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Abstract

Network engineers and operators are faced with a num-
ber of challenges that arise in the context of network
monitoring and measurement. These include: i) how
much information is included in measurement traces and
by how much can we compress those traces?, ii) how
much information is captured by different monitoring
paradigms and tools ranging from full packet header cap-
tures to flow-level captures (such as with NetFlow) to
packet and byte counts (such as with SNMP)? and iii)
how much joint information is included in traces col-
lected at different points and can we take advantage
of this joint information? In this paper we develop a
network model and an information theoretic framework
within which to address these questions. We use the
model and the framework to first determine the bene-
fits of compressing traces captured at a single monitor-
ing point, and we outline approaches to achieve those
benefits. We next consider the benefits of joint coding,
or equivalently of joint compression of traces captured a
different monitoring points. Finally, we examine the dif-
ference in information content when measurements are
made at either the flow level or the packet/byte count
level. In all of these cases, the effect of temporal and
spatial correlation on the answers to the above questions
is examined. Both our model and its predictions are val-
idated against measurements taken from a large opera-
tional network.

1 Introduction

Network monitoring is an immense undertaking in a
large network. It consists of monitoring (or sensing) a
network using a geographically distributed set of moni-
toring stations, with the purpose of using the monitoring
data to better understand the behavior of the network and
its users. Monitoring is a central activity in the design,
engineering, and operation of a network. Increased mon-

itoring capabilities, along with the associated increased
understanding of the network and user behavior (or mis-
behavior), have direct impact on network performance
and integrity, and therefore on the costs passed on to net-
work users, and on the revenues of the operators. In spite
of its importance, practitioners struggle with challeng-
ing, yet very practical questions such as where within the
network to monitor data and at what granularity to cap-
ture traces, how much information is included in various
types of packet traces and by how much can we compress
those traces, and how much joint information is included
in traces collected at different points and how can we take
advantage of this joint information?

In this paper, we address these questions in the con-
text of large high speed networks such as campus, enter-
prise, or core networks. Monitoring the behavior of such
networks raises tremendous challenges due to the high
bandwidth of currently deployed links. For example, the
collection of 60-byte packet headers can easily generate
3Tb of data per hour on a OC-192 link (10 Gb/s link) in
a core backbone, and 30Gb of data per hour at an enter-
prise or campus gateway. One means for reducing the
amount of data gathered is to monitor flow-level data,
as is done with Net Flow [2]. The amount of data can
be further reduced by monitoring packet or byte counts
over fixed intervals of time as is possible using SNMP
[15]. Network data collected at distributed monitors also
exhibit spatial and temporal correlations. Thus another
means for reducing the sizes of monitored data sets is
to exploit this correlation through correlated data coding
and compression.

In this paper, we propose an information theoretic
framework within which to address some of the issues
and questions introduced above. In particular, we pro-
pose and validate a flow-level model (adapted from [12]),
and we use it to determine the information content of a
packet trace collected at a single or multiple points in
a network, and of sets of packet traces collected at sepa-
rate points. We also determine the information content of



traces captured at different levels of granularity, in partic-
ular flow level traces (NetFlow traces) and byte or packet
count traces (SNMP traces).

We obtain a number of interesting and important re-
sults. Regarding traces collected at a single monitoring
point, we derive an information theoretic bound for the
information content in those traces, or equivalently for
the potential benefit of lossless compression on those
traces. Not surprisingly, we find that the information
content is small in SNMP traces, higher in NetFLow
traces, and extremely high in full packet level traces.
More interestingly, we show that full packet header
traces can be compressed in practice down to a minimum
of 20% of their original size, and that the amount of com-
pression is a function of the average flow size traversing
that node: the larger the average flow size, the smaller
the compression ratio.

Regarding traces collected at multiple monitoring
points, we find that joint coding or compression of traces
further reduces the marginally compressed traces at the
individual monitors. Specifically, the joint compression
ratio (or equivalently, the additional compression bene-
fit brought by joint coding of traces) is low for SNMP
or byte/packet count traces, higher for NetFlow or flow-
level traces, and higher still for packet-level traces. This
means, for example, that joint coding is not really use-
ful for SNMP data collected from different monitoring
points and sent back to a NOC or central analysis sta-
tion. Since SNMP data reporting takes little bandwidth
anyway, it makes sense not to invest in sophisticated cod-
ing techniques in this case. However, NetFlow or packet
header capture and reporting can require a significant
amount of bandwidth and storage. Our results show that,
in this case, joint coding techniques have the potential
to significantly reduce those bandwidth and storage re-
quirements.

Information-theoretic concepts and approaches have
been used in the past to examine a wide variety of net-
working issues such as connectivity [18] and traffic ma-
trix estimation [26], anomaly detection [16], and com-
pact traffic descriptors [8, 24] for network dimensioning
and QoS monitoring. However, to our knowledge, our at-
tempt is the first to introduce a framework within which
to address all the questions of interest here, namely trace
coding, correlated and joint coding, and trace content at
multiple time scales.

There has been work on trace compression, however
it has been heuristic in nature. For example, work de-
scribed in [14, 23] proposed heuristics based on stor-
ing and compressing packet headers collected at a sin-
gle monitor along with timing information in the form
of flow records. Trajectory sampling exhibits some ele-
ments in common with distributed compression of mon-
itored data [7]. Also related is work in the area of in-

verting sampled data, e.g., [9, 11]. Indeed, sampling can
be thought of as a form of lossy compression and these
papers are concerned with decoding the resulting traces.
There is also an extensive body of work produced within
the sensor networking and distributed signal processing
communities; see [4, 6] and their references for exam-
ples. However, much of it is in the context of abstract
models of how data is produced, e.g., Gaussian random
fields, and is not directly applicable in the domain of net-
work monitoring.

The rest of the paper is structured in three parts. In
Section 2 we present the various elements of our frame-
work, including relevant concepts from information the-
ory, our network flow-level model, and the network
traces that will be used throughout the paper. In Sec-
tion 3, we describe the first application of our framework,
specifically we derive the information content of packet
header traces collected at a single monitoring station and
examine the benefits of trace compression in this case.
In Section 4, we examine the more general problem of
correlated, or joint, coding of trace captured at several
monitoring stations. Section 5 then applies the model
to determine the loss in information content when either
flow-level (Net Flow) or byte count (SNMP) summary is
applied to the full trace. Section 6 concludes the paper.

