“Can you SEE me now?": A Study of Mobile Video Calls

Chenguang Yu, Yang Xu, Bo Liu and Yong Liu
Department of Electrical and Computer Engineering
Polytechnic Institute of New York University
Brooklyn, NY, USA 11201
{cyu03, yxu10, bliu01}@students.poly.edu, yongliu@poly.edu

ABSTRACT

Video telephony is increasingly being adopted by end con-
sumers. It is extremely challenging to deliver video calls
over wireless networks. In this paper, we conduct a mea-
surement study on three popular mobile video call applica-
tions: FaceTime, Google Plus Hangout, and Skype, in both
WiFi and Cellular networks. Our study is focused on an-
swering the following questions: 1) how they encode and
decode video in realtime under tight resource constraints of
mobile devices? 2) how they transmit the encoded video
smoothly in face of various wireless network impairments,
including bursty loss, highly variable delay and competing
cross-traffic? 3) what is their delivered video conferencing
quality, both video perceptual quality and video delay, un-
der different real mobile network conditions? 4) how dif-
ferent system architectures and design choices adopted by
each system contribute to their delivered quality? Through
detailed analysis of measurement results, we obtain valu-
able insights regarding the unique challenges, advantages
and disadvantages of existing design solutions, and possible
new directions to deliver high-quality video calls in wireless
networks

1. INTRODUCTION

Video telephony is increasingly being adopted by end
consumers. Video calls augment voice calls with live vi-
sual interaction between users. Just like they shift from
fixed landline phones to mobile phones for voice calls,
users prefer to make untethered video calls using their
mobile devices, e.g., smartphones, tablets and laptops,
instead of sitting in front of their desktop computers.
Mobile devices are connected to the Internet using ei-
ther WiFi or Cellular networks, which are known to
be much more heterogeneous and volatile than wire-
line networks. It is already very challenging for wireless
service providers to deliver universal high-quality voice
calls to all their customers. “Can you hear me now?” is
the basic voice call quality question which all providers
try hard to assure their customers that they have a sat-
isfactory answer for, through their services, as well as
commercials. Due to its higher bandwidth requirement,
it is much more challenging to deliver high-quality video

calls over wireless networks. Even though video call ap-
plications are already very popular on various mobile
platforms, none of them is provided by wireless ser-
vice providers. It is therefore not their responsibility
to answer the basic video call quality question, “Can
you SEE me now?”. As a result, there is very limited
understanding about video call quality in wireless net-
works.

Towards obtaining more understanding, we conduct
a measurement study on three popular mobile video call
applications: FaceTime [1], Google Plus Hangout [14],
and Skype [28], in both WiFi and Cellular networks.
Our study is focused on the following questions:

e how they encode and decode video in realtime under
tight resource constraints of mobile devices, such
as battery, CPU, and screen size?

e how they transmit the encoded video smoothly in
face of various wireless network impairments, in-
cluding bursty loss, highly variable delay and com-
peting cross-traffic?

e what is their delivered video conferencing quality,
both video perceptual quality and video delay, un-
der different real mobile network conditions?

e how different system architectures and design choices
adopted by each system contribute to their deliv-
ered quality?

To answer those challenging questions, we leverage
on our previous measurement study of computer-based
video conferencing systems [32]. We extend the ac-
tive and passive measurement methodologies developed
in [32] to work with mobile devices. To account for
the inherent heterogeneity and volatility of wireless net-
works, we measure the three systems under a wide range
of network conditions, including a controlled network
emulator, a campus WiFi network with strong and weak
signal reception, and one of the top-three USA commer-
cial 3/4G network with and without user mobility. We
collect an extensive set of measurement traces at both
packet level and video level. Through detailed analy-
sis of measurement results, we obtain valuable insights

regarding the unique challenges, advantages and disad-
vantages of existing design solutions, and possible new
directions to deliver high-quality video calls in wireless
networks. Specifically, our major findings are summa-
rized as following.

1. With a strong WiFi/Cellular connection, modern
smartphones are capable of encoding, transmitting
and decoding high quality video in realtime.

2. Mobile video call quality is highly vulnerable to
bursty packet losses and long packet delays, which
are sporadic on wireless links with weak recep-
tions.

3. End-to-end video delay is highly correlated to end-
to-end packet delay in cellular networks, regardless
of the signal strength.

4. While FEC can be used to recover random packet
losses, the inability to differentiate congestion losses
from random losses can trigger vicious congestion
cycles, and significantly degrade user video call ex-
perience.

5. Conservative video rate selection and FEC redun-
dancy schemes often lead to better video confer-

encing quality, compared with more aggressive schemes.

The rest of the paper is organized as follows. We
briefly discuss the related work in Section [2} Our mea-
surement platform and methodology are introduced in
Section [3] The key design choices of the three systems
are presented in Section[d] In Section[5] we first present
the delivered video call quality of each system under dif-
ferent wireless environments. We then study how the
quality of each system is affected by network impair-
ments, and compare the efficiency and robustness of
different design choices made by each system. The pa-
per is concluded in Section 6.

2. RELATED WORK

As the popular usage of wireless technologies, there
are a lot of measurement work about cellular and WiFi
performance. Some papers studies the behavior and
characteristics of WiFi network [6, [L9]. The work of
Tan et al.|30] is one of the first empirical study for 3G
cellular network. Their work studied throughput and
other performance characteristics in the 3G environ-
ment. Then, a lot of publications could be found re-
lated to cellular network measurement, like developing
tools to measure performance, studying some explicit
performance properties, measuring performance under
some specific usage environments etc 18| |12, 3| |27,
13]. There are also some studies to compare and con-
trast cellular and WiFi performance [2} 29, [10]. Their
conclusions show that compared with 3G cellular net-
work, WiFi provides better download performance and

smaller latency. Most recently, Huang et al.|16] stud-
ied the performance and power characteristics in the
4G LTE networks. They observe that LTE can offer
higher downlink and uplink throughput than 3G and
even WiFi.

Most of the measurement studies of realtime com-
munications over the Internet were focused on Skype’s
VoIP service. Baset et al [4] first analyzed Skype’s P2P
topology, call establishment protocol, and NAT traver-
sal mechanism. Since then, a lot of papers have been
published on Skype’s overlay architecture, P2P proto-
col, VoIP traffic and the quality of Skype’s voice-over-IP
(VoIP) calls|5}, |15, |7, {17} |33]. Skype’s FEC mechanism
and its efficiency for voice streaming were studied in [17]
33]. In [7], Huang et al. proposed a user satisfaction
index model to quantify VoIP user satisfaction. Cicco
et al.|8] proposed a congestion control model for Skype
VoIP traffic.

More recently, there are some measurement work on
video telephony. Cicco et al.[9] measured the respon-
siveness of Skype video calls to bandwidth variations.
They conclude that Skype’s response time to bandwidth
increase is too long. In [34], we conducted an extensive
measurement study of Skype two-party video calls un-
der different network conditions. Based on the measure-
ment results, we propose models for Skype video calls’
rate control, FEC redundancy, and video quality. In
[32], we investigated system architecture, video genera-
tion and adaptation, packet loss recovery, user quality-
of-experience for three existing multi-party video con-
ferencing solutions: iChat, Google+ hangout, and Skype.

