to a load balancer, and there are multiple
instances of each type of middle-box. RINP with predefined
middle-box traversal order was studied in [14] using a graph
layering approach.

2) Infinitely Splittable Flow: When the traversal order of
heterogeneous middle-boxes is predefined, the LP formulation
for homogeneous middle-box can be extended to study hetero-
geneous middle-boxes. If there are k types of middle-boxes,
let the middle-box index ¢ represent its order of traversal.
Extending the 2-segment routing idea, each RINP path now
consists of k£ + 1 segments, sq ~~ 2.
where z(?) is some type-i middle-box. Similar to Theorem 3,
each RINP demand can be replaced by k + 1 sets of pure
traffic subflows, one set for each segment. The number of
subflows at segment k is | Py—1||P;|. An example of two-types
of middle-boxes is illustrated in Fig. 3. MCF linear/convex
program model can be established in a similar fashion to (2a).
The flow conservation holds from the two segments in Fig. 2
to the three segments in Fig. 3. The first segment is from
the source nodes to the Type I computing nodes; the second
segment is from the Type I nodes to the Type II nodes; the
final segment is from the Type II nodes to the destination. On
each segment, the numbers of allocation variables are equal to
the product of starting point numbers and endpoint numbers.
The model can still handles the flow size change in the two
segments when flow entering and exiting the Type I and Type
II computing nodes, and the change ration can be different for
two types of computing.

v 2B s g,

V. FAST HEURISTIC ROUTING ALGORITHMS
A. Heuristic for Non-splittable Flow

Even though the non-splittable version of RINP is NP-Hard,
we can still leverage on the solution of the infinitely splittable
RINP to develop a close-to-optimal single-path solution. More
specifically, we relax the non-splittable requirement and get the
optimal infinitely splittable solution by solving the LP defined

Type Il
Nodes

h z h 121
Fig. 3. With two types of middle-boxes, any RINP flow can be implemented
by three sets of regular traffic paths

in (2a). While the paths cannot be used, the processing demand
allocation, namely {Z—ZWd} can be used for the single-path
solution. For all computing nodes with non-zero processing
demand allocation, we then find with a close-to-shortest path
to traverse them using an approximation algorithm solving the
Metric-TSP problem, as illustrated in Algorithm 1:

1. We sort all flows by their demand volumes;

2. We solve the LP of segment routing with the infinitely
splittable flow, denoted by SR in line 3, to get a set of
computing nodes Zq to be used by each flow d, and the
demand allocation on each computing node {Z—ZWd, z € Zq};

3. Process all flows in the decreasing order of volume. For
each flow d, find the path with enough capacity by removing
links with a capacity less than its volume %4 (line 6). Generate
an overlay graph G* consisting of the source, destination and
all the used computing nodes for demand d (line 7). The
distance between two overlay nodes is the current shortest path
in the underlay network (considering the congestion delay)
(line 8).

4. Find the shortest path in the overlay graph G* to
traverse all computing nodes Z; using M-TSP approximation
algorithm. (line 9). We use Christofides algorithm [18] here.

5. Map the overlay path back to the underlay network
(line 10), take the bandwidth consumed by flow d out of the
underlay network (line 11), and process the next flow.

6. Evaluate the network delay and return.

B. Finitely Splittable Flow

Real situations may lie between the infinitely splittable
flow and the non-splittable flow. While non-splittable is too
rigid, splitting flow to too many paths will introduce much
overheads for implementation, such as too many flow entries in
the routing table. Finitely splittable means that the maximum
number k of paths each flow can be split to is controlled.
One way to get a k-split solution is to evenly split traffic and
computation demands of a flow equally and get k& subflows,
each of which can be treated as an independent flow and obtain
the RINP solution using the MIP formulation in (1a). We call
this scheme MIP-K. However, such an approach has to work
with a set of k|D| subflows. It is impractical to solve MIP for
any reasonably large network.

Algorithm 1: HEURISTIC: SR-TSP

Algorithm 2: SR-ITERATION FOR K-SPLIT

1: Input : Underlying Network G = (V| E), Set of
Computation Flows D

2. D = Sort(D, hq)

3. {Z4,Vd € D} < SR(G, D)

4: for d in D do

G =G

G’ .remove({ele.remain_capacity < hq})

GV = Zd U {Sd, td}

d*(v,v") = Shortest_Path(G',v,v"),

Yo, v € GZ.V

9: P*(sq,tq) = M-TSP(G*, s4,tq)

10: P(sa,ta) = Recon(G, P*(sa,tq))

11: G.Update(P(sd, td), ha, Zd)