2 Methodologies

In this section we provide the foundation for the rest
of the paper. We begin by reviewing several concepts
needed from information theory (Section 2.1) that form
the basis for exploring information content in network
traces. This is followed with a description of the network
flow model to which they will be applied (Section 2.2).
The section ends with a review of a collection of network
traces used to validate and parameterize the model (Sec-
tion 2.3).

2.1 Some concepts from Information The-
ory

We begin by introducing the concepts of entropy and en-
tropy rate and their relation to data compression [5].

Definition 1 Shannon entropy. Let X be a discrete
random variable that takes values from χ. Let p(x) =
P (X = x), x ∈ χ. The entropy of X is defined by

H(X) = −
∑

x∈χ

p(x) log2 p(x)

Examples of X in our context would be the flow
size measured in packets, the flow identifier, and the
packet/byte count in a one second interval.
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Now consider a stochastic process X = {Xn}
∞
n=1

where Xn is discrete valued.

Definition 2 Entropy Rate. The entropy rate of a dis-
crete valued stochastic process X is defined by

H(X) = lim
n→∞

H(X1, X2, . . . , Xn)

n

when the limit exists.

The entropy rate represents the information rate con-
veyed by the stochastic process X . It provides an achiev-
able lower bound on the number of bits per sample re-
quired for lossless compression of the process. With
lossless compression, all of the information is com-
pletely restored when the file is uncompressed. In our
context, an example might be the byte counts at a link
over successive one second intervals.

Definition 3 Joint Entropy Rate. The joint entropy
rate of a collection of many stochastic processes
{X

(i)
n }∞n=1, i = 1, 2, ..., N is defined by

H(X(1), X(2), . . . , X(N))

= lim
n→∞

H((X
(1)
1 , . . . , X

(1)
n ), . . . , (X

(N)
1 , . . . , X

(N)
n ))

n
(1)

when the limit exists.

The joint entropy rate represents the information rate
conveyed by the joint stochastic process and is an achiev-
able lower bound on the number of bits required per sam-
ple for the joint lossless compression of all the processes.

Let us place this in our context. Let Xi be the header
of the i-th packet and M the size of the header. {Xi}

∞
i=1

is a stochastic process representing packet headers. We
are interested in quantifying the benefit gained from
compressing a packet header trace gathered from one
network monitor or traces collected at a set of network
monitors.

Definition 4 Marginal Compression Ratio. Given sta-
tionary stochastic process {Xi}

∞
i=1, the marginal com-

pression ratio is defined as the ratio of the entropy rate
and record size,

ρm(X) =
H(X)

M

In the case of traces collected at multiple points within
the network, we define:

Definition 5 Joint Compression Ratio. Given a
collection of N jointly stationary stochastic processes

{X
(n)
i }∞i=1, i = 1, 2, . . . , N , the joint compression ra-

tio is defined as the ratio of the joint entropy rate and the
sum of the entropy rates of the individual processes.

ρj(X
(1), X(2), . . . , X(N)) =

H(X(1), X(2), . . . , X(N))
∑N

i=1 H(X(i))
.

In the context of network trace compression, the joint
compression ratio quantifies the potential benefits of
jointly compressing the traces collected at several point
in the network beyond simply compressing each trace in-
dependent of each other.

Although much of the time we will deal with discrete
random variables, some quantities, such as interarrival
times, are best approximated by continuous random vari-
ables. This necessitates the following definition.

Definition 6 Differential Entropy. Let X be a continu-
ous random variable with a density f(X). The differen-
tial entropy of X is defined by

h(X) = −

∫

S

f(x) log f(x)dx

where S is the support set of the random variable.

In reality, every variable is measured with finite resolu-
tion. With a resolution of ε = 2−n, i.e., an n-bit quan-
tization, a continuous random variable X is represented
by a discrete random variable Xε and its entropy is ap-
proximately h(X) + n.

If X follows an exponential distribution with rate λ,
its differential entropy

h(X) = −

∫ ∞

2

λe−λx log2(λe−λx)dx = log2

e

λ

With an n-bit quantization, the discrete entropy of X is
H(Xε) = log2

e
λ

+ n. In the following, whenever there
is no confusion, we use the notation H(X) for a contin-
uous random variable X to represent its discrete entropy
H(Xε).

2.2 Network Flow Model
In this section we introduce a flow-based network model.
We represent the network as a directed graph G =
(V, E). Assume that flows arrive to the network accord-
ing to a Poisson process with rate Λ and ∆j denotes
the inter-arrival time between flow j and j − 1. Let
Θj ∈ F be the id of the j-th flow that arrives to the
network. We assume that the route of a flow f ∈ F
is fixed and classify flows into non-overlap flow classes,
{Fi, 1 ≤ i ≤ N}, such that all flows within a class
share the same route in the monitored network. The route
taken by flows in class i is represented by an ordered set
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Figure 1: Experiment setup.

R〈i〉 = (v
〈i〉
1 , v

〈i〉
2 , . . . , v

〈i〉
l〈i〉), where v

〈i〉
j is the j-th router

traversed by a class i flow and l〈i〉 is the path length. The
flow arrival rate within class i is Λ〈i〉 = Λ×P (Θ ∈ Fi).
When flow j arrives, it generates Kj packets. Pack-
ets within flow j arrive according to some point pro-
cess with inter-arrival times {δj,i}

Kj

i=2, where δj,i is the
inter-arrival time between the i − 1th and ith packet of
flow j. It is assumed that the first packet arrives at the
same time as the flow. The behavior of packet arrivals
in the network is described by the stochastic process
{(∆j , Θj , Kj , {δj,i}