3. MEASUREMENT PLATFORM

FaceTime, Skype, and Google+ Hangout all use pro-
prietary protocols and encode their signaling and data.
Using methodology similar to those developed in [32] for
studying computer-based video conferencing systems,
we measure them as “black boxes”, reverse-engineer
their design choices, and compare their performance
in challenging wireless environment. We performed IP
level packet sniffing, application level information win-
dow capturing, and video level quality analysis. Among
the three, only Google+ offers multi-party conferencing.
We restrict our study to two-party video calls.

3.1 Testbed

3.1.1 Overall Platform

Our measurement platform (shown in Fig. 1)) consists
of two parts: wireless user side and wireline user side.
At the wireless user side, a smartphone is connected to
the Internet through WiFi or Cellular (cellular data ser-
vice is provided by one of the top three US carriers). At
the wireline user side, a PC or Mac is connected to the
Internet through campus Ethernet. Software-based net-

S Network Emulator

B wireshark

B End-User Computer
Access Point

@ Smart Phone

i ®m

‘WiFi Testbed

Cellular Testbed

Figure 1: Measurement Testbed

work emulators are inserted on both ends of the connec-
tion to emulate network conditions in controlled experi-
ments. Packet traces are captured at different points us-
ing Wireshark. Experimental video calls are established
between the smartphone and the computer. To emulate
a consistent and repeatable video call, we choose a stan-
dard TV news video sequence “Akiyo” from JVT (Joint
Video Team) test sequence pool. The sequence has
mostly head and shoulder movements. It is very similar
to a video-call scenario. In order to inject this video
sequence into the video call systems, at the computer
side, we use a virtual video camera tool [11]. Since we
cannot find a virtual camera tool for our smartphone,
we simply focus the smartphone’s camera to a screen
displaying the “Akiyo” video.

3.1.2 Smartphone Hacks

Since Facetime is only available on Apple devices,
we have to use iPhone for our experiments. The in-
tegrated/closed hardware and software design of iPhone
significantly increases the measurement difficulty. We
have to go through several stages of hacks to prepare
the smartphone for measurement study.

1. Privilege escalation: We use a unlocked iPhone
4S, which underwent jailbreak to allow third-party
application installation [25];

2. Measurement tool installation: Several tools are
downloaded from multiple sources. We list their
names, sources, and brief function descriptions in

Table [

3. Remote phone control: All three video call appli-
cations are by default on single task mode, which
means if we switch to another application, the on-
going call will be put on hold and the video will
freeze. In order to run tcpdump or ping on the
iPhone during a video call, we use a computer or
another Android phone (Google Nexus 4) to lo-
gin and control the iPhone via SSH, which will
not interrupt the video call application. For ex-
periments without mobility, we connect the phone
to a computer via a USB cable. Then we use a
software called iTool on the computer to build a

USB tunnel between the localhost and the iPhone.
Then we can access the iPhone from the computer
using the command ssh 127.0.0.1 directly. For
experiments on a moving train, it is not conve-
nient to use a control computer. We instead con-
trol the iPhone using another Android phone. We
set the iPhone to WiFi ad-hoc mode with the help
of MyWi. Then the Android phone can access and
control the iPhone via SSH over WiFi.

Table 1: Measurement Tool List For The Phone
In TestBed

Name Source Description
Skype Apple Skype video call application
Store

Google+ Apple Video call function is embedded in the
Store “Hangout” section

SpeedTest Apple Quick test about current ping value,
Store throughput to a local SpeedTest server

OpenSSH Cydia Enable login to iPhone from a remote
computer

APT 0.7 Cydia Enable downloading application from

HTTPS Debian to iPhone

Method

ping Debian Ping function

top Debian Display the CPU usage of current pro-

cesses

tcpdump Debian Packet sniffing on iPhone

My3G Cydia Force FaceTime using Cellular instead of
WiFi
MyFi Cydia Enable WiFi Adhoc mode on iPhone.

Display Cydia Record the screen of iPhone.
Recorder

3.1.3 Wireless environment setting

To test application performance under different wire-
less conditions, we design a set of WiFi and Cellular
experiments with both weak and strong signals. Mo-
bile users experience different network conditions when
they are in different locations. In our experiments, we
carefully choose several typical locations which can rep-
resent strong signal case or weak signal case. We use
SpeedTest to verify the actual upload throughput. In
WiFi experiments, upload throughput for strong sig-
nal locations is above 10 mbps, and around 200 — 300
kbps for weak signal locations; in Cellular experiments,
upload throughput for strong signal locations is above
1,000 kbps, and for weak signal locations is around
100—150 kbps. To test video call performance with mo-
bility, we also conducted experiments on subway trains
when they run on the ground. For controlled exper-
iments, we use a software network emulator, NEWT
[20] to emulate a variety of network attributes, such as
propagation delay, random packet loss, and available

bandwidth.

3.2 Information collection

For each experiment, we collect information of video
calls from multiple channels.

1. IP Packet Traces: We sniff packets at both the
computer side (with Wireshark [31]) and the smart-
phone side (with command line tcpdump). Col-
lected packet traces are used to analyze proto-
cols and calculate network level statistics, such as
packet delay, packet loss, and loss burst, etc.

2. Video Quality Logs: At the computer side, Skype
and Google+ report technical information about
the received video quality through their applica-
tion windows, such as video rates, frame rates,
RTT, et al, . We use a screen text capture
tool to capture these information periodically.
The sampling interval is 1 second.

3. End-to-end Video Delay Samples: Same as in our
previous work , we use end-to-end video de-
lay as an important measure of video call quality.
End-to-end video delay is defined as the time lag
from a video frame is generated on the sender side
till it is displayed on the receiver’s screen. It con-
sists of video capturing, encoding, transmission,
decoding, and rendering delays.

As illustrated in Fig [2] to measure the one-way video
delay of a video call, we put the computer A and phone
B close to each other. The “Akiyo” video is being
played on computer A. Meanwhile, a stopwatch appli-
cation is also running on A. We then start the video
call between A and B, with the camera of B focused on
the “Akiyo+Stopwatch” video on A’s screen. Through
the video call application, phone B sends the captured
“Akiyo+Stopwatch” video to A. On computer A, we put
the received video window next to the original source
video window. By comparing the readings from the two
stopwatch videos on computer A’s screen, we can get
the one-way video delay from phone B to computer A.
To automatically collect video delay information from
the two stopwatches, we write a script to capture the
screen of computer A once every 100 millisecond, and
then decode the captured stopwatch images using an
Optical Character Recognition (OCR) software.

When the phone and computer are not in the same
location, e.g., in our mobility experiments on subway,
we cannot measure the one-way delay as in Figure[2] In-
stead, we can measure the round-trip video delay using
the scheme illustrated in Figure

There are totally five stopwatch videos during a video
call. Stopwatch (D is a stand-alone application running
on a separate Android phone. During a video call, the
iPhone captures the video of stopwatch @), the captured
video is marked as stopwatch (@) on the iPhone screen.

Received Video Source Video

Computer A

Smart phone B

Figure 2: One-way video delay testbed.

IN0Q.09.23

Figure 3: Round-trip video delay testbed on
subway.

The captured stopwatch video is then sent to the receiv-
ing computer, on which it is displayed as stopwatch).
After this, the receiver focuses its own camera to the re-
ceived stopwatch @) on its own screen, and the captured
video, marked as @), is sent back to the iPhone through
the video call system. The iPhone finally displays the
video received from the computer on its screen, marked
as (0. Round-trip video delay can be calculated as the
reading difference between stopwatch @) and stopwatch
®). Similar to the one-way delay measurement, by pe-
riodically capturing the iPhone screen using a script
and analyzing the captured images using OCR, we can
collect a large number of round-trip video delay mea-
surements.