12: end for

13: return) _, e.delay

1) Heuristic: To address this scalability issue, we came up
with a fast heuristic algorithm. Motivated by that Segment
Routing can lead to the optimal solution for the infinitely
splittable flow case, our heuristic algorithm also follows the
segment routing framework. We first equally divide each
flow into k subflows, then iteratively find the shortest two-
segment path for each subflow, and update the computation
and bandwidth resource capacities. If two subflows of the same
original flow share the same path, they will be merged them
back into a larger subflow. The pseudo-code is in Algorithm 2.
For each demand list, we sort the subflows in descending
order of their volumes. In each iteration, find all the available
computing nodes, Z;, whose available computation resource
is more than the current computation demand. For every 2-
segment path through z € Z;, find the shortest (smallest delay)
path from s; to some computing node z, and then to ¢4. In
the pseudo-code, BP and BPC' denote the best path, and the
best path cost. SP and SPC are the functions to computing
the shortest path and shortest path cost in the current graph
(considering the link congestion delay).

VI. ONLINE ROUTING ALGORITHM WITH PERFORMANCE
GUARANTEE

The previous formulations assume the application demands
are known, and can be used for routing optimization in long-
term traffic engineering. In practice, application flows come
and go with a finite duration. Whenever a new application
flow joins the network, online routing algorithm has to find
a feasible routing path for it without knowing the future
application flows.

A. Online Routing Optimization Models

Similar to other online routing studies, e.g. [14], [19],
we want to accept as many flows as possible over time.
The objective of online routing optimization is to maximize
the total accepted flows, while complying with the capacity
constraints on computation nodes and communication links.

Node Capacity Constraint Conversion: To simplify the
problem, we convert computation node capacity constraints

1: Input : G = (V,E),D

2: Equally split each flow in D to k subflows, get a new
demand set D*

3: DF = Sort(D*, hy)

4: for d in D do

5. Z4={v e G.V|v.remain_comp > Wy}

6: BPC =400

7 for z in Z; : do

8: if BPC > SPC(sq, %)+ SPC(z,tq) then

9 BPC = SPC(sq,2) + SPC(z,tq)

10: BP = SP(s4,2)|USP(z,tq)

11: end if

122 end for

13: G.update(Path, hq, W4, BP)

14: end for

15: Merge subflows of the same flow d € D

16: return . e.delay

outbound

5 4

Terminal

< outbound
10
-

inbound

200

Fig. 4. Model Computing Node Capacity using Virtual Link

into virtual link capacity constraints. More specifically, each
computing node is split into two virtual routing nodes: the
inbound node connects to the computing node’s inbound links,
and the outbound node connects to the computing node’s
outbound links. A virtual link connects is introduced from the
inbound node to the outbound node. The bandwidth capacity
of the virtual link is set as the computing node capacity divided
by the resource demand of per unit traffic. Consequently, if
the traffic flow traversing the virtual link is bounded by the
link capacity, the resource demand of the flow is bounded
by the computing node capacity. In Fig. 4, the purple nodes
are routers with computing resources capacity of 100 and 200
respectively. Each computing node is split into two copies in
the extended virtual graph. Solid lines and dotted lines mark
physical and virtual links, respectively. The demand is from
Source to Terminal, and its traffic volume is 8 units, and
needs 160 units of computing resources. The resource demand
of each traffic unit is 160/8 = 20. The capacity of virtual
links introduced for the two computing nodes are 100/20 = 5
and 200/20 = 10, respectively. After such conversion, the
bottleneck of the upper path is 5, and only the lower path is
feasible for the demand.

Feasible Path Generation: After the conversion at the
previous step, not all the paths complying with the link
capacity constraints are feasible. For example, if a flow does
not traverse any virtual link, its computing resource demand
will not be satisfied. To address this issue, we introduce two

Ve N
Path 1 s
Eo W
D ELEET LTI o T e ey > -------------
Path 2 Segment 1 Segment 2

Fig. 5. Generating Candidate Path with Computing Resources

virtual links from the inbound copy to the outbound copy
of each computing nodes: if a flow traverses the red link,
it consumes the computing resources on the node; if a flow
traverses the green link, it is only forwarded by the node
without consuming any computing resources. The red virtual
link capacity is set according to the computing node capacity,
the green link capacity can be set to a large value so that
it is never a bottleneck. By requiring each candidate path to
contain exactly one red link, we can make sure that a flow will
be processed correctly when routed on a candidate path. Fig. 5
shows an example about how to generate candidate paths
with computing resources for a graph with two computing
nodes. Two computing nodes are for two segments, and on
each segment, the flow should follow one of two links. After
removing the path with two red links and no red links, there
are 2 valid paths. Path 1 goes green link for Segment 1 and
red link for Segment 2, and Path 2 goes red link and green
link for Segment 1 and 2, respectively.