Kj

i=2)}.
In practice, network traces are collected at distributed

network monitors. We are interested in how informa-
tion is carried around by packets when they traverse dis-
tributed network monitors. As a starting point, we as-
sume that there is no packet loss in the network and pack-
ets incur constant delay on each link: let D(i,j),k denote
the delay that the k-th packet incurs while traversing the
k-th link, (i, j) ∈ E, we assume that D(i,j),k = D(i,j),
∀k. Delays are very small and losses non-existent in
a well-provisioned network such as the Sprint network.
Hence this is a reasonable assumption in many cases. In
Section 4.3 we describe how these assumptions can be
relaxed. For a node v in the network, let C(v) ⊆ F de-
note the set of flows that pass through it. Since flows
arrive to the network according to a Poisson process and
the delay between any two nodes in the network is con-
stant, flows arrive to node v according to a Poisson pro-
cess with rate Λ(v) = Λ × P (Θ ∈ C(v)). The be-
havior of packet arrivals at node v can be described by

the stochastic process {(∆(v)
j , Θ

(v)
j , K

(v)
j , {δ

(v)
j,i }

K
(v)
j

i=2 }),

where {∆
(v)
j } is the sequence of inter-flow-arrival times

at node v that follows exponential distribution with rate
Λ(v), {Θ(v)

j } is an i.i.d. sequence of flow ids seen by

v, {K(v)
j } is an i.i.d, sequence of integer valued random

variables that denote the number of packets in the jth

flow passing through v and {δ
(v)
j,i }

K
(v)
j

i=2 is the sequence of
flow inter packet arrival times.

Figure 1 illustrates a simple scenario corresponding to
a router with two incoming links and two outgoing links,
each of which contains a monitor. There are four two hop
paths and four flow classes traversing these paths. This
is the setting within which the traces used for validation
and parameterization of the model are collected. They
are described in the next section.
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Figure 2: Flow arrival is Poisson

2.3 Validation

2.3.1 Network Traces

The data used here were collected as part of the full
router experiment [13] on August 13, 2003. Packet traces
were recorded at six interfaces, i.e. 12 links of one gate-
way router of the Sprint IP backbone network for 13
hours. We use mutually synchronized DAG cards [1] to
record packet headers with GPS-precisioned 64bit times-
tamps from OC-3, OC-12 and OC-48 links [10]. The ex-
periment setup is shown in Figure 1. In the remainder of
this paper, we will focus on the traces collected over a
one hour time period between 14:30 and 15:30 GMT on
two incoming and two outgoing links. Table 1 summa-
rizes the size of these traces and the link utilizations.

We choose this set of traces because it captures a mix
of customer to gateway and gateway to backbone traf-
fic. Customer traffic largely goes to one of the two back-
bone links. It is an ideal first step to analyze information
redundancy without being overwhelmed by complicated
routing. Furthermore, it is a representative set of traf-
fic data, because there are over 500 similarly configured
gateway routers in Sprint’s global network. The short-
coming is that we do not have any backbone to backbone
traffic recorded at the same time. This will be considered
in the future work.

We further select the three most highly utilized links
from the set to use in the remainder of the paper. BB1-
out, BB2-out are from two OC-48 linecards connecting
to two backbone routers (BB1 and BB2). C1-in and C2-
in are from two OC-3 linecards connecting to transpa-
cific customers. We use the full packet trace to de-
duce an SNMP-like utilization trace (refered to as uti-
lization trace from now on) and an unsampled raw Net-
flow trace. This is done so that different network mea-
surement techniques can be compared for the same time
duration without any possible measurement errors con-
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Data Set duration #packets Average rate
C1-in 1 hour 44,598,254 53Mbps
C2-in 1 hour 123,542,790 73Mbps

BB1-out 1 hour 71,115,632 69Mbps
BB2-out 1 hour 105,868,070 82Mbps

Table 1: Trace description and stats.

tributed by SNMP or Netflow. The utilization trace is
computed as byte-count per second rather than per 5 min-
utes as a normal SNMP trace. This is done to increase the
number of data points and minimize estimation error in
the calculation. We simulate Netflow by creating an un-
sampled Netflow trace from the packet trace, because we
prefer to not take into account packet sampling’s effect
on measurement at this stage.

The full packet traces described above are used to val-
idate the Poisson assumptions made in the flow model.
Figure 2 depicts a QQ plot of the empirical inter-flow
arrival time distribution with respect to an exponential
distribution with the same average. We observe visually
a good match for the flow inter-arrival times associated
with link C1-in. This is also the case with the other flow
arrival traces and is consistent with observations made
elsewhere [12]. We compute empirical entropy on the
traces described above using empirical marginal proba-
bility distributions.

3 Application: Single Point Trace Com-
pression

All packet monitoring poses tremendous challenges to
the storage subsystems due to the high volume of cur-
rent network links. We use the information theoretic ap-
proach to identify and quantify the potential benefit of
network trace compression based on the network flow
model. In this section, we focus on full trace collection at
a single monitor such as an IPMON system [10]. We start
with calculating the information content in traces made
of packet headers. It will become clear that the temporal
correlation resulted from the flow structure leads to con-
siderable marginal compression gain. We then show by
empirical study that other fields in IP header will contain
no/very small amount of information. We conclude this
section with guidelines for the development of practical
network trace compression algorithms. The next section
concerns the simultaneous collection of traces at multiple
monitors distributed throughout a network.

3.1 Entropy of Flow-based Trace
In the IPMON style full packet header trace capture sys-
tem, The IP header and additional TCP/UDP header of

each packet is stored in the trace. Here we only con-
cern with the information content in the IP header, and
leave TCP/UDP header for future work (except the port
fields). We start with calculating the information content
in packet time-stamp and 5-tuple flow ID.

The total length of an uncompressed times-
tamp is 64. The behavior of packet arrivals in
the network is described by the stochastic process
{(∆j , Θj , Kj , {δj,i}

Kj

i=2)} (to avoid triviality, we as-
sume P (Kj > 1) = 1). We are interested in determining
the minimum number of bits required to represent each
flow. If we assume flow inter-arrival {∆j}, flow Id
{Θj} and packet inter-arrivals within a flow {δj,i}

Kj

i=2

are pairwise independent, on average we need a number
of bits per flow equal to H(Φ) where

H(Φ) = H(Θ) + H(∆) + H({δi}
K
i=2), (2)

where H({δi}
K
i=2) denotes the information content in

packet inter-arrivals within a flow. It can be shown that

H({δi}
K

i=2) =H(K) + H({δi}
K

i=2|K) (3)

=H(K) +
∞�

k=2

P (K = k)H({δi}
k

i=2|K = k)

(4)

≤H(K) +
∞�

k=2

P (K = k)(k − 1)H(δi|K = k)

(5)

≤H(K) + (E[K] − 1)H(δ), (6)

where δ represents the inter-arrival time between ran-
domly picked adjacent packet pairs from all flows. In-
equality (5) is an equality if packet inter-arrival times
within a flow, {δi}, are i.i.d. sequence. Inequality (6) is
an equality if packet inter-arrival times are independent
of flow size K.

