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ABSTRACT
Video telephony requires high-rate and low-delay voice and
video transmission. It is challenging to deliver high-quality
video telephony to end-consumers through the best-effort In-
ternet. In this paper, we present our measurement study on
three popular video telephony systems: iChat, Google+, and
Skype. Through a series of carefully designed passive and
active measurements, we are able to unveil important infor-
mation about their design choices and performance, includ-
ing application architecture, video generation and adapta-
tion schemes, loss recovery strategies, end-to-end voice and
video delays, resilience against bursty losses. Obtained in-
sights can be used to guide the design of applications that
call for high-rate and low-delay data transmissions under a
wide range of “best-effort" network conditions.

1. INTRODUCTION
The Internet has fundamentally changed the way peo-

ple communicate, ranging from emails, text-messages,
blogs, tweets, to Voice-over-IP (VoIP) calls, etc. We are
now experiencing the next big change: Video Telephony.
Video telephony was originally conceived in 1920s. Due
to its stringent bandwidth and delay requirements, for
years, business customers have been paying high prices
to utilize specialized hardware and software for video
encoding, mixing and decoding, and dedicated network
pipes for video distribution.Video telephony had little
success in the end-consumer market, until very recently.
The proliferation of video-capable consumer electronic
devices and the penetration of increasingly faster res-
idential network accesses paved the way for the wide
adoption of video telephony. Two-party video chat and
multi-party video conferencing services are now being
offered for free or at low price to end-consumers on var-
ious platforms. Notably, Google+ Hangout [11], Apple
iChat [15], and Skype Video Calls [26] are among the
most popular ones on the Internet.

Video conferencing is more challenging than VoIP
and video streaming. Compared with voice, video is
much more bandwidth-demanding. While Skype en-
codes high quality voice at 40kbps, a Skype video call

can easily use up 900kbps [32]. Compared with video
streaming, video conferencing has much tighter delay
constraints. While seconds of buffering delay is often
tolerable even in live video streaming, in video confer-
encing, user Quality-of-Experience (QoE) degrades sig-
nificantly if the one-way end-to-end video delay goes
over 350 milli-seconds [17]. To deliver good conferenc-
ing experience to end-consumers over the best-effort In-
ternet, video conferencing solutions have to cope with
user terminal and access heterogeneity, dynamic band-
width variations, and random network impairments, such
as packet losses and delays. All these have to be done
through video generation and distribution in realtime,
which makes the design space extremely tight. This
motivates us to conduct a measurement study on three
existing solutions: iChat, Google+, and Skype. Our
objective is to investigate how they address the previ-
ously mentioned challenges, and how well they do it on
the Internet?. We study the following questions:

1. What are their video conferencing topologies: peer-
to-peer, server-centric, or hybrid of the two?

2. How do they generate and adapt video to cope with
user heterogeneity and bandwidth variations? Do
they encode multiple versions of a user’s video and
send different versions to different receivers, or
they generate multiple video layers and send dif-
ferent subsets of layers to different receivers?

3. How are voice and video transmitted to simulta-
neously meet the high-rate and low-delay require-
ments? How are voice and video of different users
mixed and synchronized?

4. How robust are these systems against network im-
pairments? Do they user Forward-Error-Correction
(FEC) or Automatic Repeat-reQuest (ARQ)? What
is their resilience against bursty packet losses?

5. Ultimately, how good is user conferencing experi-
ence? what are their perceived video quality, end-
to-end voice and video delay, and the synchroniza-
tion of voice and video?
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It is admittedly challenging and ambitious to come
up with conclusive answers for all these questions. It is
definitely NOT our intention to benchmark those three
systems. And it is NOT of our interest to promote any
of them. Instead, the driving-force for our study is to
investigate how to deliver video telephony on the Inter-
net through measuring working systems. We are happy
to share with the community the findings and insights
obtained from our study, which can hopefully shed some
lights on the design of an increasing array of applica-
tions that call for high-rate and low-delay data trans-
missions under a wide range of “best-effort” network
conditions. The rest of the paper is organized as fol-
lows. We briefly talk about related work in Sec. 2. The
measurement platform is introduced in Sec. 3. Then we
study the application architectures of three systems in
Sec. 4. The video generation and adaptation strategies
are investigated in Sec. 5. Their voice and video delay
performance is measured in Sec. 6. In Sec. 7, we inves-
tigate the loss recovery strategies of the three systems,
and measure their resilience against bursty losses and
long delays. The paper is concluded with a summary of
findings in Sec. 8

2. RELATED WORK
Most previous measurement work on Skype focused

on its VoIP service. Baset et al [1] first analyzed Skype’s
P2P topology, call establishment protocols, and NAT
traversal mechanism. Since then, a lot of papers have
been published on Skype’s overlay architecture, P2P
protocol, and VoIP traffic [2, 12]. Some other studies [3,
14, 31] focused on the quality of Skype’s voice-over-IP
(VoIP) calls. Huang et al. investigated Skype’s FEC
mechanism and its efficiency for voice streaming [14,
31]. In [3], the authors proposed a USER Satisfaction
Index model to quantify VoIP user satisfaction. Cicco et
al. [4] proposed a congestion control model for Skype
VoIP traffic. All of these studies only focused on the
voice service of Skype, did not consider its video service.

More recently, there are some measurement work on
video telephony. Cicco et al. [5] measured the respon-
siveness of Skype video calls to bandwidth variations.
They conclude that Skype’s response time to bandwidth
increase is long. In [32], we conducted an extensive
measurement of Skype two-party video calls under dif-
ferent network conditions. Based on the measurements,
we propose the models for Skype video calls’ rate con-
trol, FEC redundancy, and video quality. According
to a 2010 survey [18], most of the eighteen surveyed
multi-party video conferencing systems before Skype
and Google+ are sever-based. The maximum number
of conferencing participants supported by each system
ranges from 4 to 24.

