
Hierarchically Clustered P2P Video Streaming: Design,

Implementation, and Evaluation

Yang Guoa,∗, Chao Lianga, Yong Liub

aAlcatel-Lucent, Holmdel, NJ 07733
bPolytechnic Institute of NYU, Brooklyn, NY 11201

Abstract

P2P based live streaming has been gaining popularity. The new generation
P2P live streaming systems not only attract a large number of viewers, but
also support better video quality by streaming the content at higher bit-rate.
In this paper, we propose a novel P2P streaming framework, called Hier-
archically Clustered P2P Video Streaming, or HCPS, that can support the
streaming rate approaching the optimal upper bound while accommodating
large viewer population. The scalability comes with the hierarchical overlay
architecture by grouping peers into clusters and forming a hierarchy among
them. Peers are assigned to appropriate cluster so as to balance the band-
width resources across clusters and maximize the supportable streaming rate.
Furthermore, individual peers perform distributed queue-based scheduling al-
gorithms to determine how to retrieve data chunks from source and neigh-
boring peers, and how to utilize its uplink bandwidth to serve data chunks to
other peers. We show that queue-based scheduling algorithms allow to fully
utilize peers’ uplink bandwidths, and HCPS supports the streaming rate close
to the optimum in practical network environment. The prototype of HCPS
is implemented and various design issues/tradeoffs are investigated. Exper-
iments over the PlanetLab further demonstrate the effectiveness of HCPS
design.

Keywords: Peer-to-Peer, streaming, hierarchical clustering, optimal
scheduling.

∗Corresponding author
Email addresses: yang.guo@alcatel-lucent.com (Yang Guo),

chao_c.liang@alcatel-lucent.com (Chao Liang), yongliu@poly.edu (Yong Liu)

Preprint submitted to Elsevier October 31, 2011



1. Introduction

Video over Internet has been gaining popularity due to the fast pene-
tration of high-speed Internet access, expanding group of savvy broadband
users, and rich video contents available over the Internet. ISPs are aggres-
sively rolling out new infrastructure enhanced with advanced protocols to
offer customers Internet TV services. Video traffic is expected to domi-
nate the Internet in near future. Traditionally, video content is streamed to
end users either directly from video source servers, or indirectly from edge
servers belong to Content Distribution Network (CDN). Peer-to-Peer video
streaming has emerged as an alternative with low infrastructure cost. P2P
streaming systems, such as CoolStreaming [1], PPLive [2], and SopCast [3],
attract millions of users to watch live or on-demand video programs. The
existing P2P based systems show remarkable capability of handling large
viewer population, and being robust against peer churns and dynamic net-
work environment.

P2P design philosophy seeks to utilize peers’ upload bandwidth to reduce
server’s workload. The maximum video bit-rate that can be serviced over a
P2P system is determined by the server’s upload capacity and peers’ average
upload capacity [4]. The recent study [5] suggests that simple scheduling
algorithm employed by many P2P systems is unable to fully utilize peers’
upload capacity. Higher streaming rate equates better video quality. The
capability to support high bit-rate streaming also provides more cushion to
absorb the bandwidth variations in case the constant-bit-rate (CBR) video is
broadcasted. A new P2P streaming framework that is capable of supporting
high video bit-rate and accommodating a large number of users is highly
desirable.

Most existing P2P streaming solutions maintain a loosely connected mesh
to accommodate a large number of users. Individual peers share data with
a small set of neighboring peers. While such random mesh is scalable, the
study in [6] suggests that the supportable video bit-rate in a random mesh
is throttled by the content bottleneck, i.e., a peer’s upload bandwidth can-
not be utilized if it does not have fresh video data for its neighbors. More
recently, several intelligent scheduling algorithms capable of fully utilizing
peers’ upload capacities have been developed [4, 7, 8]. These scheduling al-
gorithms can achieve the maximum streaming rate if peers are connected
in a full mesh. The requirement of fully connected mesh, however, confines
the system scalability. It is unrealistic to maintain hundreds or thousands of

2



peering connections on a peer.
In this paper, we propose Hierarchically Clustered P2P Streaming sys-

tem (HCPS) that supports the streaming rate approaching the optimum yet
scales to host a large number of peers. P2P overlay topology and distributed
chunk scheduling algorithms running at individual peers collectively deter-
mine the performance of a P2P streaming system. Accordingly, we address
the design challenges following a two-step approach. First, we propose a
hierarchically clustered P2P overlay that scales to host a large number of
users/peers. In addition, the overlay is designed as such that its maximum
supportable streaming rate, defined as the maximum streaming rate allowed
by a P2P overlay, approaches the optimum upper bound. Second, we develop
distributed queue-based chunk scheduling algorithms that actually achieves
the maximum supportable streaming rate allowed by the HCPS overlay in
spite of the large number of users/peers. The main contributions of this
paper can be summarized as follows:

• We propose a novel P2P streaming framework that is scalable and sup-
ports the streaming rate approaching the optimum upper bound. The
optimality is proved analytically and evaluated through experiments.

• The full-fledged prototype is implemented. Various design consider-
ations are explored to handle dynamics in realistic network environ-
ments, including peer churns, peer bandwidth variations, and inside
network congestion.

• The performance of the prototype system is examined through exper-
iments over PlanetLab [9]. Both the optimality and the adaptiveness
of the proposed chunk scheduling method are demonstrated.

The remaining paper is organized as follows. Related work is presented in
Section 2. In Section 3, overlay construction of hierarchically clustered P2P
video streaming (HCPS) is presented. In Section 4, distributed queue-based
chunk scheduling algorithms are described. Section 5 discusses the design
issues in implementing HCPS prototype. Section 6 presents the experiment
results of HCPS over PlanetLab. Finally, conclusions and discussions are
included in Section 7.

3



2. Related work

P2P technology has become an effective paradigm for building distributed
networked applications. P2P based file sharing [10], voice-over-IP [11], and
video streaming services [12, 1, 2, 3] all achieve admirable success, attracting
a large number of users and changing the way digital goods are delivered
over the Internet. According to the overlay structure, P2P systems can be
broadly classified into two categories: tree-based systems and mesh-based
systems. The tree-based systems, such as ESM [12], have well-organized
overlay structures and typically distribute video by actively pushing data
from a peer to its children peers. In contrast, a mesh-based system is not
confined to a static topology. A peer dynamically connects to a subset of
random peers in the system based on the content and bandwidth availability
on peers. Video chunk is pulled by a peer from its neighbor who has already
obtained the chunk. The study in [13] shows that the mesh-based scheme
is superior over the tree-based scheme thanks to the dynamic mapping of
content to the delivery paths.

Despite the success of mesh-based P2P streaming systems, the quality of
experience perceived at end users requires further improvement in terms of
video quality, startup delay, and playback smoothness. Measurement study
on PPLive [14, 15] showed that most programs have bit rates around 400 kbps
and the start-up delays for a channel range from a few seconds to a few min-
utes. Performance comparison study [5] further sheds lights on the potential
root cause of limited streaming rate currently supportable over the Internet.
It turns out a naieve mesh-based P2P scheme is not able to efficiently utilize
the available bandwidth resources available in the P2P system.