After the previous conversion and candidate path generation,
we now present the routing model to maximize the total
accepted demands:

Igix Z Taha Z Ydp (4a)
pEP,
sub]ect to
> yap <1, VdeD, (4b)
PEPg
Z haBat Z Seapyap < Ce, Ve€ ENteT, (4¢)
d pPEPy

where Py is the set of candidate paths for flow d, and yg,
is a binary variable indicating whether d is routed on path p.
Other notations are defined in Table II

By introducing Lagrange multipliers (z4,d € D, Zet,e €
E,t € T) for the constraints, the Lagrangian function

L({za}, {xet}) is:

ZTdhd > Yap — sz > yap—1

pEPy pEPy

- Z Tet Z hafat Z 5edpydp Ce |,

pPEP

i Cexe 5
;B;ﬂzzﬁg Tet (52)
subject to
24+ Z TethgdeapBas > Taha, Vd € D,Vp € Py (5b)

e,t

Due to the strong duality theorem, any feasible solution of
the dual problem is upper bound of the optimal solution of
the routing problem.

B. Online Primal-Dual Algorithm

While the optimization problem can be solved offline, we
need an online routing algorithm to route each flow as it
arrives without knowing the future flows. It is expected that
the total accepted flow volume by the online routing algorithm
is lower than the offline optimal solution. Following the
general framework of online approximation algorithm [19],
we develop the following online routing algorithm with a
guaranteed ratio over the offline optimal solution.

Algorithm 3: ONLINE ROUTING ALGORITHM
1: Input : G = (V, E)
2: Inmitialize: xo; = 0,24 =0, yq, =0
3: Whenever a new demand d is introduced,
4: if there is a path p € P, so that

50 D et TetbedpBar < T4 then
6: Set Ydp = 1, zqg = Tq4hq

7. for each link e on path p do
8: D(e) = D(e) + {d}

9: P(e) = P(e) + {p}

10: Tet = Tet (1 + h‘”;““’) + Z"SAZ’;
11: where Agy £ > ec Ocdp
12 end for

13: else

14: Reject the demand d

15: end if

For the Algorithm 3, when a new demand d is intro-
duced, first check if there exists a path that satisfies the
dual constraint. If so, that path is picked, and update the
dual variable z.; and decision variables, D(e) and P(e),
accordingly. If not, reject the demand d. Due to Line 5 in
Algorithm 3, at any step of the update, before the update,

zer(start) < 7. £ max 5. After the update, assuming
peEP(e) TetP

hadeap < Ce, we have

Tet S 276 + 1. (6)

C. Performance Guarantee

Theorem 4: The accepted demands by the online routing
algorithm is > % of the offline optimal solution. [

Proof: Obviously, the (z4, ;) generated by the algorithm
is a feasible solution for the dual problem (zg = 7ghg).
After each demand is introduced, the increase in the routing

objective is simply 74h4, resulting from yg4, increases from 0
to 1; The increase in the dual objective is:

Taha + Y CelAter = 27aha + Y TethabeapBar < 3aha,

e,t e,t

(N
where the last inequality is due to Line 5 in Algorithm 3.
After all iterations, the objective value of the dual solution is
less than three times the objective of routing solution. Since
dual feasible solution is the upper bound of the accepted
demands of offline optimal routing solution, so the accepted
demands of the online routing solution is no less than % of

the offline optimal routing solution. ll

Theorem 5: Upper bound for the link capacity violation
of online routing algorithm is W, log(A.(2y. + 1) +1) O

Proof: 1t is clear that for any hgy, C. > 1 (Taylor Expansion),
habea 1 0o
14+ 252 < (14 — .
c. ~\ '@
We can choose W, so that

hd(S d hdéedp
1+C“’2(1+WC> ,Vp € Ple). (8)
In other words,
1
W. £ max T)
PEPE) o ((1 N hdgedp)ihdaedp B 1>
1
= : (10)

c.((1+8)" -1)

where a, £ mggc)hdéedp, and the last equality holds due to
peP(e
function (1+ 2)/ is a decreasing function of z. [J
Proof: (1+ %)Y/ decreases when z > 0

= ((1+ %)1/””)’ <0 (11)

(14 2)=(z — (c+ z)log(1 + 2))
= et e) <0 (12)
< d() éx—(c—l—x)log(l—&-%) <0 (13)
<d(z) <0and d(0") <0 (14)

We can easily find that d'(z) =
d(0)=0. 1

For the case, hg,Ce < 1, (8) holds by setting W, = 1
(Bernoulli’s Inequality). Now define another sequence 7, , and
update it synchronously with x. ; as:

habedp
/ !/ 1
met = xet 1 + W C
ee

hqd
1 1 dOedp
= (1 -1
A ((+Wece))

—log(%£ 4+ 1) < 0 and

5)

where A, £ mlz}(x)Adp. Comparing Line 10 in Algorithm 3
peP(e
with (15), due to (8), both the multiplicative increase factor

(the first term) and the additive increase (the second term) of
Xt are larger than z/, at any update step. So we can conclude
Tet > Thy.