3. MEASUREMENT PLATFORM

Our video telephony measurement effort was initi-
ated in December 2010, right after Skype introduced its
beta service of multi-party video conferencing. Since
then, we have been continuously taking measurement
of Skype. In June 2011, Google+ Hangout introduced
video conferencing service for users in friend circles. To
obtain a broad view, we extended our study to Google+,
as well as, Apple’s iChat service. All three systems
use proprietary protocols and encrypt data and signal-
ing. There is very limited public information about
their architecture, video encoding and distribution algo-
rithms. Through a combination of sniffing packets, cap-
turing statistics from application windows, and moni-
toring end-to-end video performance, we unveiled im-
portant information about their key design choices.
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Figure 1: Measurement Testbed

As illustrated in Fig 1, our measurement platform
consists of three major components: local testbed within
NYU-Poly campus network, remote machines of friends
distributed over the Internet, and Planetlab [22] and
Glass Server nodes [27] at selected locations. Exper-
imental video calls are established either between our
local machines, or between local machines and remote
friends’ machines. Planetlab and Glass Server nodes
are employed for active probing to geolocate video con-
ferencing servers. To emulate a video call, we choose a
standard TV news video sequence “Akiyo” from JVT
(Joint Video Team) test sequence pool. The sequence
has mostly head and shoulder movements. It is very
similar to a video-call scenario. We inject the video
sequence into video conferencing systems using a vir-
tual video camera tool [7]. This ensures the transmitted
video content are consistent and repeatable. To emulate
a wide range of network conditions, we install software-
based network emulator, NEWT[20], on our local ma-
chines. It emulates a variety of network attributes, such
as propagation delay, random packet loss, and avail-
able bandwidth. As illustrated in Fig 1, we use Wire-
shark [30] to capture detailed packet-level information
on both ends of network emulators.Skype, Google+ and
iChat all report technical information about video qual-
ity through their application windows, such as video
rates, frame rates, RTT, et al, [21]. We use a screen
text capture tool [23] to capture these information pe-
riodically. The sampling interval is 1 second.
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4. VIDEO CONFERENCING TOPOLOGY
There are three architectures for networked applica-

tions: server-client, peer-to-peer, and hybrid of the two.
Skype delivers a scalable VoIP service using P2P, where
users connect to each other directly as much as possi-
ble. In a video conference, a source encodes his video
at a rate much higher than voice, and might have to
send the video to multiple receivers. From bandwidth
point of view, a pure P2P design might not be sustain-
able. We now investigate the application architectures
adopted by the three video telephony systems.

4.1 Methodology
For each system, we set up video calls and use Wire-

shark [30] to capture packets sent out and received by
each computer. Each user in the conference generates
voice and video packets constantly at significant rates.
In our Wireshark analysis, we capture those TCP and
UDP sessions, whose durations are long enough (at least
half of the conference session time) with significant flow
rates (larger than 5kbps), as voice or video flow ses-
sions. To get the right topology and differentiate be-
tween signaling packets, video packets and voice pack-
ets, we conduct three types of experiments. For the
first experiment, every user set his video and voice on
to form a video conference. In the second experiment,
users choose to only set their microphone on to form
a voice conference. For the third experiment, all users
shut down videos and mute their voices. This way, we
can identify voice flows, video flows, and signaling flows.

4.2 iChat is P2P
iChat is P2P and employs a star topology as shown

in Fig. 2(a), where the central hub is the conference ini-
tiator, the user who initiated the conference. Only the
conference initiator has the right to add people into the
conference or close the entire conference. A normal user
sends one UDP flow, combining his video and voice in-
formation together, to the initiator. At the same time,
that the normal user receives other participants’ video
and voice information through one UDP flow from the
initiator. Voice and video are transported using RTP
protocol [13]. Participants use UDP port 16402. Nor-
mal users only have connection to the initiator. No
direct UDP flow exists between normal users.

4.3 Google+ is Server-centric
Google+ video calls, both two-party and multi-party,

always use server-centric topology illustrated in Fig.
2(b). Each user sends his video and voice to a dedi-
cated proxy server and also receives others’ video and
voice from that server. There is no direct transmissions
between users. Generally, users choose different dedi-
cated proxy servers. Thus, the proxy servers need to
communicate with each other to exchange user’s video

and voice data. Each user opens four connections with
his proxy server on the same server port (Port 19305).
Most of the time, these four connections all use UDP. In
very rare cases, TCP is used. There is a trick [21] that
allows us to access various statistics of Google+. The
statistics show that two of the four flows carry video
and voice respectively. Google+ also uses RTP proto-
col to transmit video and voice. The other two flows’
payloads conform to the format of RTCP protocol. We
infer that those two flows carry signaling information.

4.4 Skype is Hybrid
For two-party video calls, Skype uses direct P2P trans-

mission for voice and video if the two users can establish
a direct connection [32]. When three or more users are
involved, the network topology is shown in Fig. 2(c).
Voice is still transmitted using P2P. Similar to iChat,
the conference initiator acts as the central hub. A nor-
mal user uploads his voice to the initiator and down-
loads other users’ voice from the initiator. In a con-
ference with three users, the upload flow rate from a
normal user to the initiator is around 40kbps. And the
download rate from the initiator to that user is around
50kbps, which is less than the total rate of two separate
voice flows. This indicates that the initiator might use
sound mixing technique to combine voices of multiple
users into one flow. For video transmission, each user
uploads his video to a Skype server, which relays the
video flow to all other users in the conference. Different
users normally choose different relay servers. All Skype
servers encountered in our measurements are all in the
same subnet of 208.88.186.00/24.

Skype mostly uses UDP flows for voice and video
transmission. TCP is used in very rare cases. Different
from Google+ and iChat, Skype does not use RTP and
RTCP. In addition to voice and video flows, we also ob-
serve some small rate flows between servers and users.
We conjecture that these small flows are for signaling.

4.5 Conferencing Server Placement
High video data rates drive Google+ and Skype to

employ servers for video relay. If servers are not prop-
erly provisioned and selected for users, video relay will
incur long delays that significantly degrade the experi-
ence of realtime interaction between conferencing users.
To determine the server location of Skype and Google+,
we set up video conferences with our friends all around
the world. Table 1 shows the Google+ server IP ad-
dresses used by our friends from different locations. When
using a popular geolocation tool Maxmind [19] to locate
those IP addresses, we were surprised that all Google+
server IP addresses are geolocated to Mountain View,
USA. However, this seems not correct. In Table 1, we
also report the measured RTT between our friends’ lo-
cations and their corresponding Google+ servers. The
result shows that those servers are not far from our



4

Player 1 

Initiator 

Player 2 

Voice && Video 

Flow 

(a) iChat

Player 1 

Player 2 

Player 3 

Voice && Video 

Flow 

Server 1 

Server 2 

Server 3 

(b) Google Plus Hangout

Player 1 

Initiator 

Player 2 

Voice Flow 

Video Flow 
Server 3 

Server 1 Server 2 

(c) Skype multi-party

Figure 2: Video Conferencing Topology of Three Systems

remote friends’ locations, except for two cases in Aus-
tralia. Thus, we infer that Google+ hangout locates
servers all around the world.