Several efforts have been made to improve the resource utilization. [6]
proposes a two phase swarming scheme where the fresh content is diffused to
the entire system in the first phase, and peers exchange available content in
the second phase. Network coding has been applied to P2P streaming and
a reality check is done in [16]. [17] further proposes a P2P live streaming
protocol that takes full advantage of random network coding to improve the
overall performance. Neither above approaches, however, can be proved to
optimally utilize the bandwidth resources. [4] develops a centralized solution
that fully utilizes peer uploading bandwidth and achieves the streaming rate
upper bound. [7] designs an optimal randomized distributed algorithm. [8]
further expands the result in [7] and designs a set of pushed-based schemes.
[18] analyzes pull-based streaming protocol and shows that the streaming

4



rate can be near optimal if the long delay and large signaling overhead are
tolerable. A hybrid push-pull based scheme is proposed mitigating some
of the issues. The aforementioned studies, nevertheless, always require the
assumption of the fully connected mesh in their optimality proofs. HCPS
overcomes the challenge by introducing hierarchically clustered P2P over-
lay and distributed queue-based scheduling algorithms, which are provably
optimal with small startup delay. Full-fledge prototype further allows us to
address realistic implementation issues, and evaluate the system over the real
network.

The general idea of clustering has been applied to different networking
problmes [19, 20, 21]. The clustering in HCPS bears some similarities with
that in NICE [22]. NICE utilizes a hierarchical clustering architecture to
build a multicast tree over which low bit-rate videos are streamed, while
HCPS employs the mesh-based P2P streaming over the hierarchy to support
the high bit-rate video streaming. Different design goals lead to different
challenges and different solutions. NICE attempts to solve the tree building
control overhead problem, while HCPS intends to build a clustering hierarchy
that supports the P2P streaming rate approaching the optimum.

3. Hierarchically Clustered P2P Streaming: Overlay Construction

HCPS groups peers into clusters which are then organized into a tree-
like hierarchy, with clusters as vertices. Within each cluster, peers are fully
connected and one peer is elected as the cluster head. The cluster head acts
as the video proxy for the cluster and downloads video by joining its parent
cluster as a normal/non-head peer. Effectively, the cluster heads serve as
the links that connect clusters to their parent clusters in the hierarchy. The
number of connections on each normal peer is bounded by the size of its
cluster. Cluster heads additionally maintain connections in the upper level
cluster. The number of connections for cluster heads could be doubled.

Video content is streamed down from the upper-level clusters to the lower-
level clusters. Specifically, the source server feeds video to each cluster at
the first level in the hierarchy. Peers in the same cluster efficiently utilize
their upload capacity and download/upload video from/to one another by
employing a distributed chunk scheduling algorithm to be presented in Sec-
tion 4. Since cluster heads at level two join clusters at level one, they relay
the video to clusters at level two. Peers at level two employ the same chunk
scheduling algorithm to collaboratively download video from their cluster

5



head. The procedure repeats iteratively and video is streamed to all peers at
all levels of the hierarchy. Figure 1 illustrates a simple example of two-level

S

r

3

a1

a3

a2

a1 b1

b2

b3

4

5

Cluster Head

Head Mapping

a2

a3

r
r

b1

b2

b3

r

r r

6

7

8

1 2

Top Level

Base Level

Figure 1: Hierarchically Clustered P2P Streaming System: two-level hierarchy with 30
peers.

HCPS hierarchy. At the base level, peers are grouped into six clusters, each
with five peers. The peers are fully connected within a cluster. Each cluster
has one cluster head. At the top level, cluster heads form two clusters, each
with three heads. The video server (source) distributes the content to all
cluster heads. At the base level, each cluster head acts as the video proxy in
its cluster and distributes the downloaded video to other peers in the same
cluster.

While decreasing the number of connections of peers, HCPS has good scal-
ability. Suppose that the cluster size is bounded by Nmax, and the source can
support up to N s top layer clusters. The two-level HCPS system, as shown
in Fig. 1, can accommodate up to N s(Nmax)2 peers. Assume N s = 10 and
Nmax = 20, HCPS supports up to around 4,000 peers. The maximum num-
ber of connections a peer needs to maintain is 40 for cluster head and 20 for
normal peer, which is quite manageable. More peers can be accommodated
by adding more levels into the hierarchy. If each of the N sNmax clusters at
the base level has one peer with spare bandwidth higher than or equal to the
playback rate, each such peer can be used as a video proxy to connect more
levels to the two-level hierarchy. By adding one additional level to Figure 1,
each peer proxy can support (Nmax)2 additional peers. The system can sus-
tain at least N s(Nmax)3 more peers, i.e., 80K peers, only with one more level.

6



Next we look into the streaming rate that can be broadcasted over a HCPS
overlay.

3.1. Maximum supportable streaming rate of HCPS overlay

For a given HCPS overlay, H, we define its maximum supportable stream-
ing rate, rH, to be the largest video bit-rate that can be broadcasted to all
peers over this overlay. We further define optimum upper bound, rmax, to be
the largest possible streaming rate that can be broadcasted to the same set
of peers without overlay structure constraint. Hence rH ≤ rmax. As shown
in [4], the optimum upper bound, rmax, is governed by the following fomula:

rmax = min{us,
us +

∑N

i=1 ui

N
}, (1)

where us refers to the server’s upload bandwidth, the bit rate at which a video
can be served out of the server, and ui refers to the peer i’s upload bandwidth.
In the following, we first describe how to compute maximum supportable
streaming rate for a fixed HCPS overlay topology. We then investigate the
peer clustering strategies that would lead to efficient HCPS overlay topology
with maximum supportable streaming rate approaching the optimum upper
bound. In this study we follow the common assumption that the downlink
bandwidth is not the bottleneck and thus do not set limit on them.

Assume N peers are grouped into C clusters in a HCPS mesh. Set Vc

denotes a subset of peers in cluster c, c ∈ [1, C]. A peer can participate in
a HCPS cluster either as a normal peer or as a cluster head. For instance,
in Fig. 1, peer a1 joins two clusters. It is the cluster head in cluster 3 and
a normal peer in cluster 1. Denote by uic the amount of upload capacity of
peer i contributed to cluster c as a normal peer, and by hic the amount of
upload capacity of peer i contributed to cluster c as a cluster head. Hence
u(a1)3 = 0, h(a1)3 ≥ 0 since peer a1 is the head in cluster 3; and u(a1)1 ≥ 0,
h(a1)1 = 0 since peer a1 is a normal peer in cluster 1. u(a1)c = h(a1)c = 0 for
all other clusters since peer a1 is not member of them. Further denote by us

c

the amount of source upload capacity used for cluster c. Similarly, us
c = 0 if

the source does not participate in cluster c. If rmax
c represents the maximum

streaming rate for cluster c as governed by Equation (1) (note that peers
are fully connected within a cluster thus the upper bound can be achieved),
the maximum supportable streaming rate for a given cluster-based HCPS
overlay H, rH, can be formulated as the following optimization problem.

7



rH = max
{uic,hic,us

c}

{

min [rmax
c |c = 1, 2, . . . , C]

}

(2)

subject to:

rmax
c = min

{

∑N

i=1(uic + hic)

Vc

,

N
∑

i=1

hic + us
c

}

(3)

C
∑

c=1

(uic + hic) ≤ ui (4)

C
∑

c=1

us
c ≤ us (5)

where Eqn. (3) is true for all c ∈ [1, C] and Eqn. (4) is true all for i ∈ [1, N ].
The value of uic, hic, and us

c is determined by the HCPS topology.
The maximum supportable streaming rate for a given mesh topology is

the streaming rate that can be supported by all clusters. Since the cluster
head participates in both upper layer and lower layer clusters and the source’s
upload capacity is used by several top layer clusters, the supportable stream-
ing rate for HCPS can be maximized by adjusting the allocation of clusters’
upload capacity and source’s upload capacity. This explains the Equation
(2). The first term in Equation (3) represents the average upload capacity
per peer in cluster c; and the second term represents the cluster head’s upload
capacity (note that cluster head can be either the source server or a peer).
Since the maximum value of streaming rate at cluster c, rmax

c , is governed by
the theoretical upper bound (see Equation (1)), this leads to the Equation
(3). Further, the amount of bandwidth allocated for the upper layer and
low layer clusters must not surpass its total upload capacity, which explains
Equation (4). Finally, for the source, the total allocated upload capacity
for all clusters must not surpass the source’s total upload capacity, which
explains Equation (5).