Meanwhile, for each updating step, (15) can be transformed
into:

1 1 1\ edear
z.,(end) + N («l,(start) + A—) (1 + TG) ,

together with z/,(0) = 0, at the end of the online algorithm,

;o i 1+ 1 ZP€P(6) hdbedp 4
Tt T A, W.C.

Then we have:

log(Aexl, + 1)
Z habedp = m
pEP(e) D) CcWe

if Cp >> 1.
Finally, due to x.; > z/, and (6), we have

Z hdaedp < CeWelog(Ae(2ve + 1) + 1),
pEP(e)

~ CeWe 1Og(Aem/et + 1)7

(16)

In other words, the capacity violation factor on any link is
bounded by W, log(A.(2v.+1)+1). &

To eliminate link capacity violation, we revise our online
routing algorithm so that a path is picked only when the
capacities of all links on the path will not be violated after
the new flow is admitted. This change will potentially reduce
the accepted traffic ratio. As will be shown in the experiment
section, the loss of accepted traffic can be well justified by
completely avoiding link capacity violation.

VII. EVALUATION

We now evaluate the proposed models and algorithms using
emerging applications over real network topologies.

A. Non-spilttable Flow — VR Rendering

In the VR scenario, one user communicates with another
user through realtime 360 degree video streaming. Rendering
of 360 video is computation-intensive, it is therefore beneficial
to offload the computing from user device to edge computing
nodes. The realtime video stream has to be processed as a
whole, i.e. the flow is Non-Spilttable, follows a single path.

To generate a realistic VR scenario, we used the method
in [7] to generate our data. For topology, we use the locations
of Starbucks stores in the Lower Manhattan of New York
City as the locations for users. Each store is connected to
a close-by computing node, forming a star topology as shown
on Fig. 6(a). The computing node is connected to two or three
nearby computing nodes. There are 24 nodes and 56 links in
the network. We synthesize four sets of VR flows between
Starbucks customers.

To evaluate the SR-TSP heuristic, in Table III, we compare
its solution with the optimal MIP solution on different datasets.
The average performance loss of SR-TSP is about 8% from the

global optimal. In Fig. 6(b), we evaluate how the performance
gap increases as traffic and computation demands scale up.
We also develop a greedy baseline algorithm in which each
source node finds the nearest computing node with sufficient
computation capacity for processing, then the processed traffic
is routed to the destination following the shortest path. SR-
Infinite is the LP solution for infinitely splittable flow, which
serves as a lower bound for the MIP solution. It can be seen
that as the demands scale up, the network delay increases
for all the algorithms. The gap between baseline and other
algorithms is also getting larger and larger. SR-TSP uses the
optimal infinitely splittable solution to get computation de-
mand allocation, and then uses mature TSP Heuristic to solve
the problem of compute node traversal. It achieves a good
tradeoff between time complexity and routing performance.

TABLE III
EVALUATION ON NON-SPLITTABLE VR FLOWS
Data 1 | Data2 | Data 3 Data 4 | Average
MIP-RINP | 2.087 2.436 2.266 2.426 2.304
SR-TSP 2214 2.589 2.615 2.622 2.510
Gap 577% | 5.92% 13.36% | 7.48% | 8.23%
— SRnfinite o
51 o wp %
> i *
o » Heuristic SR-TSP *
041 % Baseline %X
0 *
¥ *
$; **** »:“
TS L
z
1 ***** ...'

04 06 08 1.0 12 14
Demand Scale

(a) Starbucks Locations (b) Network delay for various De-

mand Scale

Fig. 6. Routing of Non-splittable VR Flows

B. Finitely Splittable — Smart City

In the case of a smart city, there are many cameras on the
streets. The rapid processing of the information captured by
the cameras provides a great help for the city’s emergency
response. For fire alarm, proactive and rapid fire detection can
reduce casualties and property losses. As for the police depart-
ment, it is critical to respond quickly to crimes. For example,
on the Amber system, quickly extracting vehicle plates from
street camera video can save lives of kidnapped children. Edge
computing can support in-network video analytics for fast
response. Unlike the non-splittable VR flows, video from one
intersection is separable, because there are typically multiple
camera videos from different viewing angles, even video
from a single viewing angle can be divided and processed
in parallel.