4. HOW DO THEY WORK - KEY DESIGN
CHOICES

Before investigating user video call experience of all
three systems, we need to understand their design choices
in terms of system architecture, video generation &
adaptation, and packet loss recovery, etc. Leveraging
on our study in for their corresponding com-
puter versions, we are able to discover important de-

sign choices of Google+ and Skype’s mobile versions.
We also obtain good understanding on FaceTime, which
was not covered by our previous study.

4.1 Architecture and Protocol

Similar to its computer version, Google+ mobile ver-
sion is also server-centric. Our mobile phone is always
connected to a Google conferencing server located close
to New York City, with RTT of 14ms to a computer in
our campus network. There is no direct communication
between the phone and the computer in all our exper-
iments. Google+ uses UDP and only switches to TCP
if we deliberately block UDP traffic. All the voice and
video data are encapsulated in RTP packets.

Skype mobile is still hybrid: sometime our mobile
phone connects to the computer directly (mostly when
using WiF1i), sometime it routes the video call through
a relay server (mostly when using Cellular). At the
transport layer, Skype uses UDP or TCP. Compared
with the computer version, Skype mobile is more likely
to use TCP and relay server. This might because it is
more complicated to establish a direct connection be-
tween mobile devices. Instead of RTP, Skype uses its
own protocol to encapsulate voice and video. Skype re-
lay servers are at different locations with RTTs to our
campus network ranging from 4 to 37 ms.

In our WiFi experiments, FaceTime mostly uses di-
rect P2P connection between the smartphone and the
computer. In our Cellular experiments, the smartphone
and the computer are connected through relay servers,
with RTTs to our campus network ranging from 2ms to
20ms. FaceTime always use UDP, no video call can be
established if we block UDP traffic. The architecture
and protocol comparison is summarized in Table

Table 2: System Architecture and Protocol
Comparison
[System [[P2P or Server [UDP or TCP [RTP |
UDP,
Skype Relay server or P2P may use TCP No

UDP, only use

Google+ Server-centric TCP when UDP Yes
is blocked
Facetime WiFi: mostly P2P Always use UDP Yes

Cellular: relay server

4.2 Video Encoding

Network conditions, such as available bandwidth, packet

loss and delay, are inherently dynamic, in wireless en-
vironment. To meet the tight video playout deadline,
only very limited receiver-side buffering is allowed to
smooth out bandwidth variations and delay jitters. To
maintain a smooth video call, the source has to adapt
its video encoding strategy to network conditions. All
three systems are capable of generating video at differ-
ent rates in realtime. We probe their video encoding
parameter ranges by throttling the end-to-end band-

Table 3: Video Rate Ranges and Encoding Pa-

rameters
[System [[Range (kbps) | Resolution [FPS |
Skype 10 - 620 480*360, 320%240 1-12
Google4+ Hangout 20 - 800 480%360, 240*180 1-15
FaceTime 10 - 820 7R 1-30

1, .
o f
0.8]’ I
o7y FPS=15
0.6
c
S
g 051 FPS =30
w
0.4}
0.3}
0.2}
0.1r : Trace 1|
—Trace 2
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Time Interval Between Video Packets (millisec)

Figure 4: CDF Plot of Time Interval Between
Video Packets in Facetime.

width from the smartphone to the computer, using the
network emulator. On the computer side, both Skype
and Google+ report total rate, frame rate and resolu-
tion of the video received from the smartphone in an
application information window. Their video encoding
parameter ranges are reported in Table 3] Using the
same RTP header analysis technique introduced in [32],
we verified that Google+ still uses layered video coding
on mobile phones, thanks to the abundant computation
power on smartphones. Both temporal and spatial scal-
ability are used to generate video in a wide rate range.

Unfortunately, FaceTime reports very limited infor-
mation about its video encoding parameters. We derive
FaceTime’s video rate from the captured video trace,
by discounting FEC packets. (We will describe how we
identify FaceTime’s FEC packets in the following sec-
tion.) To estimate its frame rate, we first calculate the
timestamp difference of two adjacent RTP packets. If
the RTP timestamp difference is zero, they are from
the same video frame. Let A be the minimum non-zero
timestamp difference. Any packet pair with timestamp
difference A must be from two adjacent video frames.
We then use the difference t. of the packet capture time
of the pair to approximate the gap between the genera-
tion time of their corresponding frames. Then the frame
rate can be estimated as 1/¢.. Figureplots the CDF of
inter-arrival time of video packets in two traces. Based
on the high density around 33ms and 66ms, we can infer
the frame rate to be 30 FPS and 15 FPS respectively.
We don’t know FaceTime’s video resolution.

4.3 Loss Recovery

Wireless networks have both congestion losses and

800 0.25 700
—— Total Bit Rate
— Video Rate

- - -Packet Loss Ratio 0s 600

=)
e
a

Bit Rate(kbps)

Bit Rate(kbps)
w a
& 3B
.Hé
S
i
Packet Loss Ratio

=)
o
5]

0.25 1000 025
—Total Bit Rate

—Total Bit Rate
—Video Rate X 900
- - -Packet Loss Ratio|

T 0.2

—— Video Rate
- - -Packet Loss Ratio

0.2

o
i
I

Packet Loss Ratio

Bit Rate(kbps)
[
o
@
Packet Loss Ratio

Q
s

e
o
]

100

' '
C0 100 200 300 400 500 60% 0 100 200
Duration(sec)

300
Duration(sec)

'
400 500 60% G0 100 200 300 400 500 GO%
Duration(sec)

(a) Google’s total rate /video rate (b) Skype’s total rate /video rate (c) FaceTime’s total rate /video rate

adaptation with packet loss ratio

adaptation with packet loss ratio

adaptation with packet loss ratio

Figure 5: Redundancy Adaptation of FaceTime, Skype and Google+ Hangout

random losses. To cope with losses, Skype, Google+
and Facetime all use redundant data to protect video
data. To gain more insights about their loss recovery
strategies, we conduct controlled experiments and sys-
tematically inject random packet losses to path from
the smartphone to the computer. As illustrated in Fig-
ure [p| we started with zero loss rate, then increase loss
rate by 5% every 120 seconds. We record the video rate
and sending rate of each system.

As indicated in Figure Google+’s total send-
ing rate is only slightly higher than its actual video
rate. This is consistent with our finding in for
Google+ computer version, which selectively retrans-
mits lost packets. Through RTP packet analysis, we
verified that Google+ mobile version also employs se-
lective retransmission: lost video packets from the base
layer will be retransmitted, and lost packets from the
upper layers may not be recovered. We showed in
that Google+’s retransmission strategy is highly robust
to packet losses in wireline networks. We will study its
efficiency in wireless networks in the next section. Fi-
nally, Google+ reduces its sending rate and video rate
as the loss rate goes over 10%.

In Figure Skype’s redundancy traffic is signifi-
cantly higher. As packet loss rate increases, the video
rate decreases, while the total sending rate increases.
This agrees with the finding in and that Skype
employs adaptive-but-aggressive FEC scheme. As will
be shown in the next section, Skype’s aggressive FEC
may lead to a vicious cycle. Both video rate and send-
ing rate drop down significantly after the packet loss
rate increases to 15%, but the FEC redundancy ratio is
still very high.