Fig. 3 shows there is in fact a strong correlation be-
tween flow size and inter-packet arrivals time within a
flow. Large flows with many packets tend to have smaller
inter-packet arrival times. This suggests there is opportu-
nity in further compressing the inter-packet arrival time
within a flow. However the Inequality (6) provides us
with an upper bound in compression ratio.

The per-flow information consists of two parts: one
part is timing information about the flow arrival and flow
ID, which is shared by all packets in the flow; the other
part consists of all the packet inter-arrival information,
which grows sub-linearly with the number of packets
within the flow if we assume packet inter-arrivals are de-
pendent. (Note: If packet inter-arrival times are indepen-
dent it grows linearly.) The information rate per unit time
is then ΛH(Φ).

5



Trace H(∆) H(K) H(δ) H(Θ) E(K) H(total) ρ(Φ) Compression
bin=8µs bin=2pkts bin=128µs Algorithm

C1-in 8.8071 3.2168 9.7121 104 21.0039 706.3772 0.2002 0.6425
BB1-out 7.6124 2.4688 12.1095 104 20.4825 736.1722 0.2139 0.6574
BB2-out 7.1594 2.7064 12.4824 104 18.7890 689.9066 0.2186 0.6657

Table 2: Comparision of entropy calculations and real compression algorithm gain

Figure 3: Flow size correlation with inter-packet arrival
time within a flow. Larger flow size correspond to shorter
inter-packet arrival times.

There exists other fields in the IP header as well, such
as TOS, datagram size, etc. A detailed study in [19]
shows that they carry little information content in the
framework of the flow model, and can be modeled sim-
ilarly to the packet inter-arrival time within a flow. We
therefore take the simplified approach and only consider
the timestamp field and the flow ID field in this paper.

3.2 Marginal Compression Ratio

In practice, traces are collected at individual nodes. For
a node v in the network, we need a number of bits per
flow equal to H(Φ(v)) where

H(Φ(v)) ≤ H(Θ(v)) + H(∆(v)) + H(K(v))

+ (E[K(v)] − 1)H(δ(v))
(7)

As before the inequality becomes equality when {K (v)}

is independent of {δ(v)
f,i } and the latter sequence is iid.

The information rate per unit time is then
Λ(v)H(Φ(v)) at node v. In the absence of compression,
each flow requires on average (104 + 64)E[K (v)] bits
with 104 bits to encode the 5-tuple flow identifier and 64
bits for timestamps of packet arrivals.

Now we can answer the question: what is the maxi-
mum benefit that can be achieved through compression?

From Φ(v), we have a marginal compression ratio

ρ(Φ(v)) =
H(Φ(v))

168 ∗ E[K(v)]
(8)

The compression ratio ρ(Φ(v)) provides a lower bound
on what can be achieved through lossless compression
of the original network trace. From (7) and (8), the
marginal compression ratio at a node is a decreasing
function of E[K(v)], the average size of flows travers-
ing that node. Since the information in flow ID Θ(v) and
flow arrival ∆(v) is shared by all packets in the flow, the
larger the average flow size, the smaller the per-packet
share, therefore the smaller the compression ratio. When
E[K(v)] is large, the compression ratio is bounded from
below by (E[H(δ(v))])/168, which is an indication of
how compressible the packet inter-arrival time is in aver-
age. (Note: this bound results from the assumption that
packet inter-arrival times within a flow are independent.
If there is correlation between packet inter-arrival times,
a tighter bound can be derived to explore the correlation.)
Therefore, the marginal compression ratio for long flows
is determined by the compression ratio of packet inter-
arrival times.

3.3 Results
We summarized the marginal compression ratio for a sin-
gle trace in Table 2. We compare the compression up-
perbound from the flow model entropy calculation and
a practical trace compression algorithm. The trace com-
pression software is an implementation of the schemes
introduced in [14]. The practical algorithm uses a flow-
based compressed scheme very similar to the flow model
in section 2.2. It does, however, record additional IPID,
datagram size and TCP/UDP fields in each packet of a
flow.

For the three traces we considered, the entropy cal-
culation suggests a bound of compression ratio 20.02%
to 21.86% of the original trace. However the practical
scheme only compresses 64.25% to 66.57% of the orig-
inal trace. The most significant algorithm difference is
that this scheme keeps a fixed packet buffer for each flow,
therefore records very long flows as many smaller flows.
This is done for the ease of decompression and quickly
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count for very long flows, avoiding only outputting long
flows after they end. This could result in long flows being
broken down to many small flows and duplicate the flow
record many times, therefore reducing the compression
benefits.

4 Application: Joint Trace Coding

The fact that one flow traverses multiple monitors in-
troduces spatial correlation among traces collected by
distributed monitors. We calculate the joint entropy of
network traces which serves as the lower bound for dis-
tributed traces compression. To account for network un-
certainties, such as packet loss and random delay, we
incorporate additional terms to characterize network im-
pairment.

4.1 Joint Compression Ratio
We are interested in quantifying how well marginal com-
pression comes to achieving the entropy rate of the net-
work. We have

ρj(Φ) =
ΛH(Φ)

∑

v∈V Λ(v)H(Φ(v))
(9)

where the numerator is the lower bound on joint com-
pression and the denominator is the lower bound of
marginal compression of each trace separately. The joint
compression ratio ρj shows the benefit of joint compres-
sion.