3.2. Peer clustering strategies

For the same set of peers, different overlay topology leads to different
maximum supportable streaming rate. We now investigate peer clustering
strategies that enable maximum supportable streaming rate rH approaching
optimum upper bound rmax. We start with a simple numerical example to

8



illustrate the major factors affecting the HCPS’s performance. The clustering
strategies are laid out thereafter.

Assume a HCPS system possesses 400 peers and one source node. The
cluster size is set to be 20. The peers are grouped into 20 base layer clusters
and one top layer cluster for cluster heads. The optimization problem (2)
is numerically solved to obtain rH, i.e., the maximum supportable streaming
rate for HCPS overlay. Further assume that peers’ upload capacities obey the
following distribution, (128 kbps, 0.2), (384 kbps, 0.4), (1 Mbps, 0.25), and (5
Mbps, 0.15), where the first entry is the upload capacity and the second entry
is associated probability. The distribution is drawn from the measurement
study conducted in [23]. We compare the maximum supportable video bit-rate
of the following two scenarios. In the first scenario, we select one cluster and
assign its nodes’ upload bandwidths according to the bandwidth distribution
listed above. The rest of clusters use the exact same bandwidth profile.
In the second scenario, each node individually selects its upload bandwidth
according to the same probability distribution. In both scenarios, the node
with the largest upload bandwidth is selected as the cluster head. We solve
the optimization problem (2). The solution shows that the value of rH of the
first scenario is very close to the optimum upper bound, rmax (> 99%rmax),
while rH only achieves roughly 60% of the optimum upper bound for the
second scenario.

The difference between first and second scenario is significant, however not
surprising. According to Equation (2), the maximum supportable streaming
rate, rH, takes the minimum cluster streaming rate of all clusters. The clus-
ter streaming rate (Equation (3)) is the minimum of cluster average upload
capacity and the cluster head’s rate. Intuitively, the peers should be divided
into clusters with equal (similar) average upload capacity to avoid wasting
resources. Based on the above discussion, we propose following heuristics:

• The discrepancy of individual clusters’ average upload capacity per peer
should be minimized.

• The cluster head’s upload capacity should be as large as possible. The
cluster head’s capacity allocated for the base layer capacity has to be
larger than the average upload capacity to avoid being the bottleneck.
Furthermore, the cluster head also joins the upper layer cluster as a
normal peer. Ideally, the cluster head’s rate should be ≥ 2rH so that
at least one rH can be allocated to both the upper and lower cluster.

9



• The number of peers in a cluster should be bounded from the above by
a relatively small number. The number of peers in a cluster determines
the out-degree of peers. Large out-degree is prohibitive for peers to
perform properly in real networks.

Below we describe the dynamic peer management in HCPS that realizes
the above heuristics. HCPS system has a bootstrapping node whose task is to
manage HCPS topology to balance the resources among clusters. Meanwhile,
a cluster head manages the peers in its own cluster. The bootstrap node’s
task is to handle the peer arrival and peer departure in such a way that rH is
as close to the optimal as possible. Below we describe three key operations in
HCPS that handle the peer dynamics: peer join, peer departure, and cluster
re-balancing.

3.2.1. Peer join

Depending on the new arrival’s estimated upload capacity compared to
the current rH, the new peer is classified into three categories: HPeer(resource
rich peer) if u ≥ rH + θ, MPeer(resource medium peer) if rH − θ < u <
rH+θ, and LPeer(resource poor peer) otherwise, where u is new peer’s upload
capacity, and θ is a configuration parameter.

Denote by Nmax the maximum number of peers allowed in a cluster. All
clusters with less than Nmax peers are eligible to accept the new peer. If
the upload capacity of the new peer, u, is greater than some eligible cluster
heads’ upload capacity by a margin, the peer is assigned to the cluster with
the smallest cluster head upload capacity. The new peer is to replace the
original cluster head, and the original head becomes the normal peer and
stay in the cluster.

If the new peer does not replace any cluster head, it is assigned to a cluster
according to the peer type. Specifically, the peer is assigned to the cluster
with the minimum average upload capacity if the peer is HPeer; the peer is
assigned to the cluster with the smallest number of peers if it is MPeer; and
the peer is assigned to the cluster with the maximum average upload capacity
if it is LPeer. The idea behind this is to balance the upload resources among
clusters.The new peer is redirected to the corresponding cluster head, and
bootstrap node asks the cluster head to admit the new peer.

3.2.2. Peer departure

The handling of peer departure is straight forward. If the peer is a normal
peer, it informs the cluster head of its departure. The cluster head takes the

10



peer off its cluster member list, and informs other peers in the same cluster
about its departure.

If the departing peer is the cluster head, it informs the bootstrap node its
departure. The bootstrap node selects the backup peer from existing peers
in the cluster as the new cluster head. This promotion process requires the
remaining peers of the cluster and other cluster heads to update member list,
since both clusters linked by the head are influenced directly. Meanwhile, the
new cluster head needs to take over the original management task. If a peer
crashes, the handling is the same after the peer is sensed inactive through
heart-beat ping messages.

3.2.3. Cluster re-balancing

The clusters may lose balance in terms of the number of peers and the
amount of resources in a cluster as the result of peer churn. In HCPS, the
bootstrap node periodically attempts to re-balance the clusters. At the end
of an epoch, the bootstrap node first attempts to balance the cluster size.
The clusters are sorted in the descending order of cluster size. If the gap
between the clusters with the largest and the smallest number of peers is
greater than the threshold = max{α ·Nmax, β ·N}, where N is the average
cluster size, these two clusters will be merged and then splitted into two
balanced clusters. The above process continues until no clusters violates the
condition.

In the second phase of cluster re-balancing, the bootstrap node tries to
balance the resources. The clusters are sorted in the descending order of
average upload capacity per peer. If the average upload capacity difference
of the clusters with highest and lowest upload capacity is greater than the
threshold of θ · u, where u is the average upload capacity, these two clusters
will be merged and then splitted into two balanced clusters.

3.3. Maximum supportable streaming rate vs. optimum upper bound

The effectiveness of peer clustering strategies is evaluated using flow level
simulation next. The simulation is driven by the trace collected from the
measurement study of a large scale P2P live streaming system PPLive [2].
We extract the information of peers arrival and their life time from a one-day
PPLive channel trace collected at April 3, 2006. The upload capacity of peers
are assigned randomly according to the distribution described in Section III.
The server upload capacity is set to be 2Mbps.

11



Fig. 2(a) depicts the number of peers in the system over the period of
24 hours. Peer churn is evident in this figure. The number of peers peaks
around 9:00AM-12:00PM when the system has more than 200 concurrent
users.