FaceTime’s redundancy ratio in Figurelies in be-
tween Google+ and Skype. We now closely examine its
loss recovery strategy. In Table [l we compare RTP
header traces of FaceTime without and with packet
losses. Without packet loss, RTP packet sequence num-
ber increases at pace 1. All packets carrying the same
timestamp are from a same video frame, the last packet
carries Mark 1. Due to video encoding structure, some

Table 4:]F%’];P Packet Trace of FaceTime
a

No packet loss injected

[Length(byte) | Sequence Number [TimeStamp | Mark |

1013 8593 12819453 0

1013 8594 12819453 0

1010 8595 12819453 1
| 1200 [8596 [12820189 [1 |
| 922 [8597 [12820924 [0 |
| 917 | 8598 [12820024 | 1 |
| 764 [8599 [12821660 [0 |
7538	8600 [12821660	1
771 [8601 [12822396	0	
766	8602 [12822396	1

(b) 15% packet loss injected
[Length(byte) | Sequence Number [TimeStamp | Mark |

461 54231 51971449 0
457 54232 51971449 0
454 54233 51971449 1
1365 54234 51972945 0
1361 54235 51972945 0
1361 54236 51972945 0
1359 54237 51972945 1
287 54238 51974186 0
287 54239 51974186 0
285 54240 51974186 1

frames are larger, and have more packets. But all RTP
packets contain more than 750 bytes. For the trace with
packet loss, immediately following the last packet of a
frame, we spot some packets, (marked in shade), car-
rying the same sequence number and timestamp as the
last packet of the frame. The payload of those packets
are all different from each other, suggesting that they
are not duplicate packets. They have identical length,
which is larger than the length of all the previous pack-
ets in the frame. Finally, with packet loss, all frames are
broken into multiple packets, some with short length,
e.g., 285. Figure [0] plots the packet length distribu-

0.9r
0.8
0.7
0.6

0.5f

Fraction

0.4r

0.3r

0.2r

0.1r

— No packet loss
15% packet loss

0 300 600 900 1200 1500
Packet Length (Byte)

Figure 6: Packet Length CDF Plot of FaceTime

tions with and without packet losses. It is obvious that
FaceTime generates much more shorter packets after we
inject packet losses.

All of these observations strongly suggest that a frame-
based FEC scheme is implemented by FaceTime. Orig-
inal video packets in a frame are put into one FEC
block. Redundancy packets are generated to protect
original packets. A FEC redundancy packet has to be
longer than all original packets it protects. Since it is
generated immediately after a video frame is encoded,
it has the same timestamp as the original video pack-
ets in that frame. Finally, if a FEC block only has one
original video packet, then the FEC redundancy ratio
has to be multiple of 100%, which is too coarse. Also
short FEC blocks (in terms of the number of packets)
is vulnerable to bursty loss. To achieve finer FEC re-
dundancy control and higher robustness against bursty
losses, for a small video frame that can be fit into one
large packet, one should packetize the frame into mul-
tiple small packets, and put them into one long FEC
block. This explains why FaceTime generates more
short packets when packet losses are injected, as illus-
trated in Table [4] and Figure [0}

4.4 Rate Control

To avoid congestion along the video transmission path,
all three applications adapt their sending rates and video
rates to the available network bandwidth. We test their
bandwidth tracking capability through a sequence of
bandwidth limiting experiments. As illustrated in Fig-
ure [/} we use network emulator to set the available
network bandwidth, and then record their sending rate
and video rate. We start with “unlimited” bandwidth,
and record their rates. Both Google+ and Skype set
their video rates between 300 and 400 kbps. FaceTime
starts at 700 kbps. Two minutes into the “unlimited”
bandwidth setting, we set the available bandwidth to
be 200 kbps higher than each system’s current sending
rate, and then keep dropping the bandwidth limit by
100kbps every 2 minutes. While all three system can

pick a video rate lower than the available bandwidth,
their aggressiveness is quite different.

e Skype chooses a very aggressive video rate to fully
utilize the available bandwidth. Since Skype use
FEC, the sending rate even often exceeds the avail-
able bandwidth. This will cause congestion losses,
which in turn may cause more aggressive FEC.

e Google+ also sets video rate close to the available
network bandwidth. Since Google+ uses retrans-
mission, its sending rate is very close to its video
rate, and mostly below the bandwidth constraint.
It won’t trigger many congestion losses.

e When there is bandwidth limit, FaceTime becomes
the most conservative one among the three. It al-
ways reserve a considerable bit rate margin. In-
terestingly, it can always track the available band-
width well. Even though FaceTime also uses FEC,
due to its conservative video rate selection, it will
not trigger congestion losses by itself. So the FEC
redundancy is kept very low in this set of experi-
ments.

4.5 Power Consumption

Compared with computers, mobile devices are much
more constrained by CPU cycles and battery supplies.
It is therefore very important to gauge the CPU and
battery consumption of the three mobile video call ap-
plications. Table [5] reports the CPU consumption of
the top-3 processes when we use each of the three ap-
plications for a five minutes video call on WiFi or Cel-
lular. Since the iPhone has dual-core, the full utiliza-
tion is 200%. To test the power consumption of video

Table 5: Top-3 CPU-consuming Processes

Process | FaceTime Skype I Google+ |
[Cell | WiFi | Cell | WiFi | Cell | WiFi |
mediaserve | 52.3% | 61.3% | 13.2% 12.3% 15.3% 15.5%
backboardd 9.4% 10.5% 8.9% 8.2% 12.0% 12.1%
Skype - - 70.1% | 86.0% - -
EmSea - - - - 138.2% 134.4%
[Total [61.7% [71.8% [92.2% | 106.6% | 165.5% | 161.6% |

call applications, we start a video call for one hour
and continuously monitor the remaining battery life
during the call. In Figure each system consumes
more power over Cellular than over WiFi. This is ex-
pected, as Cellular transceiver consumes more power
than WiFi transceiver. Among the three application,
Google+ is the most power demanding, similar to the
CPU consumption. This might again due to Google+
uses realtime layered coding, which is known to con-
sume more power than non-layered video coding. Face-
Time is slightly more power efficient than Skype, pos-
sibly again because it is an integrated app in iPhone.

- - - Available Bandwidth
= Total Bit Rate
Video Rate 600 RREER

Bit Rate (kbps)

- - - BandWidth Constrain 1000
— Total Bit Rate - - -BandWidth Constrain
Video Rate 900 —Total Bit Rate

Video Rate
800 tema

H
0 i/l \,,u\ -----

H
600 .

7

=]

500

Bit Rate(kbps)

400 \
™
300 W \

:
200 g, !

100

Vo

0 100 200 300 400 500 600 700 800 0 100 200 300
Duration (sec)

Duration(sec)

500 600 700 800 GU 200 400 800 1000 1200

600
Duration(sec)

(a) Google’s total rate /video rate (b) Skype’s total rate /video rate (c¢) FaceTime’s total rate /video rate
adaptation with available bandwidth adaptation with available bandwidth adaptation with available bandwidth

Figure 7: Video Rate Adaptation of FaceTime Skype and Google+ Hangout

ele) O i
Sesl TG O i
SN -0
NALIN
80 R
\\\‘\\\~~
. X SS8s.
gor VRN N
c ~ s Ss
g \s\ l\ ~o
60F TR N
& T TSR
o AN NS REN
S50 A EOCREN
2 |[- 8- Google+ Hangout — WiFi A ~’~§ hR-
=1 a0l %" Google+ Hangout ~ Cellular Y AR
] FaceTime — WiFi R g
FaceTime - Cellular S
30t - B - Skype - WiFi AN
- % - Skype - Cellular AN
-0 No Application x
20 |
0 10 20 30 40 50 60

Duration (minute)

Figure 8: Battery Life Remaining During 1 hour
Video Calls (staring for 90% full)

S. VIDEO CONFERENCING QUALITY UN-
DER NETWORK IMPAIRMENTS

Wireless networks are much more volatile than wire-
line networks. The unique challenge for mobile video
call is to maintain stable realtime video streaming qual-
ity in face of various network impairments, such as ran-
dom and bursty packet loss, long delay and delay jitter,
and time-varying cross-traffic. In this section, we ana-
lyze the impact of network impairments on the delivered
video quality in the three systems.