Real video camera data from New York City was used for
evaluation. Fig. 7(a) shows the distribution of cameras from
115th to 59th Street in the Upper West Side of New York City.
For the same camera, there are two video analytics tasks, one

for the Fire department and one for the Police. We assume that
the computing power required for fire detection is proportional
to the number of nearby houses. Based on the data of Zillow,
we counted the number of houses with a radius of half a block.
Assuming that the computing power required by the police
camera is related to the traffic flow of the street, we conducted
the query of the precise location traffic flow and the reasoning
of the fuzzy location traffic flow according to [20] [21] [22]
to complete our data set. It contains 40 nodes and 15 cameras.
A total of 30 streams flow from cameras to nearby fire and
police stations.

We focus on the k-split routing. For each test, we randomly
select 60% of demands for evaluation, the representative
result shown in Fig. 7(b), as the split scale k increases, the
performance gets better. For non-splitting, the performance is
bad: the network delay of MIP and SR-Iteration are 245.87
and 247.79 respectively. But once the spilt degree goes to 2,
the performance improved a lot! SR-Infinite is the optimal
solution when the splitting can go to infinity. We can see that
as the k£ goes to 4, the solution from MIP can already match
the optimal. This finding is important, since MIP incurs high
complexity. In our example, MIP with & = 4 uses 12.63s,
but MIP with £ =9 uses 189s, while their solution quality is
almost the same. Secondly, when the network and demands are
large, an alternative method is use SR-Iteration to find a quick
solution, even though it incurs 20% higher delay than MIP.
The solution quality of SR-Iteration also improves a lot from
k =1 to k =9, but saturates when k is large. In Fig. 7(c),
for the same dataset, we draw the boxplot to show how split
scale affects the number of paths taken by each flow. The green
arrow is the average number of paths taken under k. We can
see that most flows only take less than three paths even though
they are allowed to take up to k paths. But some demands can
still take advantage of large k. In the split scale k = 9, one
demand is routed to seven different paths! This suggests that
we can assign different splitting degrees to different demands.

C. Infinitely Splittable and Placement — WAN

A flow in Wide-Area-Networks (WAN) typically represents
a set of user flows share the same ingress and egress points.
It is often treated as infinitely splittable in traffic engineering.
We evaluate RINP with infinitely splittable flow in the context
of WAN.

Dataset. We obtain two WAN datasets. The first is ob-
tained from [23]. It presents a publicly available dataset from
GEANT, the European Research and Educational Network.
The GEANT topology consists of 23 nodes with 74 directed
links. The average node degree is 3.217. We randomly sample
12 node-to-node demands in the given traffic matrix. We set
link capacity to 80000 for each link and pick three nodes
not in the source node set and not in the destination set as
compute nodes. The second dataset is obtained by [24]. We
pick topology Abilene, which represents a high-performance
backbone network across USA. It consists of 12 nodes with
30 directed links. The average node degree is 2.5. For the
demand setting, we randomly sample 6 node-to-node demands
in the traffic matrix. The link capacity is 40000 for each link

°© . 2 24 7 o o
2% 0
220 LS 50
g 18 > > > » g 5 o o o
3 xl6ie o ?4 o
o & 5oL O L S YU S S — =
o <N 2 14 =} 3
o ¥ £12{ -~ SRinfinite e T T I
S0 290 e we #2 gt
- > 6 8 » Heuristic SR Iteration 11 A u u
2 3 45 6 7 8 9 10 1 2 3 456 7 8 9

Spilt Scale

(a) Smart
Topology

City

Fig. 7. K-split RINP Routing for Video Analytics Flows

as described in the dataset. We also pick two nodes SNVAng
and IPLSng as compute nodes. Without loss of generality, for
both datasets, we assume the computational resource demand
for each flow equals its traffic volume.

Greedy Computation Allocation vs. Joint Optimization.
To demonstrate the importance of joint optimization of traffic
routing and demand allocation, we develop a baseline algo-
rithm that greedily allocates the flow with the largest compu-
tation load to the most powerful compute node, then conducts
LP based routing optimization for the greedy computation
load allocations. The result is shown in Fig. 8. For topology
GEANT, the network delay of baseline is always above the LP
solution of segment routing. The average increment is about
57.58%. For topology Abilene, the network delay of baseline
is also always above segment routing. The average increment
is about 55.29%.

20, —e— Baseline
® SR-Infinite

—e— Baseline y
*— SR-Infinite s

Network Delay
5 5 8 % 8
N\,
AN
.
Network Delay
o o
s o]
.
N
.