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

Time(h)

N
od

e 
D

eg
re

e

(a) One-day degree evolution of
popular channel

0 50 100 150
800

900

1000

1100

1200

1300

1400

Time(m)

P
la

yb
ac

k 
R

at
e

 

 

rH

rmax

(b) r
H vs. rmax

Figure 2: Rate Evolution in Peak Time

Fig. 2(b) plots the HCPS streaming rate vs. optimum upper bound
during the peak hour (9:00AM-12:00PM). The curve of HCPS streaming
rate follows the trend of optimum streaming rate closely. The oscillation
of optimum streaming rate is due to the upload capacity change caused by
peer churn. The oscillation of HCPS streaming rate is due to the following
two reasons: (i) the upload capacity change; and (ii) the resource imbalance
among HCPS clusters. While the first factor is caused by the nature of P2P
system, the second factor is mitigated by intelligent clustering strategies as
laid out in Section 4. To better understand the persistent performance,
Table 1 reports the average streaming rate over a four hour period during
the day. The HCPS maximum supportable streaming rate is within 90% of
the optimum upper bound all the time.

Table 1: Average Rate per Time Zone

Time Zone(h) 0-4 4-8 8-12 12-16 16-20 20-24

Perfect(Mbps) 1.15 1.21 1.18 1.21 1.01 1.14

HCPS(Mbps) 1.07 1.11 1.04 1.12 8.99 1.06

12



4. Distributed queue-based chunk scheduling algorithms

In Section 3, we studied how to construct HCPS overlay to have large
maximum supportable streaming rate. In this section, we describe distributed
queue-based chunk scheduling algorithms that achieve themaximum support-
able streaming rate, rH. Designing a distributed chunk scheduling algorithm
that achieves the maximum supportable streaming rate is not trivial because
of content bottleneck effect. Peers’ uplink bandwidths are wasted whenever
chunks requested by a peer’s connected neighbors are not available at this
peer. In Eqn. (2), maximum supportable stream rate rH is computed without
considering content bottleneck.

The basic building blocks of distributed queue-based chunk scheduling
algorithms are queues. Data chunks are pulled/pushed from server/cluster-
head to peers, cached at peers’ queue, and relayed from peers to its neighbors.
The availability of upload capacity is inferred from the queue status such as
the queue size or if the queue is empty. Signals are passed between peers
and server to convey the information if a peer’s upload capacity is available.
Queue-based design enables peers to be self-adaptive to the dynamic net-
work environment, and automatically converges to the maximum supportable
streaming rate. Fig. 3(a) depicts a HCPS system with one server and nine
peers grouped into three clusters. Node a and b are cluster heads and join
both top level and bottom level clusters. Fig. 3(b) zooms into the top-level
cluster and illustrates the data and signaling exchanges among peers and
source server. Each peer maintains several local queues including a forward
queue. Using peer a as an example, the signal and data flow is described
next. Pull signals are sent from peer a to the server whenever the forward
queues become empty (or have fallen below a threshold) (step 1 in Fig. 3(b)).
The server responds to the pull signal by sending three data chunks back to
peer a (step 2). These chunks will be stored in the peer a’s forward queue
(step 3) and be relayed to peer b and peer c (step 4). When the server has
responded to all ’pull’ signals on its ’pull’ signal queue, it serves one dupli-
cated data chunks to all peers (step 5). These data chunks will not be stored
in peer a’s, b’s and c’s forward queues and will not be relayed further.

There are three types of peers in the HCPS system: normal peer, cluster
head, and source server. In the following the scheduling algorithm and the
queuing model of different peers are described.

13



S

a b

c

g he j

f i

(a) Queue-based chunk scheduling
with nine peers

ba

S

c

Pull signal from peer to server 

Chunks in response to pull signal 

Chunks with no pull signal 

1

2

3
4

5 5 5

4

(b) Queue-based chunk
scheduling in top cluster

Figure 3: HCPS Overlay using queue-based chunk scheduling: an example with one source
and nine peers grouped into three clusters

4.1. Scheduling and queuing model of normal peer

Fig. 4 depicts the queuing model for normal peers. A peer maintains a
playback buffer that stores all received streaming content from the source
server and other peers. The received content from different nodes is as-
sembled in the playback buffer in playback order. The peer’s media player
renders/displays the content from this buffer. Meanwhile, the peer main-
tains a forwarding queue which is used to forward content to all other peers.
The source server marks the data content either as F-marked content or NF-
marked content before transmitting them. F (forwarding) represents content
that should be relayed/forwarded to other peers. NF (non-forwarding) indi-
cates that content is intended for this peer only and no forwarding is required.
NF content is filtered out at peers. F content is stored in the forward queue,
marked as NF content, and forwarded to other peers. Because the relayed
content is always marked as NF at the relaying peer, data content is relayed
at most once, which reduces the content distribution time and startup de-
lay. In order to fully utilize a peer’s upload capacity, the peer’s forwarding
queue should be kept busy. A signal is sent to the source server to request
more content whenever the forwarding queue becomes empty. This is termed
a ’pull’ signal. The rules for marking the content at the source server and
cluster heads are described next.

14



�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Playback buffer Forwarding queue

Filter F marked
content

’pull’ signal

Figure 4: Queue Model of Peers: some video in playback buffer will be moved to forwarding
queue to be forwarded to other peers.

4.2. Scheduling and queueing model of cluster head

Cluster heads joins two clusters. That is, a cluster head will be a member
of two clusters concurrently. A cluster head behaves as a normal peer in the
upper-level cluster and as the source proxy for the lower-level cluster. The
queuing model of the cluster head, thus, is two levels as well, as shown in
Fig. 5. As a normal node in the upper-level cluster, the cluster head receives
the content from peers within the same cluster as well as from the source
server. It relays the ’F’ marked content to other peers in the same upper
level cluster and issues ’pull’ signals to the source server when it needs more
content. At the upper level, the cluster head also may issue a throttle signal
to the source server, which is described in more detail below.

’pull’ signal queue

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Forwarding server

F marked content server

Content buffer

’throttle’ signal

Filter

’F’ marked
content

’pull’ signal

Cluster head as 

upper−level cluster

Cluster head as
source server in

normal peer in 

lower−level cluster

Figure 5: Queue Model of Cluster Head

’pull’ signal queue

’pull’ signal queue

Forwarding server

F marked content server

Original content
buffer

’throttle’ signal

Content buffer 1

Forwarding server

F marked content server

Content buffer n

Figure 6: Queue Model of Source Server

Still referring to Fig. 5, as the source in the lower-level cluster, the cluster

15



head has two queues: a content queue and a signal queue. The content queue
is a multi-server queue with two servers: an ’F’ marked content server and a
forwarding server. Which server to use depends on the status of the signal
queue. Specifically, if there is ’pull’ signal in the signal queue, a small chunk
of content is taken off content buffer, marked as ’F’, and served by the ’F’
marked content server to the peer that issued the ’pull’ signal. The ’pull’
signal is then removed from the ’pull’ signal queue. On the other hand, if
the signal queue is empty, the server takes a small chunk of content (data
chunk) from the content buffer and transfers it to the forwarding server. The
forwarding server marks the data chunk as ’NF’ and sends it to all peers in
the same cluster.

A cluster head’s upload capacity is shared between upper-level cluster and
lower-level cluster. In order to achieve the maximum supportable streaming
rate of a HCPS system, the forwarding server and ’F’ marked content server
in the lower-level cluster always has priority over the forwarding queue in the
upper-level cluster. Specifically, the cluster head will not serve the forwarding
queuing in the upper-level until the content in the playback buffer for the
lower-level cluster has been fully served.