5.1 Video Conferencing Quality

As with any video streaming service, a user in a video
conferencing is sensitive to the perceptual quality of the
delivered video, which is determined by various encod-
ing parameters, such as video frame size, frame rate,
and quantization levels |21} 22| [23]. The delivered user
perceptual video quality increases as the delivered video
rate increases. Since video conferencing is to facilitate
realtime interaction, users are also highly sensitive to
end-to-end video delays, video playback continuity and
smoothness. To achieve good overall video conferencing
quality, a user’s video data has to be streamed consis-

tently at high rate and low delay, with low rate and
delay variations.

Here we first compare the voice delay of the three sys-
tems over WiFi or cellular with the voice delay of the
integrated voice call service from the service providers.
We use the voice delay measurement technique devel-
oped in [32]. As reported in Table [6] the integrated
voice service is more stable than the three systems. It is
not surprising, given that wireless carriers reserve band-
width for their voice services.

Table 6: Voice Delay (millisec) During A Regu-

lar Phone Call Or Video Calls in 5 Minutes
Wireless Phone FaceTime Skype Google+
Type mean std | mean std | mean std | mean std
Cellular 336.8 32.5 | 554.9 133.8 | 205.2 99.2 | 392.2 345.7
WiFi N/A 325.0 115.8 | 160.3 103.8 | 153.8 123.1

We are more interested in the video quality of the
three systems over either WiFi (Figure E[) or Cellular
(Figure , with strong or weak signal. For each sys-
tem in each network condition, we plot the total video
traffic rate and the one-way video delay collected using
the technique presented in Section [3:2] The rate curves
visually illustrate the video quality variations over time.
The measured video delays not only quantify how much
delay each system introduces to realtime user interac-
tion, but also enable us to assess the video playback
continuity and smoothness. Specifically, spikes in a de-
lay curve are resulted from video freezes. In the ex-
ample of Figure [2| whenever the received video freezes,
the received stopwatch freezes. Meanwhile, the stop-
watch in the source video continues to advance. Conse-
quently, the reading gap of the two stopwatches ramps
up quickly until the freeze stops and new video is ren-
dered in the received video window.

It is also interesting to notice how different systems
recover from video freezes. For FaceTime and Google+,
after each delay spike, video delay jumps back to the
normal level; but in Skype, video delay gradually goes
back to the normal level. We believe this is is due to dif-
ferent policies to handle delayed video frames. In Face-

Time and Google+, whenever there is a video freeze,
they choose not to display subsequent frames with long
delays. Video playback resumes only after a video frame
is received with acceptable delay. That is when the
measured video delay jumps back to the normal level.
Skype chooses to display received frames with long de-
lays. To catch up with the realtime conferencing, Skype
also plays the delayed frames in a fast-forward fash-
ion. This explains the gradual video delay decrease af-
ter each spike.

The major problem of Google+ Hangout is video
freeze, with duration lasting 3 to 5 seconds. Skype also
experiences video freeze. The difference is the duration
of freeze is shorter - most time are within 2 seconds.
But besides freezes, Skype also suffers nonuniform speed
playback. FaceTime has the best performance in terms
of video smoothness among three applications. But
still, freeze happens from time to time, lasting around
0.5 to 1 second. Same video delay measurement was
performed on a moving subway. As showed in Figure
we are surprised by the finding that the round-trip
video delay can go as high as 14 seconds. For Skype,
after a long delay, it takes so long to recover video de-
lay to normal. Video call user had to suffer from de-
layed video playback as long as 100 seconds. Instead,
FaceTime and Google+ choose to give up those delayed
video frames and quickly go back to normal playback
after video freezing.

Given the observed video quality, we want to find out
how various network impairments contribute to video
conferencing quality degradation.

5.2 Impact of Packet Loss

Naturally, we first check whether video freezes are
triggered by packet losses. We identify packet losses by
matching packet traces collected at the sender side and
the receiver side. For FaceTime and Skype, packets can
be matched by their payload even if they go through a
relay server. Google+ relay servers change packet pay-
load, packets are instead matched by their RTP headers.
For FaceTime and Skype, packet losses identified this
way are indeed the end-to-end packet losses. Google+
employs selective persistent retransmission, the identi-
fied packet losses are the end-to-end packet losses not re-
covered by Google+’s retransmission algorithm, which
affect the delivered video quality.

Table 7: Number of Packet Losses Within 2 Sec-

onds Before Video Freezes
Process [FaceTime]] Google+
[Cell | WiFi | Cell | WiFi | Cell | WiFi |
[Before freezing [5.00 [9.98 [3.70 [8.59 [2.63 [4.86]
[Overall | 0.43 | 4.58 | 0.33 | 1.78 | 0.44 | 471 |

Skype

For each video freeze in Figure [0] and [I0] which lasts
for at least 1 second, we count how many packets were
lost in the two-second period immediately before the

3000 15
+ Video delay 14
—o Burst loss 13
_2500f M o
3 M +q12
% 411
< 20007 ;910§
© c
T 198
a lg 0
2 15001 12
z 17 2
S =
> 16 g
g 10001 15 @
]
2 14
[e]
5001 53
2
0 L L n L 1
100 200 300 400 500

Duration (sec)

Figure 12: Impact of Bursty Packet Losses on
Video Freeze In FaceTime over Weak Cellular

freeze. We then calculate the average loss number over
all freezes, and compare it with the average packet loss
number in all two-second periods over the entire exper-
iment. Table [7] shows that in most cases, the average
packet loss number before a video freeze is significantly
higher than the overall average, suggesting a strong cor-
relation between video freezes and packet losses. Mean-
while, it should also be noticed that in some cases (e.g.
Google+ with strong wifi signal in Table E[), the corre-
lation is weak. We conjecture that in those cases video
freezes are mainly due to long packet delays and delay
jitters. We will come back to this issue in Section [5.3

5.2.1 FEC is not efficient enough to recover from
bursty losses in wireless environment

Table 8: Burst Loss Length

Systems WiFi Cellular
Strong | Weak | Strong | Weak
Ly 3.2 752 0.8 80.4
Facetime Lo 0.4 83.4 0.2 4.4
L3y 4 13.6 9 6.2
Ly 17.2 839.8 2.8 48.0
Google+ Lo 2.6 139.2 4.0 13.6
L3y 7.2 18.0 5.2 5.8
Ly 3.2 354.8 7.8 102.4
Skype Lo 0 21.8 1.2 14.0
Ly 1.2 14.8 1.0 8.2

Skype adopts FEC to recover from packet losses. How-
ever, it is well-known that FEC is vulnerable to bursty
packet losses. Generally, for a FEC code, such Reed-
Solomon code, if one FEC block of n packets contains
k original data packets, FEC protection fails whenever
the number of losses experienced by the n packets is
greater than n — k. One solution is to increase FEC
block length n while keeping a low FEC overhead ra-
tio "T’k This requires each FEC block contains video
packets from multiple video frames, especially when the
video encoding rate is low. In video conferencing, video
frames are generated in realtime, long FEC blocks lead
to long FEC encoding and decoding delays. As a re-
sult, FEC blocks in video conferencing have to be short.