S
\

«
.
.

o
5 "o

/
g
0 —o—F
010205075 1 2 35 5 65 8 9 10
Demand Scale

(b) Abilene

o e—o—0——F 2

010205075 1 2 35 5 65 8 9 10
Demand Scale

(a) GEANT

Fig. 8. Greedy Computation Allocation v.s. Joint Optimization

With Placement vs. Without Placement. We compare
segment routing when the computational capacity is fixed
for each computational node with when the computational
capacity can be freely allocated among computational nodes as
long as the sum of their computational capacity is the same as
the fixed case. The result is shown in Fig. 9. The percentage
represents the ratio of the network delay without placement
over that with placement. For both topologies, the network
delay is the same when the demand scale is not very large.
The reason is that when demand scale is small, the original
fixed computational capacity distribution is enough to handle
all demands that follow the best routes. For topology GEANT,
with placement version outperforms the fixed version when
the demand scale goes up to 6. When demand scale is 10,
the network delay of the fixed version is about 131.0% of the

(b) Network Delay for Various Spilt Scales

Split Scale

(c) Number of Paths per Flow

-
)

131.0%® 12 105.0%8

e~ Without Placement
With Placement 1021
8 1019

109.0%

100.0%

*— Without Placement)
* With Placement 1,%9";},
.

e
5 5 5

110.9%

1043%

Network Delay
Network Delay
S

N s o ow
«
%
3

12 3 10 12 3

4 5 6 71 8 4 5 6 71 8
Demand Scale Demand Scale

(a) GEANT (b) Abilene

Fig. 9. Effect of Flexible Computation Capacity Placement

with placement version. For topology Abilene, with placement
version outperforms the fixed version when the demand scale
goes up to 8. When demand scale is 10, the network delay of
the fixed version is about 105.0% of the network delay of the
with placement version.

Adaptation to Link Failures. We run segment routing
when computational capacity can be freely allocated among
computational nodes under a given budget. For both topolo-
gies, we run it on three different configurations by disabling
some links. The pie chart shows the ratio of the computational
capacity allocated to each computation node. The result for
GEANT is shown in Fig. 10. Blue represents node 3, orange
represents node 13, green represents node 16. Initially, the
allocation of the computational capacity among node 3, 13, 16
is shown as Fig. 10(a). After cutting three bidirectional links
connected to node 16, the allocation is shown as Fig. 10(b).
The computational capacity allocated to node 16 drastically
reduces. After cutting two more bidirectional links connected
to node 13, the allocation is shown in Fig. 10(c). The compu-
tational capacity allocated to node 13 also drastically reduces
and most computational capacity is allocated to node 3. The
result for Abilene is shown in Fig. 11. Blue represents node
IPLSng and orange represents node SNVAng. Initially, the
allocation of the computational capacity among node IPLSng
and node SNVAng is shown as Fig. 11(a). After cutting one
bidirectional link connected to node IPLSng, the allocation
is shown as Fig. 11(b). The computational capacity allocated
to node IPLSng slightly reduces. After cutting one more
bidirectional link connected to node IPLSng, the allocation is
shown as Fig. 11(c). The computational capacity allocated to
node IPLSng reduces further and most computational capacity

(b) Cut Three Links (c) Cut Five Links

(a) Initial Topology

Fig. 10. Capacity Placement Change after Link Failures for GEANT

(a) Initial Topology (b) Cut One Link (c) Cut Two Links

Fig. 11. Placement Change after Link Failures for Abilene

is allocated to node SNVAng.

Impact of Traffic Scaling after Processing. In this part, we
run segment routing when the flow size will change after going
through a computational node. We first take the scale factor
into account in our model for different scale factors. We then
compare it with the case when the traffic scaling is ignored
when calculating the optimal segment routing. The result is
shown in Fig. 12. The percentage represents the ratio of the
network delay when ignoring traffic scaling to the network
delay when considering traffic scaling. For topology GEANT,
the network delay is shown in Fig. 12(a). Except for scale
factor 0.5 and 1, the network delay of ignoring scale factor
is higher than that of considering scale factor. For topology
Abilene, the network delay is shown in Fig. 12(b). Except
scale factor 1, the network delay of ignoring scale factor is
higher than that of considering scale factor.