A lower-level cluster can be overwhelmed by the upper-level cluster if the
streaming rate supported at the upper-level cluster is larger than the stream-
ing rate supported by the lower-level cluster. If the entire upload capacity of
the cluster head has been used in the lower-level, yet the content accumulated
in the upper-level content buffer continues to increase, it can be inferred that
the current streaming rate is too large to be supported by the lower-level
cluster. A feedback mechanism at the playback buffer of the cluster head
is introduced. The playback buffer has a content rate estimator that con-
tinuously estimates the incoming streaming rate. A threshold is set at the
playback buffer. If the received content is over the threshold for an extended
period of time, say T , the cluster head will send a throttle signal together
with the estimated incoming streaming rate to the source server. The signal
reports to the source server that the current streaming rate surpasses the
rate that can be consumed by the lower-level cluster headed by this node.
The source server may choose to respond to the ’throttle’ signal and acts
correspondingly to reduce the streaming rate. As an alternative, source may
choose not to slow the current streaming rate. In such scenario, the peers
in the cluster headed by this cluster head will experience degraded viewing
quality such as frequent frame freezing. However, the quality degradation
will not spill over to other clusters.

16



4.3. Scheduling and queueing model of source

The source server in HCPS system may participate in one or multiple
top-level clusters. The source server has one sub-server for each top-level
cluster, as shown in Fig. 6. The source server maintains an original content
queue that stores the data/streaming content. It also handles the ’throttle’
signals from the lower level clusters and from cluster heads the source server
serves at the top-level clusters. The server regulates the streaming rate ac-
cording to the ’throttle’ signals from the peers. The server’s upload capacity
is shared among all top-level clusters. The bandwidth sharing follows the
following rules: (i) the cluster that lags behind other clusters significantly
(by a threshold in terms of content queue size) has the highest priority to
use the upload capacity; and (ii) if all content queues are of the same/similar
size, then clusters are served in a round robin fashion.

4.4. Optimality of queue-based chunk scheduling algorithms

Theorem 1. Assume that the propagation delay between peers and between
a peer and the server is negligible and the data content can be transmitted
at an arbitrary small amount. The distributed queue-based chunk scheduling
algorithm achieves the optimum upper bound, rmax, over a fully connected
mesh, and achieves the maximum supportable streaming rate, rH, over the
hierarchically cluster P2P overlay, H.

See Appendix for the proof. Below we discuss the implementation consider-
ations in realizing the distributed queue based chunk scheduling algorithms
in practice.

5. Implementation considerations

We implement a full functioning HCPS live streaming system which not
only serves as a proof of concept but also allows us to evaluate the system
performance over the real network. Below we use the source server as an
example to illustrate the design philosophy. The architecture design aims
at solving practical implementation challenges including the impact of chunk
size, network congestion, and peer churn. The same design philosophy can be
applied to the design of other components such as normal peers and cluster
heads.

17



5.1. Source server architecture

The source server maintains one sub-server for each cluster (see Fig. 6).
For the ease of illustration, we assume there is one top-level cluster in the
system. We also assume that the content source server is the bootstrap node.
As the bootstrap node, the content source server manages peer information
(such as peer id, IP address, port number, etc.) and replies to the request
for peer list from incoming new peers.

Internet


Select Call


PULL SIG


MSG


Source


Packet Handler


RECOV REQ


Figure 7: Server Architecture

Figure 7 illustrates the architecture of the source server. Using the ’select
call’ mechanism to monitor the connections with peers, the server maintains
a set of input buffers to store received data. There are three types of incom-
ing messages: management message, pull signal, and missing chunk recovery
request. Correspondingly three independent queues are formed for these mes-
sages. If the output of handling these messages needs to be transmitted to
remote peers, the output is put on the per-peer out-unit.

There is one out-unit for each destination peer to handle the data trans-
mission process. Figure 8 depicts an example. Each out-unit has four queues
for a given peer: management message queue, F-marked content queue, NF-
marked content queue, and missing chunk recovery queue. The management
message queue stores responses to management requests. An example of a
management request is when a new peer has just joined the P2P system and
requests the peer list. The F/NF marked content queue stores the F/NF
marked content intended for this peer. Finally, chunk recovery queue stores
the missing chunks requested by the peer.

Different queues are used for different types of traffic in order to prioritize
the traffic types. Specifically, management messages have the highest prior-
ity, followed by F-marked content, and NF-marked content. The priority of
recovery chunks can be adjusted based on the design requirement. Manage-

18



Message Queue


F-marked Chunk Queue


NF-marked Chunk Queue


Server

out-unit


Recovery Chunk Queue


Figure 8: Server Out-unit Queues

ment messages have the highest priority because it is important for the system
to run smoothly. The content source server replies to each ’pull’ signal with
F-marked chunks. F-marked chunks are further relayed to other peers by
the receiving peer. The content source server sends out a NF-marked chunk
to all peers when the ’pull’ signal queue is empty. NF-marked chunks are
used by the destination peer only and will not be relayed further. Therefore,
serving F-marked chunk promptly improves the utilization of peers’ upload
capacity and increases the overall P2P system streaming rate.

Another reason for using separate queues is to deal with bandwidth fluc-
tuation and congestion inside the network. Many P2P researchers assume
that server/peer’s upload capacity is the bottleneck. In our experiments over
PlanetLab, it has been observed that some peers may slow down significantly
due to congestion inside networks. If all the peers share the same queue, the
uploading to the slowest peer will block the uploading to remaining peers.
This is similar to the head-of-line blocking problem in input-queued switch
design. Separate queues avoid inefficient blocking caused by slow peers.
Peers’ and cluster heads’ architectures employ the similar design principle
and are omitted here.

5.2. Impact of chunk size and propagation delay

In the optimality proof, it was assumed that the chunk size is arbitrarily
small and the propagation delay was negligible. In practice, the chunk size is
on the order of kilo-bytes to avoid excessive transmission overhead caused by
protocol headers. The propagation delay is on the order of tens to hundreds
of milliseconds. Hence, it is necessary to adjust the timing of issuing ’pull’
signals by the peers and increase the number of F-marked chunks served at
the content source server to allow the decentralized scheduling method to
better utilize peers’ upload capacities.

19



At the server/cluster-head side, K F-marked chunks are transmitted as
a batch in response to a ’pull’ signal from a requesting peer (via the F-
marked content queue). A larger value of K would reduce the ’pull’ signal
frequency and thus reduce the signaling overhead. This, however, increases
peers’ threshold to be shown in Equation (6). Denote by Ti the threshold
for peer i to issue ’pull’ signal. A ’pull’ signal is sent to server whenever the
number of chunks in the queue is less than or equal to Ti. The time to empty
the forwarding queue with Ti chunks is t

empty
i = (M−1)Tiδ/ui, whereM is the

number of peers in a cluster. Meanwhile, it takes treceivei = 2tsi +Kδ/us + tq
for peer i to receive K chunks after it issues a pull signal. Here tsi is the
propagation delay between the source server and peer i, Kδ/us is the time
required for server to transmit K chunks, and tq is queuing delay seen by the
’pull’ signal at the server pull signal queue. In order to receive the chunks
before the forwarding queue becomes fully drained, tempty

i = treceivei . This
leads to:

Ti =
(2tsi +Kδ/us + tq)ui

(M − 1)δ
. (6)

All quantities are known except tq, the queuing delay incurred at the server
side signal queue. If the source server is the bottleneck (case 1 in the op-
timality proof), the selection of Ti would not affect the streaming rate as
long as the server is always busy. If server resource is rich (case 2 in the
optimality proof), since the service rate of signal queue is faster than the
pull signal rate, tq is very small. So we set tq to be zero. Following ’pull’
signal threshold formula is used to guide the threshold selection:

Ti =
(2tsi +Kδ/us)ui

(M − 1)δ
. (7)

5.3. Missing chunk recovery

Peer churn and network congestion may cause chunk losses. Sudden peer
departure, such as node or connection failure, leaves the system no time
to reschedule the chunks still buffered in the peer’s out-unit. In case the
network routes are congested to some destinations, the chunks waiting to be
transmitted may overflow the queue in the out-unit, which leads to chunk
losses at the receiving end. The missing chunk recovery scheme enables the
peers to recover the missing chunks to avoid viewing quality degradation.