Our previous work [32] has demonstrated that Skype’s

10

3000 800 3000 - 800 3000 2000
+ Video delay N N * Video delay Video delay
+ Packet delay|| 0 L : + Packet delay||;q - Packet delay{{1800
2500 — Sending rate 2500F : — Sending rate 2500 — Sending rate
[. B 1600
2 I I Y e t LI
2 2000 . 2 2000f . M . 2 2000 1400
E sog £k . D S0z & 12008
2 2 B : . E £
3 1500 400T 1500 : . 400Z 2 1500 1000 2
3 < 3 € 2 «
H 3008 = 300@ = 800 =
& 1000 & 1000 & 1000
< c c 600
© 200 © . Lot 200 O
500) . . 100 500f o . S 100 500 400
S SqPERCIpp L ST i i S ; ; i 200
ol PR R NN o ik . i s ai i idio dbel oy NI et G e
0 100 200 300 400 500 0 100 200 300 400 500 0 100 2 300 400 500
Duration (sec) Duration (sec) Duration (sec)
(a) FaceTime - strong signal (b) Google+ Hangout - strong signal (c¢) Skype - strong signal
3000 00 3000 » 00 3000 00
. + Video delay R + Video delay
R . Packgtde\ay 700 T - Packgt delay 700 200
2500 3 —— Sending rate 2500 i —— Sending rate [| 2500
= : 600 o | Lo e o 600
8 : RN ©od : 2
£ 2000 . 2 2000 ; £ 2000
E 507 E | i fsoog E 5003
£ & £ H e N a £ =3
z £ 8 I B g
3 1500 400T R 1500F %‘ . 400T T 1500 400
5 QO | B 5 O %
7 T oz 3t 3 <
= 008 = § ‘ 008 = 143008
& 1000 & 1000 A & 1000 i
g 2 i 2
© © j200 © 200
500 50083 500
100 100
ol SRR ol S 1 idl o " o i i e ¥ N
0 100 200 300 400 500 200 300 500 0 100 200 300 400 500
Duration (sec) Duration (sec) Duration (sec)
(d) FaceTime - weak signal (e) Google+ Hangout - weak signal (f) Skype - weak signal

Figure 9: One-way Video Delay for FaceTime Skype and Google+ Hangout over WiFi

3000 800 3000 " = 800 3000 800
+ Video delay N . + Video delay Video delay
- Packet delay - Packet delay| - Packet delay
2500 —— Sending rate 700 — Sending rate 700 2500 —— Sending rate 700
- 600 > S 4600 > 600
2 2 2
2 2000 2 2 2000
E 500 g £ 500 ’g E 500 g
z 2 3 A S
2 1500 400 ."‘_.‘; K] 1500 400 % 2 1500 ."‘_.‘;
B < 3z < 3 =
H 300@ = 300@ = o
& 1000 b : b 1000
s 2 2 .
o] <] Tloo O :
500}
100 t
— o o =
0 2 300 400 50% 0 100 200 300 400 50% 0 100 200 300 400 50%
Duration (sec) Duration (sec) Duration (sec)
(a) FaceTime - strong signal (b) Google+ Hangout - strong signal (c¢) Skype - strong signal
3000 00 3000 00 3000 00
N oo - Video delay + Video delay - Video delay
: - . + Packet delay| - Packet delay| + Packet delay|
2500 : P —Sending rate 700 25001 —Sending rate 700 25001 —Sending rate 00
. oo - i 1
5 : N - {600 iolde00 o 600
2 . . . 2 2
2 2000 2 2000 2 2000
E 5007 E 5007 E 500 @
£ a = & £ a
z 23) g
2 1500 400 % K 400 % 8 %
g 7 : 7 <
‘3 300 @ ‘3 300 @ |§ o
o 1000 o 1000 o
2 2 g
© 200 © 200 ©
100

(] 100 200 300
Duration (sec)

(d) FaceTime - weak signal

0! 400 100 200 300 400
Duration (sec) Duration (sec)

(e) Google+ Hangout - weak signal (f) Skype - weak signal

Figure 10: One-way Video Delay for FaceTime Skype and Google+ Hangout over Cellular

FEC cannot recover from burst losses injected by a net- calls in both strong and weak signal. We can see that
work emulator. Now we investigate the impact of bursty when the video call is over Cellular, packet loss with
losses in real wireless network environment. burst length larger or equal to 2 happened at least 10

Given a stream of packets sent out by the source, our times. As for WiFi, due to higher video throughput,
packet-matching process identifies whether a packet is we see more bursty losses. There are several loss bursts

received or not. In Table [8, we plot the distribution with length larger than 10. It is very hard for FEC
of loss burst length of five groups of 600-second video to recover from those loss bursts. Figure visually

D

o

11

o ~

o

w

Round Trip Video Delay (sec)
N S
Round Trip Video Delay (sec)

C e

-

MR,
O e,

Tlans i J
R A .

B oe
© o

Round Trip Video Delay (sec)

PR R R e
OFRP NWHRUMON®OOPRN®IOA
2,

RV W

o

HAm
AR OT

o e eVt

50 100 200 250 300 50 100

o
o

150
Duration (sec)

(a) FaceTime - trainl

150

Duration (sec)

(b) Google+ Hangout - train

100 150 200 250 300
Duration (sec)

200 250 300

(¢) Skype - train

Figure 11: Round-Trip Video Delay for FaceTime Skype and Google+ Hangout On Moving Subway

Skyline

illustrates the correlation between loss bursts and video
freeze for FaceTime under weak cellular signal.

5.2.2 Skype’s FEC scheme leads to “vicious circle"

There is another problem with Skype’s FEC scheme,
which is more fatal to its video quality. As we discussed
in Section [£:3] and [£.4] Skype aggressively increases its
FEC ratio as packet loss rate goes up. Meanwhile,
Skype doesn’t change its video rate and still tries to
take all the available bandwidth. Whenever there is
congestion, available bandwidth shrinks, and packets
get lost, Skype still try to add more FEC redundant
packets to recover from packet losses. Those FEC re-
dundant packets add fuel to the fire and further increase
packet losses.

In Figure we demonstrate this vicious circle by
adding bandwidth constraint to the WiFi router. We
start with bandwidth cap of 500 kbps. After the send-
ing rate stabilizes in five minutes, we drop the available
bandwidth by 100kbps. Then we plot the video rate,
total sending rate, and one-way video delay in the same
figure. Before the bandwidth drop, the Skype sending
rate is either already higher than the available band-
width (Figure or very close to it (Figure .
After the drop, immediately Skype senses a high loss
ratio and keeps a high FEC redundant ratio (Figure
or increases it (Figure. This leads to large
video delay oscillations. We did the same experiment
with Google+ Hangout and FaceTime. Both of them
keep their sending rates below the bandwidth cap and
video delay is acceptable most of the time.