The entropy of a flow record of class i can be calcu-
lated as H(Φ〈i〉). The information rate generated by flow
class i is Λ〈i〉H(Φ〈i〉). Therefore, the network informa-
tion rate is:

ΛH(Φ) =

N
∑

i=1

Λ〈i〉H(Φ〈i〉) (10)

At node v, denote by D〈v〉 the set of flow classes travers-
ing it. The total information rate at v is

Λ(v)H(Φ(v)) =
∑

i∈D〈v〉

Λ〈i〉H(Φ〈i〉) (11)

Plugging (10) and (11) into (9), we have

ρj =

∑N

i=1 Λ〈i〉H(Φ〈i〉)
∑

v∈V

∑

i∈D〈v〉 Λ〈i〉H(Φ〈i〉)
(12)

=

∑N
i=1 Λ〈i〉H(Φ〈i〉)

∑N

i=1 l〈i〉Λ〈i〉H(Φ〈i〉)
(13)

It suggests that the joint compression ratio is inversely
proportional to a weighted average of the number of

Joint Compression Ratio
ρ(C1-in, BB1-out, C2-in, BB2-out) 0.5

ρ(C1-in to BB1-out) 0.8649
ρ(C1-in to BB2-out) 0.8702
ρ(C2-in to BB1-out) 0.7125
ρ(C2-in to BB2-out) 0.6679

Table 3: Joint trace compression ratio

monitors traversed by flows. Intuitively, all monitors tra-
versed by a flow collect redundant information for that
flow. The longer the flows paths, the higher the spatial
correlation in distributed packet header traces, the big-
ger the potential gain of distributed trace compression.

4.2 Entropy Results
According to (9), the joint compression ratio for all the
links traversing through our router is simply 0.5, since
the path length (l) is 2 for each flow class. We’re also in-
terested in knowing the joint compression ratio of a path
connecting any two links. For example, let us denote the
flow classes C1-in to BB1-out as A, C1-in to BB2-out as
B, and C2-in to BB1-out as C, the compression ratio for
the path through links C1-in and BB1-out is:

ρ =
H(BB1 − out, C1 − in)

H(BB1 − out) + H(C1 − in)
(14)

=
ΛAH(A) + ΛBH(B) + ΛCH(C)

2ΛAH(A) + ΛBH(B) + ΛCH(C)
(15)

The results in Table 3 show a substantial 50% to 87%
joint compression ratio over multiple monitoring points.
The ratio is lower (namely 0.5) when computed across
all monitors from the same router, and higher (namely
0.6679 to 0.8702) when computed over only two links.
The savings come from a significant amount of shared
flows in these monitoring points. This suggests that if
we can successfully share information at the correlated
monitoring points and perform joint coding, the potential
savings will be very significant. In practice, it could be
difficult to devise a perfect coding scheme for the entire
network. We leave this for a future direction.

4.3 Network Impairments
Till now we have assumed that link delays are constant
and that there are no packet losses. These can be ac-
counted for by augmenting the expression for the flow
entropy to account for these. Take the case where link
delays are not constant as an example. Due to variable
link delays, the inter-arrival time of two adjacant packets
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within a flow varies when they traverse the network. Link
delays may also induce packet reordering. To fully cap-
ture the timing information of all packets in the network,
one will have to record not only the packet inter-arrival
time within a flow at their network entry point, but also
the packet delays on all links. Suppose for now that the
delay sequences {D(i,j),k}

∞
k=1, (i, j) ∈ E are mutually

independent sequences of iid rvs. Then H(Φ) becomes

H(Φ) = Hw(Φ) + Hn(Φ)

where Hw(Φ) is given by (2) and Hn(Φ) is

Hn(Φ) = E[K](H(D(i,j)))

Note that in the case that link delays are correlated, this
provides an upper bound. Figure 4 plots the distribution
of the single hop packet delay on an operational router
in Sprint Network. The delay is quantized with resolu-
tion of one micro-second, which corresponds to the ac-
curacy of clock synchronization between two link mon-
itors. From the figure, although the delay is not con-
stant, it has skewed distribution. The empirical entropy is
4.2615, which means, in average, we need no more than
5 bits per packet to represent the variable packet delays
across this router. Furthermore, we expect that packet
delays are temporally correlated. By exploiting the tem-
poral correlation, one can using even smaller number of
bits to represent packet delays.
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Figure 4: Single Hop Delay on Operational Router

The common belief is there is very little loss in large
operational backbone networks, since they are usually
over-provisioned. However, we expect that losses will
introduce an additional term in the expression for Hn().
In particular, when losses are rare, they are likely to show
up in the form of the entropy of a Bernoulli process, one
for each link in the network. This will be the subject of
future investigation.

Another impairment occurs when the routes change
within the network. Fortunately, route changes are in-
frequent [25]. When they do occur, the changes must be

recorded in the traces. However, they increase the infor-
mation rate per unit time by an insignificant amount.

4.4 Development of Joint Compression Al-
gorithms

Our models predict there is considerable gain to conduct
joint packet header trace compression. It opens up the
question of how one can develop algorithms to achieve
the predicted joint compression ratio.

One direction is to develop a centralized algorithm to
compress traces collected on distributed monitors. This
requires all monitors to send their traces to a central-
ized server, which will generate a compressed aggregate
trace. This approach will incur communication overhead
in transmitting all those traces to the server. To reduce
the communication overhead, traces can be aggregated
on their ways to the server. Our spatial correlation model
can be used to optimally organize the transmission and
compression of traces. This is similar to the problem of
joint routing and compression in sensor networks [22].

Alternatively, one can develop a distributed trace com-
pression algorithm. Distributed data compression [5]
aims at compressing correlated sources in a distributed
way and achieving the gain of joint compression. How
monitors compress packet traces without exchanging
packet headers remains to be a challenging problem. It
may also be possible to borrow ideas from trajectory
sampling [7] to design joint compression algorithms.