Each peer maintains a playback buffer to store the video chunks received
from the server and other peers. The playback buffer has three windows:

20



Download Window

Recovery Window


Neighbor            Server


T


Playback

Window


d
W
 r
W
 p
W
r
W

r
W
r
W


Figure 9: Missing Chunk Recovery

playback window, recovery window, and download window. Wp,Wr and
Wd denote the size (in terms of number of chunks) of playback window,
recovery window, and download window, respectively. The media player
renders/displays the content from the playback window. Missing chunks
in the recovery window are recovered using the method described below.
Finally, the chunks in the downloading window are pulled and pushed among
the server and the other peers.

Heuristics are employed to recover the missing chunks. If peers leave
gracefully, the server is notified and the F-marked chunks waiting in the out-
unit will be assigned to other peers. The missing chunks falling into the
recovery window are recovered as follows. First, the recovery window is fur-
ther divided into four sub-windows. Peers send the chunk recovery messages
to the source server directly if the missing chunks are in the window closest
in time to the playback window. These chunks are urgently needed other-
wise the content quality will be impaired. An attempt is made to recover
the missing chunks in the other three sub-windows from other peers. A peer
randomly selects three recovery peers from the peer list, and associates one
with each sub-window. The peer needs recovery chunks sends chunk recov-
ery messages to the corresponding recovery peers. By randomly selecting a
recovery peer, the recovery workload is evenly distributed among all peers.

5.4. Optimality of startup delay

We derive the startup delay here because the queue size has been derived
in 5.2. A peer’s startup delay, τ , is τ = h · τintra−cluster, where h is the height
at which the cluster resides in the HCPS overlay, and τintra−cluster denote the
delay incurred in distributed content within a cluster. Assume there are N
peers in the system and the cluster size is M , the value of h is at the order
of O(logN/M) if the cluster tree is balanced.

The delay incurred inside a cluster comprises of two parts: the time
spending waiting in the queue, and the time transmitting a chunk to all other
peers in the same cluster. Hence τintra−cluster = maxi{Ti ·δ(M−1)/ui+(M−

21



1)δ/ui}. We take the maximum overall all peer in the cluster is because the
slowest peer determines the startup delay of this cluster. Plug Ti into the
above equation, we have τintra−cluster = maxi{(2tsi +Kδ)/us + (n− 1)δ/ui}.
tsi, K, δ, M , and us (cluster head’s upload bandwidth devoted to the cluster
under consideration) are all constant. Thus the value of τintra−cluster is at
the order of O(M). Therefore, the startup delay is at the order of O(M ·
logN/M) = O(logN), which is optimal as proven in [8].

6. Performance Evaluation

Next we examine the performance of HCPS via experiments over Plan-
etLab [9]. We started with the single cluster experiments to understand the
performance of queue-based algorithms and the system dynamics in the face
of peer churn and bandwidth variations. We then look into a larger scale
system with multiple clusters, investigating the cluster head overhead, the
effect of clustering on streaming delay, and the adaptiveness of HCPS.

We select PlanetLab nodes with sufficient bandwidth and use software
package Trickle [24] to set a node’s upload capacity. In our HCPS streaming
system, all connections between nodes are TCP connections. TCP connec-
tions avoid network layer data losses, and facilitate the use of Trickle [24] to
set a node’s upload capacity. In our experiments, we observe that Trickle is
not 100% accurate on setting the available bandwidth. The obtained upload
bandwidth is slightly larger (< 8%) than the value we set using Trickle. To
account for this error, we measure the actual upload bandwidth, and use the
measured rate for plotting the graphs. The upload capacities of peers are
assigned randomly according to the distribution: (128kbps, 0.2), (384kbps,
0.4), (1Mbps, 0.25), and (4Mbps, 0.15). The largest uplink speed is adjusted
from 5 Mbps [23] to 4 Mbps to ensure that PlanetLab nodes have sufficient
bandwidth to emulate the targeted rate. We follow the common assumption
that the downlink bandwidth is not the bottleneck and thus do not set limit
on them. The chunk size is chosen to be one KBytes. In the following, we first
evaluate the queue-based chunk scheduling algorithm over a fully connected
mesh. We then investigate its performance over hierarchically clustered P2P
overlay.

22



6.1. Performance of queue-based chunk scheduling over a fully connected
mesh

Forty peers join the system at the beginning of the experiment, and stay
for the entire duration of the experiment. The content source server’s upload
capacity varies from 320 kbps to 5.6 Mbps. For each server upload capacity
setting, we run an experiment for 5 mins. The achieved streaming rate is
collected every 10 seconds and the average value is reported at the end of
each experiment.

0 1000 2000 3000 4000 5000 6000
300

400

500

600

700

800

900

1000

1100

1200

1300

Server Bandwidth (kbps)

R
at

e(
kb

p
s)

 

 

Server resource rich region 

Server resource poor region 
Achieved Rate

rmax

(a) Achieved Rate vs. Optimum Upper
Bound

560 1600 3200 4800
0

1

2

3

4

5

6
x 10

4

Server Bandwidth(kbps)
N

um
be

r 
of

 C
hu

nk
s

F−marked Chunk
NF−marked Chunk
Unique Chunk

(b) Distribution of Chunks from
Server

Figure 10: Optimality Evaluation Results

Fig. 10(a) shows the achieved streaming rate (measured at experiments)
vs. the optimum upper bound with different server bandwidths. The dif-
ference never exceeds 10% of the optimum rate possible in the system. The
curves exhibit two segments with turning point at around 1.1 Mbps. Ac-

cording to rmax = min{us,
us+

∑n
i=1

ui

n
}, the server bandwidth is the bottleneck

when it is smaller than 1.1 Mbps (server resource poor scenario). The stream-
ing rate is equal to the source rate. As the server bandwidth becomes greater
than 1.1 Mbps, the peers’ average upload capacity becomes the bottleneck
(server resource rich scenario). The streaming rate still increases linearly,
however, with a smaller slope. Notice that queue-based chunk scheduling
performs better in the server resource poor scenario than in the server re-
source rich scenario. We plot the numbers of F-marked and NF-marked
chunks sent out by the source server to explain what causes the difference.

As shown in Fig. 10(b), when the server bandwidth is 560 kbps (source
resource poor scenario), very few NF-marked chunks are transmitted. In

23



theory, no NF-marked chunks should be sent in this scenario since signal
queue is always non-empty. We do see several NF-marked chunks, which
is caused by the background noise traffic in the network. The interference
of the background traffic occasionally causes the server’s pull signal queue
becomes empty. In contrast, more and more NF-marked chunks are sent by
the server as its uplink capacity increases beyond 1.1 Mbps (source resource
rich scenarios). In the server resource poor scenario, the server sends out
F-marked chunks exclusively. As long as the pull signal queue is not empty,
the optimum streaming rate can be achieved. In the server resource rich
scenario, the server sends out both F-marked and NF-marked chunks. If
F-marked chunks are delayed at server or along the route from the server to
peers due to the bandwidth variations or peer churn, peers can not receive
F-marked chunks promptly. Peers’ forward queues become idle and upload
bandwidth is wasted. Nevertheless, queue-based chunk scheduling always
achieve the streaming rate within 10% of the optimum upper bound.