In practice, the available network bandwidth is more
dynamic than the constant cap. To test how differ-
ent systems cope with changing bandwidth, we added
both fixed bandwidth constraint (1 mbps) and back-
ground TCP connections (total number: 0,1 or 3) to the
WiFi router. Figure [14] shows a similar unstable video
playback pattern on Skype. After a TCP competing
flow was injected, Skype’s video was distorted so much
that even the stopwatch reading in the received video

window cannot be recognized by the OCR application.
Video freeze can go as high as several seconds. Again,
although the video quality of Google+ Hangout and
FaceTime are also impacted by the TCP flows, things
are much better controlled when compared with Skype.

5.3 Impact of Packet Delay

1
0.9+
0.81
0.7r]

0.6

tion

S 0.51

Fra

0.4
0.3
0.2

‘ —— Weak signal ‘

0 . .
0 200 400 600 800 1000
Packet Delay (millisec)

(a) Over WiFi

i
1

Fraction
© o o o o o o
w > (%)) (2] ~ © ©
:

o
[N

— Moving train
Strong signal
— Weak signal
600 700 800

0.1r

300 400 500
Packet Delay (millisec)

(b) Over Cellular

0 100 200
Figure 15: CDF Plot Of One Way Packet Delay

Wireless networks can introduce long packet delays.
In [29], a ping-style measurement show that in New

12

700 ; ; 3000
- - - Available Bandwidth
—— Total Bit Rate —
600~ i
Video Rate 12500 §
500k = == mm e e One-way Video Delay E
& ! 12000 X
Q . K]
g 400 0 mmmemmmm e e oo a
2 11500 o
& 300 g
= >
m 1000 @
200 |§
g
100 1500 G
0 ‘ “Jg
0 100 200 300 400 500 600
Duration(sec)
(a) FaceTime
700 T T 23000
- - - Available Bandwidth ||
—Total Bit Rate |
600 Video Rate 42500 ~
- One-way Video Delayy|| §
500 RN
. ¢/ #2000 =
) {4
S 400 s
3 11500 o
€ 300k S
= 300¢ : S
¢ >
-, 11000 &
i
Q
=
{500 ©
0 %
0 100 200 300 400 500 60
Duration(sec)
(c) Skype I

700 w w 3000
- - - Available Bandwidth
——Total Bit Rate —
600 5
| Video Rate 12500 é
- One-way Video Dela =
500} - === =======--~ : Y W E
- . 12000 >,
ol s :
3 NN1500 ©
& 300} {2
= >
m 1000 @
200¢ S
i o
AR c
100 ‘ " %500 o
0 : : : : : Q
0 100 200 300 400 500 600
Duration(sec)
(b) Google
700 7 : : : 3000
i1 |~ - -Available Bandwidth
;i |—Total Bit Rate
6001 ’ Video Rate 12500 ~
- One-way Video Delay §
500 =
. 2000 €
2 g
G400 - g g g e g
2 " i 1500 o
s L 1 T S
ot 300 VY HS S
= ? z
: . i ‘i] 11000 &
200F 43, b 1
. i, i H W s (]
o H i s
100%%&“ 1500
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ %
0 50 100 150 200 250 300 350 40
Duration(sec)

(d) Skype II

Figure 13: Video Delay Variations After Available Bandwidth Changes

York, NY, the average RTT of WiFi and Cellular is
111.9 and 282.0, respectively, and New York’s RTT per-
formance is already on the upper-middle class among all
15 metro areas. We also measure the one-way packet
delay between our video sender and receiver. Figure
shows that one-way delay variance could go as high as
400 ms. To cope with this, a buffer at video side must
be set and a quite a lot of delay will be introduced.

Table [9] compares the average packet delay within
two seconds immediately before a video freeze with the
average delay over the whole experiments with weak
WiFi/Cellular signal. It is noted that packet delay right
before freezes are higher, especially in WiFi.

Table 9: Average Packet Delay Within 2 Sec-
onds Before Video Freeze

Process [FaceTime | Skype [Google+ |
[Cell [WiFi | Cell | WiFi | Cell | Wil |

[Before freeze(ms) [155.7 [172.2 [83.4 [1384 [154.5 [622.6 |
[Overall (ms) | 94.3 | 61.7 | 85.6 | 274.2 | 155.7 | 87.0 |

To correlate user-perceived video delay with end-to-
end packet delay, we calculate the correlation coeffi-
cients between the two at different time lags. Specif-
ically, Let Dy (t) be the measured delay of a packet cap-
tured at the receiver side at its local clock time ¢; D, (t)
be the stopwatch reading difference recognized from the
receiver screenshot captured at its local clock time t.
Using the collected packet delay and video delay traces,
we can estimate the cross-correlation function between
video delay and packet delay as:

E[(Dy(t +7) — Du)(Dy(t) — Dy)]
VEI(Du(t) = Do)2E[(Dy(t) = Dy)?]

Yo,p(T) =

)

where D, and Dp are the observed average video and
packet delay in each experiment. Note, due to video
playback buffering, decoding and rendering delays, the
video displayed in the received video window at time
t are decoded from packets received before t. So the
maximum cross-correlation should be observed at some

13

_— Total Bit Rate Video Rate - One-way Video De\ayJ [— Total Bit Rate
1000~ . . P ' 23000 1000 .
No TCP| 1TCP . BTCP| INo TCP|

900
800~
700~

900
800
700
600
500
400

N
a
=3
s]

Bit Rate(kbps)
o
<}
S <
D
=
-

Bit Rate(kbps)

One-way Video Delay (milisec)

Video Rate
%TCP‘

- One-way Video Delay — Total Bit Rate Video Rate - One-way Video Delay
. 3000 700~ ' r —— 3000
3TCP No TCP| :

N
o
o3
=]
N
a
=3
s]

ilisec)

i E
I 2000

i 1500
1]

Bit Rate(kbps)

One-way Video Delay (milisec)
]
=1
3

One-way Video Delay

0 100 200 300 400 500 600 700 800 90% c0
Duration(sec)

(a) FaceTime

Figure 14:

.8 .8
— Skype — Skype
0.7}{— FaceTime 0.7}{ — FaceTime
— Google+ — Google+

Correlation Coefficient
Correlation Coefficient

oF I W] °

Correlation Coefficient

100 200 300 400 500 600 700 800 90%
Duration(sec)

(b) Google+ Hangout

00 100 200 300 400 500 600 700 800 90%
Duration(sec)

(c) Skype

Video Delay Variations When Competing With TCP Flows

— Skype
FaceTime 07
— Google+

— Skype
FaceTime
— Google+

Correlation Coefficient

-3 -2 2 3 -3 -2 2

= 0 1 - 0 1
Time Shift (second) Time Shift (second)

(a) WIiFi - strong signal (b) WiFi - weak signal

(c) Cellular - strong signal

-2 2 3] -2

= 0 1 - [1
Time Shift (second) Time Shift (second)

(d) Cellular - weak signal

Figure 16: Cross-Correlation coefficient function between one-way video delay and packet delay vs.

time shift

7 > 0. As plotted in Figure the correlation is not
significant in strong WiFi networks, but is very obvious
for weak WiFi, and Cellular, strong or weak. This is
mainly because Cellular introduces longer packet delays
than WiFi even with strong signals.

6. CONCLUSION

In this paper, we presented our measurement study
on mobile video call systems. Through an extensive set
of measurements over a wide range of wireless network
conditions, we showed that mobile video call quality
is highly vulnerable to bursty packet losses and long
packet delays; end-to-end video delay is highly corre-
lated to end-to-end packet delay in cellular networks,
regardless of the signal strength; while FEC can be
used to recover random packet losses, the inability to
differentiate congestion losses from random losses can
trigger vicious congestion cycles; and conservative video
rate selection and FEC redundancy schemes often lead
to better video conferencing quality. Insights obtained
from this study can be used to guide the design of new
solutions that can deliver high-quality video calls in
wireless networks.