5 Application: Information Content of Dif-
ferent Measurement Methods

In this section we apply information theory to evaluate
the information gained from monitoring a network at
different granularities. In addition to the packet header
monitoring paradigm as exemplified by IPMON [14], we
examine two other typical monitoring options. The most
widely used monitoring method is SNMP utilization data
collection [15], which is provided by all routers by de-
fault and has very low storage requirement. A second
option is Cisco NetFlow [2] and its equivalent, which re-
quires better router support and more demanding stor-
ages and analysis support. Clearly packet header mon-
itoring is the most demanding and requires the greatest
amount of resources,v however it provides the most com-
prehensive amount of information about the network.
We first adopt the flow modelling of the network from
section 2.2 to study both NetFlow and SNMP monitor-
ing options. We then explore the quantitative difference
among these methods using entropy calculation applied
to the models.
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5.1 A Model for NetFlow
Recording complete packet header traces is expensive
and, thus, not commonly done. Cisco NetFlow is pro-
vided by some Cisco linecards to summarize flows with-
out capturing every packet header. A raw NetFlow trace
consists of a set of flow records. Each flow record in-
cludes the start time and duration of the flow, and the size
of the flow (number of packets, bytes). In this section
we explore the potential benefits of compression, both
at a single monitor and across multiple monitors for this
type of trace. In practice, NetFlow can sample packets on
high volume links. For this paper, we consider the case
where all packets are observed to derive flow records,
hence avoiding inaccurate representation of flows from
packet sampling described in [11] and [3].

A NetFlow record consists of an arrival time (flow
inter-arrival time), flow ID, flow size, and the flow du-
ration. Very similar to the flow model in Section 3.1, the
average number of bit per flow record is

H(Ψ) = H(∆) + H(Θ) + H(K)

We assume the five tuple flow ID is not compressed since
it does not repeat in the capturing window.

In practice, each node individually turns on NetFlow
and captures information for flows traversing it. The en-
tropy of a NetFlow record at node v can be calculated
as

H(Ψ(v)) = H(∆(v)) + H(Θ(v)) + H(K(v)) (16)

Similar to Section 3.1, we can calculate the entropy of
a NetFlow record of flow class i as H(Ψ〈i〉). The joint
compression ratio of NetFlow traces can be calculated as

ρj(Ψ) =
ΛH(Ψ)

∑

v∈V Λ(v)H(Ψ(v))
=

∑N
i=1 Λ〈i〉H(Ψ〈i〉)

∑N

i=1 l〈i〉Λ〈i〉H(Ψ〈i〉)

The joint compression ratio is again inversely propor-
tional to a weighted average of the number of monitors
traversed by a flow. This suggests that NetFlow traces
without sampling preserve the spatial correlation con-
tained in full flow level packet trace. We show the joint
compression ratio results based on our trace in Table 5.

So far, we assume NetFlow processes all the packets
in all the flows. In a real network environment, both the
number of flows and the number of packets generated by
those flow are large. NetFlow can employ flow sampling,
where only a fraction of flows are monitored, and packet
sampling, where only a fraction of packets are counted,
to reduce its cost in computation and memory, etc. Flow
sampling will proportionally reduce the amount of flow
information one obtained from the network. If two mon-
itors sample flows independently with probability p, the
chance that one flow gets sampled at both monitors is p2,

which leads to a reduced spatial correlation in NetFlow
traces collected by these two monitors. Packet sampling
will introduce errors in flow size and flow duration esti-
mation. Furthermore, NetFlow records collected by two
monitors for the same flow will be different. By aggre-
gating distributed NetFlow traces, one can obtain more
accurate flow information. We will extend our NetFlow
model to account for flow sampling and packet sampling
in future work.

5.2 A Model for SNMP
In this section we study the information content of
SNMP measurements. By SNMP measurements, we
mean packet/byte counts over fixed intervals of time.
We begin with the flow model from Section 2.2. Let
{(R1(t), . . . , R|E|) : t ≥ 0}, be the rate process as-
sociated with the network. In other words, Ri(t) is the
packet rate on link i ∈ E at time t ≥ 0. We will argue
that it can be modeled as a multivariate Gaussian process
and will calculate its associated parameters.

Let {Rj(t) : t ≥ 0} be the rate process associated with
flow class j ∈ [1, N ], in other words, Rj(t) is the rate at
which flows within class j ∈ [0, N ] generate packets at
time t ≥ 0. Note that the processes associated with the
different flow classes are independent. We have

Ri(t) =
∑

j∈S(i)

Rj(t), i ∈ E (17)

Here S(i) ⊆ [1, N ] is the set of flow classes, whose flows
pass through link i ∈ E. If we define the routing matrix
{Aij , 1 ≤ i ≤ |E|, 1 ≤ j ≤ M} such that Aij = 1 if
link i is on the path of flow class j and Aij = 0 other-
wise, we have

RI = ARJ , (18)

where RI = {Ri, 1 ≤ i ≤ |E|} is the rate vector on all
network links and RJ = {Rj , 1 ≤ j ≤ N} is the rate
vector of all flow classes.

It has been observed that the traffic rate on high speed
link tends to be Gaussian [17]. We further assume that
the rate processes associated with the flow classes are
independent Gaussian processes. Figure 5 plots the dis-
tribution of the traffic rate of one flow class in the trace
under study. The Q-Q plot against Gaussian distribution
shows a good match. The rate vector of all flow classes
follows a multi-variate Gaussian distribution with mean
µJ = E[RJ ] = {µj} and covariance KJ = cov(RJ ) =
{KJ

mn}, where KJ
mn = σ2

j if m = n = j and 0 other-
wise. Consequently, the link rate vector is also a multi-
variate Gaussian process with

µI = E[RI ] = AµJ (19)
KI = cov(RI ) = AKJAT (20)

9
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Figure 5: Marginal Distribution of SNMP Data

5.2.1 Entropy in SNMP Data

According to [5], the marginal entropy of SNMP data
collected on link i can be calculated as:

h(Ri) =
log 2πe

∑N

j=1 Aijσ
2
j

2
=

log 2πe
∑

j∈S(i) σ2
j

2
(21)

The joint entropy of SNMP data collected on link i and
j can be calculated as:

h(Ri, Rl) =

log

{

(2πe)2

∣

∣

∣

∣

∣

[

Ai·
Al·

]

KJ
[

AT
i· AT

l·
]

∣

∣

∣

∣

∣

}

2

=
log

{

(2πe)2(K11K22 − K2
12)