6.2. Adaptiveness to peer churn and bandwidth variations

Peer churn has been identified as one of the major disruptions to the
performance of p2p system. We study how queue-based chunk scheduling
performs in face of peer churns next. In this 10 minutes experiment, the
server bandwidth is set to be 2.4 Mbps. Three peers with the bandwidth of
4 Mbps are selected to leave the system at time of 200 seconds, 250 seconds,
and 300 seconds, respectively. Two peers rejoin the system at time of 400
seconds, and the third one rejoins the system at time of 450 seconds.

0 100 200 300 400 500 600
400

500

600

700

800

900

1000

1100

1200

Time(s)

R
at

e(
kb

ps
)

 

 

Achieved
Optimum

(a) Streaming Rate under Peer Churn

0 100 200 300 400 500 600
80

100

120

Time(s)

M
ar

ke
d 

C
hu

nk
 R

at
e(

kb
ps

)

F−marked Chunk
Noise Traffic

0 100 200 300 400 500 600
0   

500 

1000

1500

N
oi

se
 T

ra
ffi

c 
R

at
e(

kb
ps

)

(b) Marked Chunk Receiving Rate with
Background Traffic

Figure 11: Adaptiveness to Peer Churn and Bandwidth Variations

24



Fig. 11(a) depicts the achieved rate vs. optimum rate every 10 seconds.
Although the departure and the join of a peer does introduce oscillation to
the achieved streaming rate, overall the achieved streaming rate tracks the
optimum rate closely. The difference between them never exceeds 12% of the
optimum rate.

In addition to peer churn, the network bandwidth varies over time due
to background noise traffic. To evaluate queue-based chunk scheduling’s
adaptiveness to network bandwidth variations, the following experiment is
conducted. We set up a sink on a separate PlanetLab node not participating
in P2P streaming. One peer in the streaming system with upload capacity of
4 Mbps is selected to establish multiple parallel TCP connections to the sink.
Each TCP connection sends out garbage data to the sink. The noise traf-
fic generated by those TCP connections causes variations in the bandwidth
available for the P2P video threads on the selected peer.

Fig. 11(b) depicts the rate at which the F-marked chunks are received
at the selected peer together with the sending rate of noise traffic. During
time periods of (120 sec, 280 sec) and (380 sec, 450 sec), the noise traffic
threads are on. The queue-based chunk scheduling method adapts quickly to
the decreasing available bandwidth by reducing its pull signal rate. Conse-
quently, the server reduces the rate of F-marked chunks sent to the selected
peer. When the noise traffic is turned off, the server sends more F-marked
chunks to the selected peer to fully utilize its available uploading bandwidth.
The self-adaptiveness of the queue-based chunk scheduling method makes
the overall achieved streaming rate close to the optimum rate.

6.3. Cluster head overhead in HCPS

Cluster heads play a crucial role in HCPS since they glue clusters together.
At upper-level clusters, cluster heads forward ’F’ marked chunks to other
neighbors as a normal node; at lower-level clusters, cluster heads behave as
proxy servers, serving pull requests with ’F’ marked chunks and broadcasting
’NF’ marked chunks when spare bandwidth becomes available.

In this experiment, four clusters are used and each cluster has 20 nodes
whose upload bandwidth obeys the distribution as listed at the beginning
of this section. One cluster is placed at the top level and retrieves the data
content directly from the source server. The other three clusters are placed at
the second level. The cluster heads of the second level clusters are members
of the top level cluster (the top level cluster also has some normal peers
that are not cluster heads). The source server has the uplink bandwidth of

25



4Mbps. The peers in the top level cluster join the system at the beginning
of the experiment. The peers in second level clusters join after 20 seconds
so that the top-level cluster is at stable state. The experiment lasts for 5
minutes. Based on our off-line data analysis, the experiment duration of 300
seconds is sufficient since the systems reaches the steady state within tens of
seconds.

320 480 640
0

2

4

6

8x 10
4

N
u

m
b

er
 o

f 
C

h
u

n
ks

Streaming Video Rate(Kbps)

 

 

UPPER F−CHUNK
LOWER F−CHUNK
LOWER NF−CHUNK

(a) Chunk Distribution of Cluster
Head

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

System Delay(second)

C
D

F

 

 

1st Level
2nd Level
3rd Level
4th Level

(b) CDF of system delay at different
levels

300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

Streaming rate(kbps)

B
an

dw
id

th

 

 

           C1 Server 
Resource Poor Region

C1 Server Resource Rich Region

CH1 Upper
CH1 Lower
CH2 Upper
CH2 Lower

(c) Bandwidth usage of cluster heads
on different levels

Figure 12: Experiment results of HCPS with multiple clusters

Fig. 12(a) shows the total number of chunks transmitted by a cluster
head as the normal peer in upper-level cluster and as the server in lower-level
cluster. Different streaming rates are tested to check their impact. Majority
of cluster head bandwidth has been consumed at the upper level, while the
bandwidth allocated to the lower level roughly equals to the streaming rate.
The streaming rates of 320 kbps, 480 kbps, and 640 kbps, are smaller than
the average bandwidth of each cluster. Hence the cluster head only needs

26



to respond to the “pull” signals with F-marked chunks at the lower level.
F-marked chunks are quickly distributed to all peers by chunk relaying at
peers. There are some ’NF’ marked chunks sent out by the cluster head at
lower level. A close look reveals that these ’NF’ marked chunks are generated
at the time when the lower level clusters just join the system. Since the TCP
connections have not been fully set up and ’pull’ signals are yet to be issued,
the cluster head quickly pushes out ’NF’ marked chunks to boost the peer
start. Once the system reaches the steady state, peers’ upload bandwidth is
better utilized and no ’NF’ chunks are sent/required. Although the cluster
head enrolls into two clusters, no significant bandwidth overhead is incurred.

6.4. Effect of clustering on streaming delay

Video start-up delay is a key metric in P2P live streaming. HCPS achieves
the scalability by grouping peers into clusters and forming hierarchy among
clusters. Intuitively, the chunk delay, from the video source to a destination
peer, will increase as the depth of the cluster hierarchy grows. Below we
study the effect of clustering on chunk delays.

Again four clusters are used with each cluster having 20 peers. To facili-
tate the investigation of delay, four clusters are placed on different levels of
a four-level hierarchy, one on top of another. Each cluster is headed by one
node with the largest bandwidth at the upper level cluster. The streaming
rate is set to be 320kbps.

Fig. 12(b) shows the cumulative distribution (CDF) of chunk delays
observed at a randomly selected peer at different cluster levels. As expected,
the lower level peers experience longer delays than the peers in upper levels,
and the delay increases approximately linearly with the number of levels.
However, even at level four, the average delay is still under one second. This
is due to the facts that (1) HCPS gives higher priority to lower level clusters
so that the fresh chunks can be distributed to lower level clusters as fast as
possible; and (2) within a cluster, the chunk is relayed at most once, which
also reduces the end-to-end delay.

6.5. Adaptiveness of hierarchically clustered P2P streaming system

Dynamic network environment imposes significant challenges to peer-to-
peer applications, especially in maximizing the throughput. Here we want
to demonstrate the adaptiveness of HCPS, i.e., HCPS cluster heads are able
to adjust the amount of bandwidth resources distributed to different clusters
so as to maximize the overall throughput. In this experiment, one cluster

27



is placed at top level and three clusters are placed at the second level. We
select one cluster in the second level and intentionally reduce the bandwidth
of peers in this cluster. Specifically, two peers in this cluster are assigned
with the bandwidth of 384 kbps instead of 4 Mbps which they originally get.
The selected cluster thus has less average bandwidth per peer than other two
clusters.