Table 1: Google+ Hangout Server IP Addresses
Friend Location Server IP RTT (ms)

Hong Kong, CHN 74.125.71.127 3.49
Armagh, UK 173.194.78.127 8.88

Rio de Janeiro, BRA 64.233.163.127 9.02
New York, USA 173.194.76.127 14.2

Aachen, DE 173.194.70.127 20.00
Toronto, CA 209.85.145.127 26.76

San Jose, USA 173.194.79.127 28.89
Brisbane, AU 72.14.203.127 147
Canberra, AU 74.125.31.127 147

We did similar experiments for Skype. We found that
the server IP addresses from the above locations all
locate in 208.88.186.00/24. Maxmind [19] states that
those servers all locate in Estonia. We select nodes
across the world in PlanetLab to measure RTT to Skype
servers in Table 2. Even if we assume that bits propa-
gation speed is 3 · 108meters/sec, the round-trip prop-
agation time between New York and Estonia is about
44.4ms (11,314km)[16], which is even larger than the
RTT got by using Ping in Table 2. Thus, Skype servers
can’t be located in Estonia. From the ping result in Ta-
ble 2, we infer that Skype servers are located in some
place around New York City. From nodes located in
New York and Hong Kong, we also pinged all possible
IP addresses in the subnet of 208.88.186.00/24. The
RTT results are consistent with the corresponding val-
ues from these two locations listed in Table 2. This
suggests that those Skype servers are likely in the same
physical location.

5. VIDEO GENERATION AND ADAPTATION
In a video conference, each source encodes his video

in realtime. To cope with network bandwidth varia-
tions, the encoded video rate has to be adapted to the
available bandwidth. In multi-party video conferenc-
ing, each source has multiple receivers, potentially with
different downloading capacities. In a one-version de-
sign, a source generates single video version that can be

Table 2: RTT between Nodes and Skype Server
Location RTT (ms)

New York, USA 25.9
Washington, USA 31.3

Vancouver, CA 61.41
San Jose, USA 67.5
London, UK 99.2
Brisbane, AU 266
Canberra, AU 222

Rio de Janeiro, BRA 176
Hong Kong, CHN 226
Saarbrucken, DE 138.00
Guayaquil, EC 111

Oulu, FIN 150.96
Tel Aviv, IL 207

West Bengal, IN 324

downloaded by the weakest receiver, and sends that ver-
sion to all receivers. It is more desirable for a source to
send different receivers different video qualities, max-
imally matching their download capacities. In a sim-
ple multi-version design, a source uses different video
encoding parameters to generate multiple versions of
the same video, and simultaneously upload those ver-
sions to the server/receivers. One obvious drawback
is that, as end-host, a source might not have enough
bandwidth to upload multiple versions. Alternatively,
a source can send one copy of his video to a server, which
then transcodes it into multiple versions at lower quali-
ties. The third option is the multi-layer design, where a
source encodes a video into multiple layers, using the re-
cent scalable video coding techniques, such as SVC [25]
or MDC [28]. A receiver’s perceived video quality in-
creases as more video layers are received. While multiple-
layer coded video incurs coding overhead, recent ad-
vance in SVC coding has brought down the overhead
to 10% [29]. With multi-layer coding, a source only
needs to send out all layers using upload bandwidth
slightly higher than the one-version design, and realizes
the effect of multi-version design by allowing different
receivers download different numbers of layers, match-
ing their download capacities. It does not require server
transcoding. It is robust against bandwidth variations
and packet losses: a basic quality video can be still de-
coded as long as the base layer is received reliably.



5

5.1 Methodology
Since there is no public information about their video

generation and adaption strategies, we design experi-
ments to trigger video adaptation by manipulating source
upload bandwidth and receiver downloading bandwidth.
In our local testbed, for all users involved in the con-
ference, we set up one user as the sender, turn on his
video and use the other users as purely receivers. We
denote such a setting as a sub-conference, which is a ba-
sic component of the whole conference. As illustrated
in Fig. 1, the bandwidth of the sender and receivers can
all be set by using network emulator NEWT. We col-
lect video information from the application window. We
also record the packets using Wireshark [30] for offline
video payload analysis.

5.2 Video Encoding Parameters
To deal with bandwidth variation, these three sys-

tems all have the abilities to produce video flows in a
large rate range, as shown in Table 3. From the perspec-

Table 3: Video Rate Ranges
System Range

iChat 49 kbps - 753 kbps
Google+ 28 kbps - 890 kbps

Skype 5 kbps - 1200 kbps

tive of a viewer, the perceived video quality is mostly
determined by three video encoding parameters: resolu-
tion, frame rate, and quantization. In our experiments,
the ranges of the observed resolution values for all sys-
tems are listed in Table 4. The frame rates can vary
from 1 FPS (Frame-Per-Second) to 30 FPS for each
system. In our experiments, we find that not all sys-
tems change all parameters for video adaptation. Table
5 lists which parameters are adapted in each system.
Skype adapts all three parameters. We didn’t observe
the change of quantization in Google+ Hangout and
iChat. iChat’s video resolution is determined by the
number of users in the conference. For example, the
resolution of video is always set to be 640× 480 in the
case of two-party call. When three or more users in-
volved in the conference, resolution of video becomes
320 × 240 or 160 × 120. And once the resolution is set
at the beginning, it will not be changed no matter how
we change the bandwidth setting.

Table 4: Resolution Ranges
Skype Google+ iChat

640*480, 640*360,480*270, 640*480
320*240, 320*180,240*135, 320*240
160*120 160*90,80*44 160*120

5.3 Adaptation for Receiver Heterogeneity
When the upload link bandwidth of a sender varies,

the video rate out of the sender changes correspond-
ingly. Generally, for these three systems, the higher

Table 5: Varied Parameters
System Resolution FPS Quantization

Skype � � �
Google+ � �

iChat �

the upload link bandwidth, the larger the sending rate.
When the upload bandwidth is too small, those sys-
tems will automatically shutdown the video. This shows
that those systems have their own network probing al-
gorithms to determine the video quality to be encoded
for transmission.

Next, we set receivers’ download bandwidths to dif-
ferent levels. We found that iChat uses one-version en-
coding: heterogenous receivers always receive the same
video version, and the receiver with download band-
width limit set determines the video quality sent out by
the sender. No video trans-coding, nor layered coding,
is employed.

For Skype, when receivers’ bandwidth differences are
large, it employs source-side multi-version encoding. For
example, in a video conference involving one sender and
three receivers, receiver 1, receiver 2 and receiver 3’s
download bandwidths are set to be 150 kbps, 400 kbps
and 2000 kbps respectively. The sender generates three
video versions: version 1 with rate 70 kbps, version 2
with rate 200 kbps and version 3 with rate 500 kbps.
Relay server gets these three video versions from the
sender. Then, it distributes one of these three video ver-
sions to the appropriate receiver. In this case, receiver
1, 2, 3 get video version 1, 2, 3 respectively. No server-
side transcoding was observed. In our experiments, the
largest video version number that sender can generate
is 3. When receiver bandwidth diversity is small, Skype
use one-version encoding and sends to all receivers the
same video quality.