7. REFERENCES

[1] Apple Inc. Facetime for iphone. http://www.
apple.com/iphone/features/facetime.htmll

[2] A. Balasubramanian, R. Mahajan, and

A. Venkataramani. Augmenting mobile 3g using
wifi: Measurement, design, and implementation.
In Proceedings of the 8th international conference
on Mobile systems, applications, and services,
pages 209-222, June 2010.

N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: A measurement study and implications
for network applications. In Proceedings of
Internet Measurement Conference, pages 280293,
November 2009.

S. A. Baset and H. G. Schulzrinne. An analysis of
the skype peer-to-peer internet telephony
protocol. In Proceedings of IEEE INFOCOM,
pages 1-11, April 2006.

D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and
D. Rossi. Tracking down skype traffic. In
Proceedings of IEEE INFOCOM, pages 261-265,
Apr 2008.

V. Brik, S. Rayanchu, S. Saha, S. Sen,

V. Shrivastava, and S. Banerjee. A measurement
study of a commercial-grade urban wifi mesh. In
Proceedings of Internet Measurement Conference,
pages 111-124, October 2008.

K. Chen, T. Huang, P. Huang, and C. Lei.
Quantifying skype user satisfaction. In
Proceedings of ACM SIGCOMM, volume 36, Oct

http://www.apple.com/iphone/features/facetime.html
http://www.apple.com/iphone/features/facetime.html

14

[10]

[11]

[12]

[13]

[21]

2006.

L. D. Cicco, S. Mascolo, and V. Palmisano. A
mathematical model of the skype voip congestion
control algorithm. In Proceedings of IEEE
Conference on Decision and Control, Dec 2008.
L. D. Cicco, S. Mascolo, and V. Palmisano. Skype
video congestion control: an experimental
investigation. Computer Networks, 55(3):558 —
571, Feb 2011.

P. Deshpande, X. Hou, and S. R. Das.
Performance comparison of 3g and metro-scale
wifi for vehicular network access. In Proceedings
of Internet Measurement Conference, pages
301-307, November 2010.

e2eSoft. Vcam: Webcam emulator.
http://www.e2esoft.cn/vcam/.

A. Elmokash, A. Kvalbein, J. Xiang, and K. R.
Evensen. Characterizing delays in norwegian 3g
networks. In Passive and Active Measurement
Conference, pages 136—146, March 2012.

A. Gember, A. Akella, J. Pang, A. Varshavsky,
and R. Caceres. Obtaining in-context
measurements of cellular network performance. In
Proceedings of Internet Measurement Conference,
pages 287-300, November 2012.

Google+. Homepage.
https://plus.google.com/.

S. Guha, N. Daswani, and R. Jain. An
Experimental Study of the Skype Peer-to-Peer
VoIP System. In Proceedings of the 5th
International Workshop on Peer-to-Peer Systems,
pages 1-6, Santa Barbara, CA, February 2006.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A close examination of
performance and power characteristics of 4g lte
networks. In Proceedings of the 10th international
conference on Mobile systems, applications, and
services, pages 225-238, June 2012.

T. Huang, K. Chen, and P. Huang. Tuning skype
redundancy control algorithm for user
satisfaction. In Proceedings of IEEE INFOCOM,
pages 11791185, April 2009.

K. Jang, M. Han, S. Cho, H.-K. Ryu, J. Lee,

Y. Lee, and S. Moon. 3g and 3.5g wireless
network performance measured from moving cars
and high-speed trains. In Proceedings of ACM
MICNET, pages 19-24, September 2009.

K. LaCurts and H. Balakrishnan. Measurement
and analysis of real-world 802.11 mesh networks.
In Proceedings of Internet Measurement
Conference, pages 123-136, November 2010.
Microsoft Resarch Asia. Network Emulator for
Windows Toolkit (NEWT).
http://blogs.msdn.com/b/lkruger.

Y.-F. Ou, T. Liu, Z. Zhao, Z. Ma, and Y. Wang.

Model the impact of frame rate on perceptual
quality of video. In Proc. of IEEE ICIP, 2008.

[22] Y.-F. Ou, Z. Ma, and Y. Wang. A novel quality
metric for compressed video considering both
frame rate and quantization artifacts. In Proc. of
Intl. Workshop Video Processing and Quality
Metrics for Consumer (VPQM), Scottsdale, AZ,
Jan. 2009.

[23] Y.-F. Ou, Y. Xue, Z. Ma, and Y. Wang. A
Perceptual Video Quality Model for Mobile
Platform Considering Impact of Spatial,
Temporal, and Amplitude Resolutions. In IEEFE
Workshop on Image, Video, and Multidimensional
Signal Processing, pages 117 — 122, Jun. 2011.

[24] Paul Spoerry. Hidden features in google+
hangouts. http://plusheadlines.com/hidden-
features-googleplus-hangouts/1198/.

[25] redsnOw. Homepage.
http://blog.iphone-dev.org/.

[26] Renovation Software. Text grab for windows.
http://www.renovation-software.com/en/
text-grab-sdk/textgrab-sdk.html.

[27] Z. Shafiq, L. Ji, A. Liu, J. Pang, and J. Wang. A
first look at cellular machine-to-machine traffic -
large scale measurement and characterization. In
Proceedings of ACM SIGMETRICS/Performance,
pages 65-76, June 2012.

[28] Skype Inc. Skype features.
http://www.skype.con.

[29] J. Sommers and P. Barford. Cell vs. wifi: On the
performance of metro area mobile connections. In
Proceedings of Internet Measurement Conference,
pages 301-314, November 2012.

[30] W. L. Tan, F. Lam, and W. C. Lau. An empirical
study on 3g network capacity and performance. In
Proceedings of IEEE INFOCOM, pages
1514-1522, May 2007.

[31] Wireshark. Homepage.
http://www.wireshark.org/.

[32] Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony
for end-consumers: Measurement study of
google+, ichat, and skype. In Proceedings of
Internet Measurement Conference, pages 371-384,
November 2012.

[33] T. yuan Huang, K. ta Chen, and P. Huang. Could
skype be more satisfying? a QoE-Centric study of
the fec mechanism in an internet-scale voip
system. IEEE Network, 24(2):42, Mar 2010.

[34] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, and
Y. Wang. Profiling skype video calls: Rate control
and video quality. In Procecdings of IEEE
INFOCOM, pages 621-629, March 2012.

http://www.e2esoft.cn/vcam/
https://plus.google.com/
http://blogs.msdn.com/b/lkruger
http://blog.iphone-dev.org/
http://www.renovation-software.com/en/text-grab-sdk/textgrab-sdk.html
http://www.renovation-software.com/en/text-grab-sdk/textgrab-sdk.html
http://www.skype.com

	Introduction
	Related Work
	Measurement Platform
	Testbed
	Overall Platform
	Smartphone Hacks
	Wireless environment setting

	Information collection

	how do they work - key design choices
	Architecture and Protocol
	Video Encoding
	Loss Recovery
	Rate Control
	Power Consumption

	Video Conferencing Quality under Network Impairments
	Video Conferencing Quality
	Impact of Packet Loss
	FEC is not efficient enough to recover from bursty losses in wireless environment
	Skype's FEC scheme leads to ``vicious circle"

	Impact of Packet Delay

	Conclusion
	References