D. Online Routing Algorithm with Guarantee

Dataset. To evaluate online routing algorithm, we synthe-
size dynamic traffic demands. The topology is the same as
the Smart City problem in Section VII-B. In the graph of 40
nodes, 14 nodes were selected as computing nodes. Without
loss of generality, the ratio between the computing demand
and the flow size is 1 : 1. Each link capacity is 550 units, and
node capacity is 300 units. We pick 8 source-destination pairs.
New flows arrive at the network according to Poisson process,

4.5 —e- Consider Scale Factor
© Ignore Scale Factor

—e— Consider Scale Factor

147.6%®
> e Ignore Scale Factor

216.3%®

133,6% 4.0
d 1834%

>) >
By “ L35
] 1281% o])
o . 030

%4 - 1467%
X3 g o~ Xa2s)
S 1035% o S50 1332% .
= 106.6% @ o7 122.0% —
[0S [} . —
Zz 102.9% Z15 123% o @

- 110.8% §
0%1 83 1.0 100,055 28
114.2961% %"

109
1109.0% ¢
.

Tos 115 2 25 3 35 4 45 5
Scale Factor

05 1 15 2 25 3 35 4 45 5
Scale Factor

(a) GEANT (b) Abilene

Fig. 12. Consider Traffic Scaling vs. Ignore Traffic Scaling

12

and are assigned to each source-destination pair in round-robin
fashion. The time duration of each flow follows lognormal
distribution, i.e., 7 = e#t°Z_ where Z is the standard normal
variable. When a flow is active, the traffic volume follows
Gaussian distribution.

Performance. For online algorithm, we compare two ver-
sions, one with link violation, and one without violation. We
also use the shortest path algorithm as the baseline, and the
upper bound is obtained from the MIP model implemented by
Gurobi. In Fig. 13, the flow arrival rate is two flows/minute,
the lognormal duration parameters are p = 0.974 minutes, and
o = 0.5 minutes. The average flow volume is 85 units. To
evaluate the impact of flow volume variations, we conducted
two experiments with flow volume standard deviation of
10 and 20, respectively. Our online algorithms significantly
outperform the shortest path routing. The accepted traffic of
online algorithm without violation is only slightly lower than
the MIP solution. With link violation allowed, the online
algorithm can accept a little bit more traffic than MIP. Fig. 14
shows the total traffic of active flows over time. This sug-
gests that our online algorithm can efficiently utilize available
communication and computation resources in the network to
support dynamic flows.

50000

I Shoretest Path

[Dual Without Violiation
|l

3 Dual With Violiation

IC

40000

w
o
o
o
o

20000

Accepted Traffi

fuy
o
o
o
o

Demands 1 Demands 2

Fig. 13. Total Accepted Traffic of Dynamic Flows

0] 3500 T S S,
N Y
n 3000 v
3 2500 /—ﬁ/l
© 2000
1500 . .
€ with_vio
1000 .
< —— no_vio
> 500
B request
< o

2,5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

Fig. 14. Active Flow Size Over Time

Violation. In the online routing algorithm, the link violation
theoretical upper bound has been given. But in practice, within
a reasonable demand flow size range, the violation is rare.
To check the actual violation, Fig. 15 plots the Median and
Max link utilization over time. We also plot the boxplot
distribution of link utilization in Fig. 16 and Fig. 17 for
different demand parameter settings. For all the experiments,
the flow arrival rate is still two flows/minute. There are three
settings of flow time duration parameters (u, o): (0.974,0.5),
(0.598,1.0), (0.379,1.2), respectively. Under those settings

=== no_vio, median
—— no_vio, max
=== with_vio, median
—— with_vio, max

0.75

Utilization on Active Link

o
1
rs

30 a0 50

Fig. 15. Link Violation Over Time

for lognormal distribution, the average duration is the same,
but the variance increases from first setting to the last setting.
We also try three average flow sizes of 70, 85, and 100,
with the standard deviation fixed at 10. It is worth noting
that with flow size expectation of 85, the network capacity
is reached !. In Fig. 16, as the average flow size increases, the
link utilization increases. With the same average flow size, as
the duration variance increases, the link utilization decreases,
this is because more dynamic flow duration leads to more
rejected flows by the online routing algorithm. Even though the
maximum utilization can go up to 1.75, utilization on most of
the links are still below one. In Fig. 17, with capacity violation
control, no utilization goes over 1, and the differences between
different flow sizes and different duration variations become
smaller, while the overall trends agree with Fig. 16.
B Flow Size 100

e] P Pl 2] ")) 7

Fig. 16. Link Utilization for Online Routing with Violation

B Flow Size 70
1751 @l Flow Size 85

Link Utilization

B Flow Size 70
1751 @l Flow Size 85
B Flow Size 100

Link Utilization

Fig. 17. Link Utilization for Online Routing without Violation

VIII. CONCLUSION

In this paper, we studied optimal routing in networks
with embedded computational services. We developed routing

!For each demand pair, we calculate its long-term average traffic volume
based on the average flow arrival rate, mean flow duration, and mean flow
size. We then check the feasibility of the long-term average traffic matrix of
all pairs by solving the static LP routing optimization.