Google+ always give different video qualities to het-
erogenous receivers. For example, we only limit the
download bandwidth of one receiver, say receiver 2, to
be 500 kbps. The result shows that for video flow out
of the sender, the sending rate is 835.7 kbps, video res-
olution is 640 ∗ 360 and frame rate is 30 FPS. For video
flow to receiver 1, the received rate is 386.9 kbps, video
resolution is 640 ∗ 360, and frame rate is 14 FPS. And
for video flow to receiver 2, the received rate is 168.6
kbps, video resolution is 320 ∗ 180, and frame rate is
14 FPS. The experiment environment is not fully con-
trolled, as flows between our experiment machines and
Google+ servers traverse the Internet, have to compete
with cross traffic. This explains that the received qual-
ity on receiver 1 is lower than the original video sent out
by the sender, although we didn’t add any bandwidth
constraint on receiver 1. At this time, both receiver 1
and receiver 2 receive consistent and acceptable video
quality.

To gain more insight about how the two video quali-
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ties are generated, we examine the packets captured on
the sender and receivers. Both Google+ and iChat use
RTP[13] protocol for their video and voice transmission.
Even though video payload cannot be directly decoded
to reveal how video is generated, several fields in RTP
headers enable us to infer the coding strategy employed
by Google+. According to RTP header format specifi-
cation [24], “Sequence Number” field increments by one
for each RTP data packet sent, and could be used by
the receiver to detect packet loss and to restore packet
sequence. In Google+ Hangout, packets from the same
sender in one flow form a unique sequence. “Times-
tamp” field reflects the sampling instant of the first
octet in the RTP data packet. In Google+ RTP packet
traces, we observe that a flight of packets with con-
secutive sequence numbers carry the same timestamp.
We infer that those packets belong to the same video
frame. The common timestamp is indeed the genera-
tion time of the frame. If a packet is the last one for
a frame, then the ”Marker” field for that packet is set
to 1; otherwise the value is 0. Thus, we infer that the
“Marker” field can used to identify boundary between
video frames. Since different machines use different ini-
tial sequence numbers, to match video frames between
the sender and receivers, we instead use the “Times-
tamp” and “Marker” field.

In Table 6, we match the RTP packets sent out by the
sender and received by the two receivers based on their
timestamps, marker (labeled ’M’) and length. (Packets
on the same row have the same values in these three
fields.) In aligned table, the sender sends out 5 frames,
both receiver 1 and receiver 2 only receive 2 frames.
While receiver 1 receives all packets of those two frames,
receiver 2 only receives the first two packets of these
two frames. It should be noted that sequence numbers
in receiver 1 and receiver 2 are consecutive. The lost
packets/frames are not due to packet losses. Instead,
it is the video relay server who decides not to send
those frames/packets to receivers based their bandwidth
conditions. Note that, both receivers can decode the
video with decent quality suggests that Google+ em-
ploys multi-layer coding. The fact that receiver 1 can
decode the video even though it lost some frames sug-
gests that layered coding used by Google+ achieves tem-
poral scalability: video frames are temporally grouped
into layers, such that a high frame-rate video generated
by the sender can be still decoded at a lower frame-
rate by a receiver even if a subset of frames/layers are
dropped. The fact that receiver 2 can decode video even
though it lost some packets within each frame suggests
that layered coding used by Google+ also achieves spa-
tial scalability: a video frame is encoded into spatial
layers at the sender, such that even if some spatial lay-
ers are lost, the receiver can still decode the frame at
lower resolution and larger quantization.

In the experiment, we also observe that no matter
how low the download bandwidth of a receiver is, the
received video resolution could only be one quarter of
the resolution of the original video. This shows that
the encoded video only has two spatial layers. This is
reasonable as spatial layers inducing much higher en-
coding overheads compared to temporal layers. Thus,
the number of spatial layers could not be too large.

Table 6: Packet Payloads in Google+
M Timestamp Length Sequence Number

(bytes) Sender Receiver 1 Receiver 2

0 2063696701 1269 61603 44445 52498
0 2063696701 1113 61604 44446 52499
0 2063696701 1278 61605 44447
0 2063696701 1234 61606 44448
0 2063696701 1283 61607 44449
0 2063696701 1277 61608 44450
0 2063696701 1077 61609 44451
1 2063696701 989 61610 44452

0 2063699269 621 61611
1 2063699269 560 61612

0 2063703362 1086 61613
0 2063703362 485 61614
0 2063703362 1167 61615
1 2063703362 1048 61616

0 2063706604 543 61617
1 2063706604 914 61618

0 2063709620 1276 61619 44453 52500
0 2063709620 1067 61620 44454 52501
0 2063709620 1272 61621 44455
0 2063709620 1267 61622 44456
0 2063709620 1279 61623 44457
0 2063709620 1276 61624 44458
1 2063709620 736 61625 44459

6. VOICE AND VIDEO DELAY
To facilitates realtime interactions between users, video

conferencing systems have to deliver voice and video
data with short delays. User conferencing experience
degrades significantly if the one-way end-to-end video
delay goes over 350 milli-seconds [17]. In this section,
we develop measurement to study the user delay per-
formance in the three systems.

6.1 Methodology
The end-to-end voice/video delay perceived by a user

is the sum of delays incurred by realtime voice/video
capturing, encoding, transmission, decoding, and ren-
dering. We can divide the end-to-end delay into four
portions. Let Te be the video/voice capturing and en-
coding delay at sender, Tn be the one-way transmission
delay on the network path between sender and receiver,
Ts be server or super node process time (0 if there is
no server or super node involved) and Td be the video
or voice decoding and playback delay at the receiver.
Thus, the one-way voice (video) delay is:

T = Te + Tn + Ts + Td. (1)

Obviously, it is not sufficient to just measure the net-
work transmission delay Tn. We therefore develop our
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end-to-end delay measurement by emulating a real user’s
experience.