}

2
,

where Ai· is the i-th row vector in routing matrix A and
K11 =

∑

j∈S(i) σ2
j , K22 =

∑

j∈S(j) σ2
j and K21 =

∑

j∈S(i)∩S(j) σ2
j . Therefore

h(Ri, Rl) =
log � (2πe)2K11K22 �

2
+

log{1 −
K

2
12

K11K22
}

2

= h(Ri) + h(Rl) +
log(1 − ρ2

il)

2
,

where ρil = K12√
K11K22

is the covariance coefficient
between Ri and Rl. The mutual information between
SNMP data on link i and link l is

I(Ri, Rl) = h(Ri) + h(Rl) − h(Ri, Rl) (22)

= −
log(1 − ρ2

il)

2
, (23)

which could be small even if ρil is close to one. For ex-
ample, suppose there are 900 flows traversing both link

i and link l. In addition to those common flows, links i
and l each have their own 100 flows. If we assume all
flows are statistically homogeneous, then we will have
ρil = 0.9, which indicates Ri and Rl are highly corre-
lated. However, according to (22), the mutual informa-
tion between Ri and Rl is only around 1.2 bits. This
suggests there is not much gain in doing joint compres-
sion of SNMP data.

5.2.2 How much information does SNMP contain
about traffic matrices?

For the purpose of traffic engineering, it is important
to characterize the traffic demand between all pairs of
network ingress and egress points, or the Traffic Matrix
(TM). Each element in the TM corresponds to the traffic
rate of the flow class which goes from the ingress point
to the egress point. Such information is normally not
easy to access. Network operators can instrument each
router to record SNMP data on each link, which is the
sum of traffic rates of all flow classes traversing that link.
It is challenging to infer the TM, equivalently the flow
rate vector, based on the SNMP rate vector [26]. Our
framework provides a way to quantify the amount of in-
formation about a TM that one can obtain from SNMP
data.

Essentially, the information content in the flow rate
vector (or TM) is

h(RJ) =
∑

j∈[0,N ]

h(Rj) (24)

=
∑

j∈[0,N ]

1

2
log 2πeσ2

j . (25)

Since the link rate vector is a linear combination of the
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flow rate vector, we will always have

h(RI) ≤ h(RJ). (26)

Furthermore, under the Gaussian assumption, the infor-
mation content in the link rate vector can be calculated
as

h(RI) =
1

2
log{(2πe)|E||KI |} (27)

=
1

2
log{(2πe)|E||AKJAT |} (28)

≤ h(RJ) =
1

2
log{(2πe)N |KJ |} (29)

The gap in (29) is determined by both the routing ma-
trix A and the variance in the traffic rates of flow classes
{σ2

j }.
Note: For some routing matrices, the rows of A are de-
pendent, i.e., some link rate Rl is a linear combination
of some other link rates. In this case, Rl contributes no
new information to the link rate vector; consequently, we
should only include all independent row vectors of A in
(28) to calculate the entropy of the whole link rate vector.
We will illustrate this through an example in Section5.3.

5.2.3 Entropy Rate in SNMP

In this section, we study the entropy rate in SNMP data
by taking into account the temporal correlation in traffic
rate processes. We have observed that the marginal link
rate vector is well characterized as a multivariate Gaus-
sian random variable. Consequently the link rate vector
process over time is a stationary multivariate Gaussian
process with mean µI given by (19) and covariance ma-
trix at time lag h, ΓI(h), to be determined next. In order
to simplify the discussion, we ignore link delays. These
can be accounted for, but at the cost of some obfuscation.
We have

ΓI(h) = A × ΓJ(h) × AT ,

where ΓJ
mn(h) = Gj(h) if m = n = j and 0 other-

wise, and Gj(h) is the covariance associated with the
class j rate process, j ∈ [1, N ]. To obtain ΓJ(h), we
return to the original flow model and recognize that each
flow class can be modeled as an M/G/∞ queue and that
we can apply known results regarding the autocorrelation
function of its buffer occupancy process, [21]. If T j de-
notes the duration of a class f flow and T̂ j denotes the
forward recurrence time associated with T j , j ∈ [1, N ],
then

Gj(h) = ΛjE[T j ] Pr[T̂ j > |h|], h ≥ 0

The distribution of T̂ j is

Pr[T̂ j > h] =
1

E[T j ]

∫ ∞

h

Pr[T j > x]dx, h ≥ 0

Suppose that we sample over intervals of length τ .
Then we can use a discrete time version of the model
where

Rj
k =

∫ kτ

(k−1)τ

Rj(t)dt, 1 ≤ j ≤ N

Note that {Rj
k : k = 1, . . .} is a discrete time Gaus-

sian process with mean µjτ and covariance approxi-
mately equal to Γτ (h) = ΛjE[T j ] Pr[T̂ j > |hτ |],
h = 0, 1, 2, . . .. The discrete time counterparts for the
rate process at the routers can be defined in a similar
manner. The entropy rate of {Rj

k} is given as, [5, Theo-
rem 9.4.1]

h({Rj
k}) = lim

n→∞
1

n

1

2
log(2πe)n|Kj

n|,

=
1

2
log(2πe) + lim

n→∞
1

2n
log |Kj

n|

where Kj
n is the n × n covariance matrix with elements

Γτ (h), h = 0, 1, . . . , n − 1. Finally, the entropy rate of
the system is

∑N

j=1 h({Rj
k}).

5.2.4 SNMP Evaluation

The SNMP model is derived from the flow model and
represents a summary of flow information. We evaluate
the SNMP model by comparing the model derived en-
tropy with an empirical entropy estimation.

The SNMP data is a per second utilization summarized
from our trace data, instead of real per five minute data
collected from the field. This is done to provide compat-
ibility with the other monitoring methods. The empiri-
cal entropy estimation for each individual link is based
on calculating empirical probability distribution function
from the SNMP data, with a bin size of 50,000 bytes/sec.
We use the BUB entropy estimator [20] with the PDF to
derive the entropy. The BUB estimator does well when
the number of available samples is small compared to the
number of bins, as is the case here. It also provides an
error bound for the estimation. For joint entropy such as
H(BB1-out, C1-in), we compute the joint probability dis-
tribution of each SNMP data pair at time t: (BB1-out(t),
C1-in(t)), then compute the entropy using the BUB func-
tion. In Table 4 we verify that the entropy of the SNMP
data derived from the Gaussian model indeed matches
well with the empirical calculations.