optimization models and fast heuristic algorithms that take
into account the unique features of routing with in-network
processing and various routing requirements resulted from
the computation needs of diverse applications. For the dy-
namic demand scenario, we came up with an online routing
algorithm with a performance guarantee. We demonstrated
through evaluations that our models and algorithms are highly
customizable and can achieve close-to-optimal performance
in a wide range of application scenarios. While the current
work is focused on optimizing the network performance, we
will investigate the robustness and resilience of RINP in our
future work. In particular, we are interested in exploring how
traffic routing and computation resource provisioning can help
each other to quickly recover from major failures in networks
with embedded computational services, as demonstrated in our
preliminary results in Section VII-C.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

[2] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined

networking-based vehicular adhoc network with fog computing,” in 2015

IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM). leee, 2015, pp. 1202-1207.

M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,

F. Tufvesson, A. Benjebbour, and G. Wunder, “Sg: A tutorial overview

of standards, trials, challenges, deployment, and practice,” IEEE journal

on selected areas in communications, vol. 35, no. 6, pp. 1201-1221,

2017.

A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,

“Applying nfv and sdn to lte mobile core gateways, the functions

placement problem,” in Proceedings of the 4th workshop on All things

cellular: operations, applications, & challenges, 2014, pp. 33-38.

[5] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518-532, 2016.

[6] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan, “Joint op-

timization of offloading utility and privacy for edge computing enabled

iot,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2622-2629,

2019.

L. Wang, L. Jiao, T. He, J. Li, and M. Miihlhduser, “Service entity

placement for social virtual reality applications in edge computing,” in

IEEE INFOCOM 2018-IEEE Conference on Computer Communications.

IEEE, 2018, pp. 468-476.

M. Rost and S. Schmid, “Charting the complexity landscape of virtual

network embeddings,” in 2018 IFIP Networking Conference (IFIP

Networking) and Workshops. 1EEE, 2018, pp. 1-9.

[9] ——, “Virtual network embedding approximations: Leveraging random-

ized rounding,” IEEE/ACM Transactions on Networking, vol. 27, no. 5,

pp. 2071-2084, 2019.

R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog

computing-enabled internet-of-things: A network perspective,” in /IEEE

INFOCOM 2018-IEEE Conference on Computer Communications.

IEEE, 2018, pp. 783-791.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal

placement of virtual network functions,” in 2015 IEEE Conference on

Computer Communications (INFOCOM). 1EEE, 2015, pp. 1346-1354.

[12] T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental

network function placement,” Journal of Parallel and Distributed Com-

puting, vol. 120, pp. 159-169, 2018.

V. Valls, G. Iosifidis, G. de Mel, and L. Tassiulas, “Online network

flow optimization for multi-grade service chains,” in JEEE INFOCOM

2020-IEEE Conference on Computer Communications. 1EEE, 2020,

pp. 1329-1338.

[14] Z. Cao, S. S. Panwar, M. Kodialam, and T. Lakshman, “Enhancing mo-
bile networks with software defined networking and cloud computing,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1431-1444,
2017.

[3

[t

[4

=

[7

—

[8

—_

[10]

[11]

[13]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou, “Multi-commodity
flow with in-network processing,” in International Symposium on Algo-
rithmic Aspects of Cloud Computing. Springer, 2018, pp. 73-101.

W. Chen, V. Faber, and E. Knill, “Restricted routing and wide diameter
of the cycle prefix network,” DIMACS Series in Discrete Mathematics
and Theoretial Computer Science, vol. 21, pp. 31-46, 1995.

V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using {SOL},” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
223-237.

N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, Tech. Rep., 1976.

N. Buchbinder, J. S. Naor et al., “The design of competitive online
algorithms via a primal-dual approach,” Foundations and Trends® in
Theoretical Computer Science, vol. 3, no. 2-3, pp. 93-263, 2009.
NYDoT, “Traffic volume counts (2014-2019),”
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-
2014-2019-/ertz-hrdr, 2020.

K. Okamoto, “What is being done with open government data? an
exploratory analysis of public uses of new york city open data.”
Webology, vol. 13, no. 1, 2016.

NYDoT, “Nyc street camera real time traffic information,”
https://nyctmce.org/multiview2.php, 2021.

S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 83-86, 2006.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessily,
“SNDIib 1.0-Survivable Network Design Library,” in Proceedings
of the 3rd International Network Optimization Conference
(INOC 2007), Spa, Belgium, April 2007, http://sndlib.zib.de,
extended version accepted in Networks, 2009. [Online]. Available:

http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-

SNDIib-INOC.pdf.gz