6.1.1 One-way Voice Delay

Voice Recorder 

Voice Sender 

Voice Receiver 

(a) One-way Voice Delay

(a)  Recorded Voice Wave 

(b)  Enlarged Two Adjacent 

Voice Waves  

(b) Voice Waves Detail

Figure 3: Testbeds in the experiment

To record one-way voice delay, we employ a repeat-
able “Tick” sound as the voice source. In our local
testbed, we set up three computers close to each other,
as illustrated in Fig. 3(a). One computer is the voice
sender, another one is the voice recorder. The sender
repeatedly sends the “Tick” sound to the receiver. A
third computer emulates a user and “hears” (records)
the sound injected to the voice sender and the sound
coming out of the receiver using a sound recording soft-
ware[10]. We can visually analyze captured sound sig-
nal in that software. Fig. 3(b) shows a recorded sound
wave sample. In the upper subfigure, we observe two
sequences of impulses at different amplitudes. Since we
set the volume of the sender’s speaker significantly lower
than the receiver’s speaker, the impulses with smaller
amplitude correspond to the repeated “Ticks” sent by
the sender, the impulses with larger amplitude are the
received “Ticks” on the receiver. On the sender, we
set the time interval between two “Tick”s to be 1,000
ms, larger than the expected voice delay, so that we can
match a large impulse with the preceding small impulse.
The lower subfigure is the zoom-in view of the two ad-
jacent sound impulses, with each impulse is indeed a
waveform segment with rich frequency components. We
use the time-lag between the first peaks of two adjacent
segments as the one-way voice delay.

6.1.2 One-way Video Delay

Video Receiver Video Sender 

Source Video  

Received Video 

(a) One-way Video Delay

Video Sender A 

Source Video A 

Received Video A’ 

Video Sender B 

Received Video A 

(b) Round-trip Video De-
lay

Figure 4: Testbeds in the experiment

To measure video delay, we similarly emulate a user’s
video experience by simultaneously viewing (recoding)
the original video on a sender and the received video
on a receiver using a video capturing program. As il-
lustrated in Fig. 4(a), we set up two computers side-
by-side in our local testbed, one as sender, the other
as receiver. We run a stopwatch program [8] on the
receiver side, and focus sender’s video camera on the
stopwatch window on the receiver’s screen. The sender
transmits the captured stopwatch video from the re-
ceiver screen back to the receiver using one of the three
conferencing systems. There are two stopwatch videos
on the receiver’s screen: the original stopwatch video,
and the copy captured by the sender then transmit-
ted back through the video conferencing system. At
any given time, the difference between the two clocks
is the one-way end-to-end video delay perceived by the
receiver. For the example in Fig. 4(a), the original stop-
watch shows time “00:00:02.72” second and the received
copy of the stopwatch shows time “00:00:01.46” second.
Thus, the video delay in this case is 1260 ms. We use
programming script running on the receiver side to cap-
ture snapshots of those two clocks 10 times each sec-
ond. After getting these pictures, we use softwares [6] to
first turn the pictures into mono color, and then extract
stopwatch parts from the achieved mono color pictures.
Finally, these stopwatch pictures will be changed to text
file by using Optical character recognition (OCR) soft-
ware [9]. It should be noted that if the received video
quality is not good, OCR cannot decode the numbers
correctly. We skip those undecodable samples in our
delay calculation. The undecodable picture ratio can
be also used to infer the received video quality.

6.1.3 Round-trip Video Delay
The previous method does not work if the sender and

the receiver are not in the same location. We develop
another method to measure the Round-trip video de-
lay between two geographically distributed computers.
As in Fig. 4(b), we run a stopwatch program on user
A. A uses his camera to capture the stopwatch as its
source video, and transmits it to user B by using one of
the three conferencing systems. The received stopwatch
video is now displayed on B’s screen. Then B focus its
camera on the received video from A, and send the cap-
tured video it back to A by using the same conferencing
system. Then on A’s screen, we can observe two stop-
watch videos: the original one, and the one that is first
sent to B, then recaptured and sent back to A by B.
The clock difference between the two stopwatches on
A reflects the summation of one-way video delay from
A to B, and the one-way video delay from B back to
A, in other words, the Round-trip video delay. If we
assume the two directions are symmetric, then the one-
way video delay between A and B is roughly half of the
Round-trip delay. After the cameras are A and B are
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properly positioned, we only need to take screen shots
on A. We can further use the same approach as in the
one-way video display case to process the data to get
the delay samples.

6.2 One-way Delay Performance
We first test the one-way delay between users in our

local testbed. All user computers are connected to the
same router. The transmission delay between them
is almost negligible. The voice delay and video delay

Table 7: One-way Delay Performance (ms)
Systems Video Voice
Google+ 180 100

Skype Two-Party 156 110
Skype initiator to normal 230 130

Multi-party normal to normal 230 190
iChat Two-Party 220 220

iChat initiator to normal 220 220
Multi-party non-initi. to non-initi. 270 270

performances for three systems are shown in Table 7.
For Google+, the average video delay is 180 ms, larger
than the voice delay 100 ms. Since Google+ use server-
centric architecture, users’ video and audio are always
first sent to the Google+ server, then come back. The
round trip network delay between our local testbed and
the allocated Google+ server is 14 ms. The addition
delays is due to voice and video processing on both ends.
It is reasonable that video processing takes longer.

Skype two-party call takes direct P2P transmission
for voice and video. The network delay is almost zero.
The one-way delay is mostly due to the processing delay.
It suggests that voice and video processing can take a
significant portion of delay budget of good quality video
conferencing.

As studied in Section 4.4, Skype multi-party call em-
ploys different network topologies for voice and video
transmissions. Voice takes direct P2P transmission,
while video has to be relayed by servers. For P2P voice
transmission, conference initiator is the central hub.
Voice from a non-initiator to another non-initiator has
to be transmitted to the initiator first. The initiator has
to do some processing, like voice mixing and recoding.
The processing occupies a lot of time. Thus, the delay
between an initiator and a normal user is shorter than
the delay between two normal users. Since video has to
be sent to Skype servers first then come back, the video
delay is larger then voice. Video and voice are unsyn-
chronized. And the gap is as large as 200ms when we
consider the case from the initiator to a normal user.

iChat combines video and voice in one RTP flow.
From its two-party result, we find that its video delay
and voice delay are synchronized. For multi-party func-
tion, it employs centrialized P2P architecture for video
and voice transmission. When voice and video flows
are transmitted from the initiator to normal users, de-
lay performance is the same as the two-party case. But

when communications happens between non-initiators,
saying between user 1 and user 2, the packet flow from
user 1 should first go to initiator. Initiator needs to
combine all packets destined to user 2 in one RTP flow.
These processing needs some extra time. Thus, the de-
lay between non-initiators are larger.