5.3 Results
We present results on the comparison of the three moni-
toring options in terms of quantitative storage difference
and distributed compression savings. The joint compres-
sion ratio indicates whether two links share a strong spa-
tial correlation. The stronger the links are correlated, the
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Data Set Entropy Model Empirical
SNMP H(BB1-out) 20.6862 20.6700 (max mse<0.1499)

H(BB2-out) 20.8895 20.8785 (max mse<0.1654)
H(C1-in) 21.0468 21.0329 (max mse<0.1618)

H(C1-in,BB1-out) 26.1517 26.1254(max mse<0.2717)
H(C1-in,BB2-out) 26.1432 26.3078(max mse<0.2945)

Table 4: Comparision of SNMP data entropy between model and empirical calculations

Data Set Entropy (bits) Joint Compression Ratio
SNMP C1-in 21.0468 C1-in and BB1-out 1.0021

BB1-out 20.6862 C1-in and BB2-out 0.9997
NetFlow C1-in 160.8071*697 C1-in and BB1-out 0.8597

BB1-out 159.6124*1730 C1-in and BB2-out 0.8782
Full Trace C1-in 706.3773*697 C1-in and BB1-out 0.8649

BB1-out 736.1722*1730 C1-in and BB2-out 0.8702

Table 5: Comparison of entropy calculations in information gain for different measurement granularity

lower the compression ratio. This is intuitive because
when two links share a large amount of information,
the shared information only needs to be recorded once,
hence yielding a large compression savings. In Table 5,
we find that the spatial correlation is very weak at the
SNMP level (compression ratio is approx. 1), but much
stronger at both NetFlow and all packet monitoring levels
(compression ratio is between 0.5 to 0.8702). This result
suggests that there is no need to coordinate SNMP data
gathering at different monitoring points, while coordi-
nated collection and shared information at all monitoring
points can yield significant savings in terms of storage for
widely deployed NetFlow and all packet monitoring.

Table 5 also shows the information content compar-
ison among the three monitoring options. SNMP data
takes about 21bits to encode per second, while NetFlow
takes 74444bits per second, and all packet monitoring
takes 492082bits per second.

Now let’s turn to the information gap between
SNMP data and actual flow rate vector as studied in
Section5.2.2. For the case under study, there are 4 links
and 4 flow classes between 4 incoming-outgoing link
pairs. The routing matrix is

A =









1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1









Row vectors of A are dependent:

A4· = A1· + A2· − A3·,

which means you can obtain the rate on link 4 as

R4 = R1 + R2 − R3.

Therefore,

h(RI) = h(R1, R2, R3) (30)

=
1

2
log{(2πe)3|A1−3,·K

JAT
1−3,·|} (31)

We obtained the rate variance of each flow classes as:

KJ =









1.21 0 0 0
0 1.18 0 0
0 0 0.239 0
0 0 0 0.42









× 1011

According to (29), the information content in the rate
vector for all 4 flow classes is h(RJ) = 79.87; according
to (28), the information content in the rate vector for all 4
links is h(RI ) = 61.08. The information gap is 23.53%
of the total flow rate information. For this very simple
topology and routing matrix, even if we collect SNMP
data on all incoming and outgoing links, we still cannot
fully infer the traffic rates between all incoming and out-
going pairs. We conjecture that as the topology and rout-
ing gets more complex, the information gap between the
SNMP link rate vector and the flow rate vector increases,
in other words, it becomes more difficult to obtain the
traffic matrix by just looking at the SNMP data.

6 Conclusion and Future Work

Our goal in this paper was to put together a framework in
which we could pose, and answer, challenging yet very
practical questions faced by network researchers, design-
ers, and operators, specifically i) how much information
is included in various types of packet traces and by how
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much can we compress those traces, and ii) how much
joint information is included in traces collected at differ-
ent points and how can we take advantage of this joint
information?

We obtained a number of interesting results. For ex-
ample, we derived an information theoretic bound for the
information content in traces collected at a single moni-
toring point and therefore were able to quantify the po-
tential benefit of lossless compression on those traces.
Not surprisingly, we found that the compression ratio
(or information content) is small in SNMP traces, much
higher in NetFLow traces, and extremely high in full
packet traces. This shows that full packet capture does
provide a quantum leap increase in information about
network behavior. However, deploying full packet cap-
ture stations can be expensive. The interesting compar-
ison, then, is that between the additional cost of full
packet capture (say compared to NetFlow capture), and
the additional amount of information produced by full
packet traces (say compared to NetFlow traces). We
are currently working on this problem, but early results
seem to indicate that the increase in information content
is proportionally larger than the increase in cost, sug-
gesting that a full packet monitoring system gives you
”more bang for the buck” (or rather ”more entropy for
the buck”).

We also found that full packet header traces can be
compressed in practice down to a minimum of 20% of
their original size, and that the amount of compression is
a function of the average flow size traversing that node:
the larger the average flow size, the smaller the compres-
sion ratio.

In practice, packet traces are typically captured at mul-
tiple points. Therefore, it is important to understand how
much information content is available in a set of traces,
when that set is considered as a whole (as opposed to as a
set of independent traces). This is turn is crucial to tackle
further problems such as how many monitoring stations
to set up (there might be a point of diminishing returns at
which additional stations do not bring in enough ”fresh”
new information) and how to process and analyze those
correlated data traces.

Using our framework, we find that joint coding or
compression of traces further reduces the marginally
compressed traces at the individual monitors. Specif-
ically, the joint compression ratio (or equivalently, the
additional compression benefit brought by joint coding
of traces) is low for SNMP or byte/packet count traces,
higher for NetFlow or flow-level traces, and significantly
higher for packet-level traces. This means, for exam-
ple, that joint coding would be very useful for full packet
trace data (and to a lesser extent for NetFlow data) col-
lected from different monitoring points and sent back to
a NOC or central analysis station. We are now working

on extending the work in this paper to joint coding tech-
niques for large scale backbone and wireless networks.
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