Table 8: One-way Video Delay of Skype Two-
party Call in 802.11b
Background Flow Condition Delay(ms) Deviation(ms)

No Background 220 65
UDP 200kbps 220 50
UDP 500kbps 310 155
UDP 1Mbps 320 160

UDP 2.5Mbps 760 175
TCP 1 connection 290 145
TCP 5 connection 630 400
TCP 15 connection 690 350
TCP 30 connection 720 150

Table 8 shows one-way video delay of Skype two-
party call in our local WiFi network. In the experiment,
four computers are all connected wirelessly to a 802.11b
router. Two computers set up a Skype two-party video
call. The other two computers induce background traf-
fic to video call. We experiment with both UDP and
TCP background traffic. As the rate of UDP or the
number of TCP connections increases, the packet trans-
mission delay increases in our local WiFi network. The
one-way video delay increases consequently. Video de-
lay deviation becomes very large when TCP is used as
background traffic. But when lots of TCP flows are
used, the deviation of video delay becomes even smaller
because of the traffic multiplexing effect.

6.3 Round-trip Video Delay
We also measure the Round-trip Video Delay (video

RTT) between Hong Kong and New York when us-
ing Google+ Hangout and Skype Multi-party Systems.
Now video round-trip time is the outcome of video en-
coding, video decoding, packet transmission, error cor-
rection, etc. From Figure. 5, we can observe that video
RTT using Google+ is much smaller than the RTT us-
ing Skype Multi-party. Google+’s mean video RTT is
only about 776 ms, stand deviation is about 123ms.
To the contrary, Skype’s mean video RTT is about
1, 467ms, the standard deviation is 473.6ms. When we
consider the video One-way delay by simply dividing
video RTT by 2, Google+’s one-way video delay is only
388 ms.

Skype’s delay performance is much worse. From the
topology analysis in Sec. 4, we know that for each video
source, Skype just uses a single server to do packet relay.
Video flow between relay server and all users need to go
through the public Internet. To the contrary, Google+
have servers located all around the world, and a user is
mostly connected to a close-by server. The transmission
between Google+ video servers likely go through their
own private network with good QoS guarantee. This
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design can makes the end-to-end network loss and delay
much smaller. In addition, Google+’s error correction
method is more efficient than Skype upon packet losses,
which also lead to shorter video delay. We will discuss
this in more detail in the following section.
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(b) Skype Multi-party

Figure 5: Video Round-Trip-Time between
Hong Kong and New York

7. ROBUSTNESS AGAINST LOSSES
One of the main challenge of delivering video tele-

phony over the best-effort Internet is to cope with un-
predictable network impairments, such as congestion
delay, random or bursty packet losses. To achieve reli-
ability in realtime streaming, the conventional wisdom
is to use packet level forward error correction (FEC)
coding, instead of retransmissions, which would incur
too much delay. Unfortunately, in video conferencing,
to avoid long FEC encoding and decoding delays, FEC
blocks have to be short. This largely reduces the FEC
coding efficiency and its robustness against bursty losses.
If the round-trip network delay between two machines
is short, e.g. 20 ms between our local testbed and
Google+ servers, retransmissions might be affordable
within a end-to-end video delay budget of 350ms. Un-
like FEC, retransmission adds redundancy only as needed,
and hence is more bandwidth-efficient. Redundant re-
transmissions can also be used to protect important
packets against bursty losses. In this section, we inves-
tigate how the three systems recover from packet losses,
how robust they are against random and bursty losses.

7.1 Methodology
We set up multi-party conferencing using machines in

our local testbed. We conduct two types of experiments
by injecting packet losses using network emulators. One
is to add upload losses on the video sender side. The
other one is to add download losses on only one of the
receivers. Because we capture packets both before and
after packet losses, we can figure out which packets are
lost. In the analysis, we can check if there exists any
other packets that have similar packet payloads like the
lost ones to see whether softwares use retransmission or
not. At the same, we monitor the application window
to collect video rate and total rate statistics to figure
out the redundant transmission ratio.

7.2 Skype uses FEC
In our Skype experiments, we never identified any

retransmission of lost packets. From Skype’s technical
window, we can easily observe a gap between the to-
tal data rate and video rate. Previous studies [31, 32]
suggests that Skype employs aggressive Forward Error
Correction (FEC) coding for VoIP and two-party video
calls. We infer that here the gap is also due to FEC.
Let rv be the actual video rate, rs be the actual sending
rate. We define the FEC redundancy ratio ρ as the ratio
between the redundant traffic rate and throughput:

ρ =
rs − rv
rs

(2)

The experiment results of adding random upload losses
is shown in Table 9. Surprisingly, the sender always add
significant redundancy even if we don’t introduce any
additional packet losses. (Note, since the upload flow
traverses the Internet to reach Skype server, the sender
might still see some packet losses. Since we don’t know
the actual loss rate, we can’t get a precise FEC model
for Skype’s multi-party calls similar to the model for
the two-party calls in [32].) On the other hand, the
redundancy ratios on the two receivers are pretty low,
even though the downloading flows also have to traverse
the Internet. One possible explanation is that Skype
tries hard to protect the video uploaded by the source,
because any lost video during the upload has quality
implication on all receivers. As we introduce additional
losses, the video rate goes down significantly, and the
FEC ratio increases. However, due to the initial high
FEC ratio, the increase trend is not obvious when we
further increase the loss rate. When the loss rate is
really high, the Skype significantly drops its sending
rate. This is consistent with the observation for Skype
two-party call in [32].

The results for download losses are shown in Table.
10. We only add random download losses to receiver
1. The FEC ratio is much less aggressive than in the
upload loss case. But there is still the trend that as the
loss rate becomes higher, more FEC packets are added
into the video flow of receiver 1. In Table 9, we can
also observe that quite often the download flow rates
on the two receivers are lower than the upload rate of
the sender. This scenario suggests that the relay server
first removes FEC packets of uploaded video, and then
adds new FEC packets for each download flow. Results
of Table 10 shows that the two receivers in different con-
ditions receive the same video rate with different FEC
ratio. Thus, we infer that relay server monitors network
conditions of receivers and calculate the different FEC
ratios for different receivers.

7.3 Google+ uses Selective Persistent Retrans-
mission

In Section 4.3, we showed that a Google+ user only
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Table 9: FEC Adaptation at Skype Sender Side
Video Rate Video Sender Side Video Receiver 1 Video Receiver 2

(kbps) Upload Loss Upload Rate FEC Ratio Received Rate FEC Ratio Received Rate FEC Ratio
Ratio (kbps) ρs (kbps) ρr (kbps) ρr

513.48 0 974.00 0.47 542.62 0.05 542.56 0.05
474.26 0.02 1108.00 0.57 519.61 0.09 522.05 0.09
460.37 0.05 1019.50 0.55 487.84 0.06 488.19 0.06
225.05 0.08 496.57 0.55 241.80 0.07 241.32 0.07

Table 10: FEC Adaptation at Skype Relay Server Side
Video Rate Video Sender Side Video Receiver 1 Video Receiver 2

(kbps) Upload Rate FEC Ratio Download Loss Relay Send Rate FEC Ratio Received Rate FEC Ratio
(kbps) ρs Ratio (kbps) ρr (kbps) ρr

513.48 974.00 0.47 0 542.62 0.05 542.56 0.05
478.52 1163.87 0.59 0.02 653.40 0.27 505.43 0.05
440.94 955.72 0.54 0.05 949.73 0.54 465.82 0.05
343.73 821.43 0.58 0.08 824.39 0.58 363.88 0.06

interact with a Google+ server for video upload and
download. Thus, we only focus on one video sender and
one video receiver in our experiments. We first set up a
machine as video sender and inject random packet losses
to its uplink. Then we capture the packets before and
after the network emulator. Surprisingly, Google+ still
offers reasonable video quality under random download
losses of 40%. Since we get packets both before and af-
ter the loss module, we can identify the lost packets. In
our packet trace analysis, if two packets have the same
“Timestamp” and “Sequence Number”, we treat them
as redundant transmissions of the same packet. (Pay-
load analysis shows that the bit information of those
matched packets are almost the same except for sev-
eral bits). Thus, we can identify retransmissions of lost
packets. Detailed results are presented in Table. 11. As
more losses are injected, more retransmissions appear
in the flow. However, the sender video FPS doesn’t
change too much when we increase upload loss from 0%
to 20%. If we calculate video rate as total rate minus re-
transmission rate, Google+ maintains stable video rate
under a wide range of packet losses. Google+ strives
to maintain a high video upload rate even under high
packet losses. This is similar to Skype’s high FEC pro-
tection for upload video. The recovery ratio is defined
as the fraction of lost packets eventually received by
the receiver. It shows that Google+ is implementing
selective retransmission, only half of lost packets are
recovered. The persistent ratio defines the fraction of
packets that get retransmitted at least once eventually
received by the receiver. A persistent ratio of 1 means
that if Google+ decides to retransmit a packet, it will
persistently retransmit it until it is received successfully.
Since Google+ uses layered video coding, where pack-
ets from lower layer video packets are more important
for decoding. We conjecture Google+’s selective per-
sistent retransmission will be applied to packets from
lower video layers first.

The results of adding download losses on the receiver
is shown in Table 12. It shows a different behavior.
The received video frame rate, the total rate, and video

rate inferred from retransmission rate all decrease as
the download loss rate increases. This suggests that
Google+ servers use packet loss as a network congestion
signal. As packet loss rate increases, it not only retrans-
mits important lost packets, it also proactively reduce
the number of video layers to be sent to a receiver. The
recovery ratio and persistent ratio are more or less the
same as the upload loss case. Because we couldn’t con-
trol the network condition of Internet, retransmission
under packet loss of 0% is still being observed.

Table 11: Retransmission in the Upload Link of
Google+ Hangout
Loss Frame Total Retrans Recovery Persistent

Rate Rate Rate Ratio Ratio
(kbps) (kbps)

0 29.97 826.0 0.9 - -
0.05 29.98 836.9 24.2 0.46 1.00
0.10 29.97 885.7 52.1 0.46 1.00
0.20 29.98 857.2 101.4 0.45 1.00

Table 12: Retransmission in the Download Link
of Google Plus Hangout
Loss FPS Total Retrans Recovery Persistent

Rate Rate Rate Ratio Ratio
(kbps) (kbps)

0 27.91 810.8 4.4 - -
0.05 27.07 827.3 35.2 0.51 1.00
0.10 20.158 744.3 67.4 0.60 1.00
0.20 19.231 677.7 116.4 0.64 1.00

To gain more insights about Google+’s loss recov-
ery strategy, we collect more statistics about its packet
retransmissions. Table 13 lists how many retransmis-
sions Google+ attempted to reliably transfer a packet
at different packet loss rates. Most of the time, the
retransmission will be successful with one or two tries.
Sometimes, we do observe it tries to retransmit a packet
many times, with the highest up to 18 times. We define
the k-th retransmission interval as the time lag between
the kth retransmission of and k− 1th retransmission of
the same packet (the original transmission is considered
as the 0th retransmission). Table 14 presents the mean
and standard deviation of retransmission intervals. For
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Figure 6: Retransmission Time Interval under loss variation for Google Plus Hangout

Table 13: Retransmission Probability in Google+
Case 1st 2nd 3rd 4th 5th 6th k-th (k ≥ 7)

Downlink loss 0 0.8058 0.1311 0.0146 0.0097 0.0049 0.0146 0.0194
Downlink loss 0.05 0.8845 0.0958 0.0101 0.0032 0.0032 0.0005 0.0027
Downlink loss 0.10 0.8677 0.1125 0.0140 0.0027 0.0003 0.0003 0.0024
Downlink loss 0.20 0.7691 0.1793 0.0376 0.0100 0.0023 0.0008 0.0010

Uplink loss 0 1.00
Uplink loss 0.05 0.9492 0.0477 0.0023 0.0008
Uplink loss 0.10 0.8963 0.0947 0.0090
Uplink loss 0.20 0.7996 0.1620 0.0293 0.0080 0.0009 0 0.0002

reference, the RTT between our machines and Google+
server is 14 ms. And the CDFs of retransmission inter-
vals are shown in Fig. 6. 60% of the first retransmis-
sion happens within 70ms after the first original packet
transmission, which is about 3.75 times of RTT. The
retransmissions on the video uploader side all need to
wait such a long time. When the server does retransmis-
sion to video receivers, the N-th (N ≥ 5) retransmission
happens only about 5ms after the previous retransmis-
sion. This batch retransmission strategy is likely used
to deal with bursty packet losses.

7.4 iChat’s Retransmission Strategy
iChat also uses retransmission to recover from packet

losses. We did similar measurement for iChat as for
Google+. iChat doesn’t employ persistent retransmis-
sion. Most of the time, it just tries to do retransmission
once as shown in Table 15.

The mean retransmission intervals are reported in Ta-

Table 15: Retransmission Probability in iChat
Case 1st 2nd

Downlink loss 0.02 1.00
Downlink loss 0.10 1.00

Uplink loss 0.02 0.9960 0.0040
Uplink loss 0.10 0.9975 0.0025

ble 16. Since we set machines in the same subnetwork,
the RTTs between them are only about 2− 4 ms. Even
though iChat waits for 30+ ms for the first retrans-
mission, the second retransmission happens only 3ms
after the first retransmission. Due to space limit, more
results about iChat retransmissions are available from
our technical report.

7.5 Robustness of Conferencing Quality
We use end-to-end video delay defined in Section 6

as a measure of the delivered conferencing quality. If
the video can be continuously delivered to the receiver
in realtime fashion, the measured video delay from the
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Table 14: Mean Time and Standard Deviation(SD) for Retransmission in Google+
Case 1st 2nd 3rd 4th 5th 6th k-th (k ≥ 7)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

Downlink loss 0 39.35 27.52 15.97 21.55 5.54 4.47 4.86 3.87 3.41 1.11 3.40 1.08 3.91 0.85
Downlink loss 0.05 80.35 122.62 40.72 36.66 16.33 34.32 4.56 2.70 4.76 6.00 2.69 1.18 2.17 0.90
Downlink loss 0.10 66.03 34.10 45.14 42.45 32.36 36.21 6.70 6.37 3.41 1.39 3.44 0.89 2.64 0.83
Downlink loss 0.20 77.84 57.05 58.59 57.97 53.16 64.31 35.14 31.59 20.86 22.85 23.06 28.58 6.87 14.83

Uplink loss 0 90.14 68.66
Uplink loss 0.05 64.69 31.12 70.47 14.90 61.56 9.13 56.88 0
Uplink loss 0.10 60.28 26.82 79.62 30.05 89.63 39.44
Uplink loss 0.20 77.49 38.00 89.63 36.00 90.15 36.32 90.89 34.34 93.72 27.15 79.83 0 101.08 0

Table 16: Mean Time and Standard Devia-
tion(SD) for Retransmission in iChat

Case 1st 2nd
Mean SD Mean SD
(ms) (ms) (ms) (ms)

Downlink loss 0.02 39.06 26.31
Downlink loss 0.10 35.27 26.66

Uplink loss 0.02 40.09 29.79 4.45 0.15
Uplink loss 0.10 39.20 31.69 6.86 9.05

stopwatch video should be consistently low. Since the
original stopwatch video is continuously advance, losses
of video frames on the receiver side will lead to large
measured video delays. Additionally, if the received
stopwatch video has bad video quality. Our text recog-
nition tool, OCR, cannot decode the clock reading. We
can use recognition ratio of OCR as an indirect measure
of the received video quality. In this section, we com-
pare the robustness of the three systems against bursty
loss and long delays.

Packet losses can be bursty, especially on wireless
links. We use emulator to generate bursty losses to
the download link. For each loss burst, 4 − 5 pack-
ets will be dropped in batch. Table 17 compares the
clock recognition probability under different bursty loss
rates. The clock video transmitted in iChat quickly be-
come uncodable, this is consistent with our own video
perception. The recognition probability remains high
in Google+ and Skype, indicating that their delivered
quality is stable up to 4% bursty losses. Figure 7 com-

Table 17: Digital Clock Recognition Probability
Case iChat Google+ Skype

No Loss 0.90 0.86 0.88
2% Bursty loss 0.46 0.90 0.90
4% Bursty loss 0.10 0.76 0.92

pares the one-way video delay performances of Google+
and Skype.

When we don’t introduce any additional loss, both
Google+ and Skype are able to maintain a low and
stable video delay, with average about 200 ms. As we
introduce additional bursty losses, Skype incurs a large
and highly-varying one-way video delays, as shown in
Figure. 7(e) and Figure. 7(f). This suggests that the
FEC scheme adopted by Skype cannot efficiently re-
cover from bursty losses. At frame rate of 30 frames/second,
each lost frame leads to an additional video delay of 33
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Figure 8: Google+ and Skype Delay Perfor-
mances under RTT variation

ms. Consecutive lost frames leads to delay pikes in the
figures. Google+’s selective and persistent retransmis-
sions can recover from bursty losses well. It can always
do batch retransmissions for packets from the base lay-
ers upon bursty losses. The receiver can decode the
video even if only the base layer is received. As a re-
sult, Google+ is able to maintain low video delays up
to 4% bursty losses in Figure. 7(b) and Figure. 7(c).
Compared with employing FEC, one main drawback of
using retransmission is that it does not work well when
the network delay between sender and receiver is large.
To investigate the impact of network delay on the ef-
ficiency of retransmission, we set constant random loss
to the download link of Skype and Google+, then we
change RTT by introducing propagation delays using
network emulator. Figure 8 compares the mean and
variance of one-way video delay of both systems at dif-
ferent RTTs. Skype’s one-way video delay curves are
almost the same at no loss and 8% random losses. As
RTT increases by ∆, the one-way video delay increases
by roughly ∆

2 . This suggests that Skype’s FEC effi-
ciency is almost independent of RTT. To the contrary,
when no loss is induced, Google+’s one-way video delay
curve is almost the same as Skype’s curve. Almost no
retransmission is needed. When the random loss is set
to be 8%, the video delay curve ramps up quickly, with
increasingly high variances. This suggests that FEC is
preferable over retransmissions if RTT is large, loss is
random, and loss rate is not too high.
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(a) Google+ Loss 0%
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(b) Google+ Loss 2%
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(c) Google+ Loss 4%
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(d) Skype Loss 0%
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(e) Skype Loss 2%
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Figure 7: One-way Delay For Google+ and Skype under Different Bursty Loss Probabilities

8. CONCLUSION
In this paper, we present our measurement study on

three popular video telephony systems for end-consumers.
Through a series of carefully designed passive and ac-
tive measurements, we were able to unveil important
design choices of the three systems. Our major findings
are summarized below.

• While P2P is promising for voice conferencing and
two-party video calls, multi-party video conferenc-
ing still relies heavily on bandwidth-rich server in-
frastructures.

• In server-based solution, server location plays an
important role not only in the delivered user de-
lay performance, but also in loss recovery and re-
silience.

• Compared with multi-version video coding, scal-
able video coding can simultaneously address user
access heterogeneity and network bandwidth vari-
ations with low bandwidth overhead.

• Various voice/video processing delays, incurred in
capturing, encoding, decoding and rendering, ac-
count for a significant portion to the end-to-end
delays perceived by users.

• When voice and video are relayed by servers, per-
hop retransmissions along the relay path can effec-
tively recover from high packet loss rate. Content-
aware selective retransmissions further enhance the
robustness of conferencing quality.

• FEC is not efficient for realtime conferencing with
bursty losses. Batched retransmissions can be used
to recover from bursty losses.

Our study demonstrated the benefits of jointly design-
ing video generation, adaptation and distribution to de-
liver high-quality video telephony over the best-effort
Internet. Motivated by our first-hand experience with
the three measured systems, we are interested in devel-
oping new joint design solutions in the extremely tight
and challenging design space.
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