Fig. 12(c) depicts the bandwidth usage of two cluster heads at both upper
and lower levels. In the figure, CH1 denotes the cluster head corresponding
to the lower cluster (C1) with less bandwidth resource. CH2 denotes another
cluster head (cluster C2) with regular bandwidth distribution. We then test
how cluster heads dynamically allocate their bandwidth between upper and
lower levels when the streaming rate changes. When the streaming rate is
low, both cluster heads assign the amount of bandwidth equal to streaming
rate to the lower level clusters, and spend more bandwidth on forwarding
’F’ marked chunks at the upper level clusters. As the streaming rate con-
tinues to increase and exceeds the normal peers’ average upload bandwidth
at cluster C1 (labeled as C1 server resource rich region), the cluster heads
behave differently. The bandwidth resource from normal peers in C1 clus-
ter is not enough to support present streaming rate. Therefore cluster head
CH1 devotes more and more bandwidth to the lower level cluster. The extra
bandwidth allows CH1 to push out ’NF’ marked chunks. Meanwhile, cluster
head CH2 only contribute bandwidth equal to the streaming rate to the lower
level cluster since the normal peers in C2 provide sufficient bandwidth. This
allows CH2 to spend more bandwidth at upper level cluster to compensate
for the reduced bandwidth contribution from CH1. It is the adaptiveness of
HCPS that optimizes the bandwidth resource usage and enables the entire
system to support larger streaming rates.

7. Conclusions

In this paper, we proposed the hierarchically clustered P2P streaming
(HCPS) that is capable of providing live streaming service to a large number
of users with video rate approaching the optimum upper bound. Peers share
chunks with other peers using the distributed scheduling mechanism. The
peer uplink bandwidth resources are efficiently utilized, and the system as a
whole operates close to the optimal point. The system is implemented and
is used to conduct experiments over the Internet. The results demonstrate
the optimality and the adaptiveness of the proposed HCPS framework.

28



For future work, we plan to deploy the HCPS system in real field to
provide streaming service to users with dedicated end devices. The dedi-
cated end devices, such as set-top boxes and home gateways, stay online for
long period of time and shall benefit from HCPS’s hierarchical design. The
deployment will help us gain valuable insights and validate our design.

Appendix A. Proof of Theorem 1

Proof: Suppose the video content is divided into small chunks. The
server sends out one chunk each time it serves a ’pull’ signal. A peer issues
a pull signal to the server whenever the forwarding queue becomes empty. δ
denotes the chunk size. us is content source server’s upload capacity, ui is
peer i’s upload capacity, and n is the number of peers in the system. The

optimum upper bound, rmax, is: rmax = min{us,
us+

∑n
i=1

ui

n
}.

For peer i, it takes time of (n − 1)δ/ui to forward one data chunk to all
peers. Let ri be the maximum rate at which the ’pull’ signal is issued from
peer i. Hence ri = ui/(n−1)δ. The maximum aggregated rate of ’pull’ signal

received at server, r, is r =
∑n

i=1 ri =
∑n

i=1
ui

(n−1)δ
. It takes server δ/us to serve a

pull signal. Hence the maximum ’pull’ signal rate a server can accommodate
is us/δ. Now consider the following two scenarios/cases:

• Case 1: us/δ ≤
∑n

i=1
ui

(n−1)δ

In this scenario, the server cannot handle the ’pull’ signal at maximum rate.
The signal queue at the server side is hence never empty and the entire server
bandwidth is used to transmit F-marked content to peers. In contrast, a
peer’s forward queue becomes idle while waiting for the new data content
from the source server. Since each peer has sufficient upload bandwidth to
relay the F-marked content (received from the server) to all other peers, the
peers receive content sent out by the server at the maximum rate.

The maximum supportable streaming rate is equal to the server’s upload

capacity. The condition us/δ ≤
∑n

i=1
ui

(n−1)δ
is equivalent to us ≤

us+
∑n

i=1
ui

n
, i.e.,

the server resource poor scenario. Hence the streaming rate is consistent
with rmax and the maximum streaming rate is reached.

• Case 2: us/δ >
∑n

i=1
ui

(n−1)δ

In this scenario, the server has the upload capacity to service the ’pull’ signals
at the maximum rate. During the time period when the ’pull’ signal queue is
empty, the server transmits duplicate NF-marked content to all peers. The

amount of upload capacity used to serve F-marked content is rδ =
∑n

i=1
ui

(n−1)δ
δ =

29



∑n
i=1

ui

n−1
.

The server’s upload bandwidth used to serve NF-marked content is there-

fore us −
∑n

i=1
ui

n−1
. For each individual peers, the rate of receiving NF-marked

content from server is (us −
∑n

i=1
ui

n−1
)/n since there are n peers in the system.

The streaming rate at peers is:

∑n

i=1 ui

n− 1
+ (us −

∑n

i=1 ui

n− 1
)/n =

us +
∑n

i=1 ui

n
. (A.1)

The condition us/δ >
∑n

i=1
ui

(n−1)δ
is equivalent to us >

us+
∑n

i=1
ui

n
, i.e., the server

resource rich scenario. Again, the streaming rate reaches rmax. This con-
cludes the proof of first claim of theorem.

The proof of second claim is done by contradiction. Denote by by rH

the maximum supportable streaming rate of HCPS, and by rd the maxi-
mum steaming rate that can be reached using distributed queue-based chunk
scheduling algorithms. Suppose queue-based chunk scheduling algorithms
cannot support the maximum supportable streaming rate, rd < rH. Hence
there is at least one cluster in HCPS, say cluster k, whose streaming rate,
(rmax

k )d, is less than rH, i.e., (rmax
k )d < rH. Let (rmax

k )∗ be cluster d’s stream-
ing rate when achiving maximum supportable streaming rate rH. rH ≤
(rmax

k )∗, thus (rmax
k )d < (rmax

k )∗.
Denote by (uti

i )
∗, (uhi

i )∗, and (us
c)

∗ the optimal bandwidth allocation that
achieves maximum supportable streaming rate of rH. According to Eqn. (3),

(rmax
k )∗ = min

{

∑

∀i,ti∈Vk
(uti

i )
∗ +

∑

∀i,hi∈Vk
(uhi

i )∗

|Vk|
,

∑

∀i,hi∈Vk

(uhi

i )∗ + (us
c)

∗
}

(A.2)
Further denote by (uti

i )
d, (uhi

i )d, and (us
c)

d the bandwidth allocation in dis-
tributed queue-based chunk scheduling algorithms. According to the first
claim, queue-based chunk scheduling in one cluster can achieve the optimum
upper bound. Thus

(rmax
k )d = min

{

∑

∀i,ti∈Vk
(uti

i )
d +

∑

∀i,hi∈Vk
(uhi

i )
d

|Vk|
,

∑

∀i,hi∈Vk

(uhi

i )
d + (us

c)
d
}

(A.3)

30



Therefore:

min
{

∑
∀i,ti∈Vk

(u
ti
i )d+

∑
∀i,hi∈Vk

(u
hi
i )d

|Vk|
,

∑

∀i,hi∈Vk
(uhi

i )d + (us
c)

d
}

< min
{

∑
∀i,ti∈Vk

(u
ti
i )∗+

∑
∀i,hi∈Vk

(u
hi
i )∗

|Vk|
,

∑

∀i,hi∈Vk
(uhi

i )∗ + (us
c)

∗
}

.(A.4)

Now we argue that Eqn. (A.4) does not hold. Normal peers in cluster k de-
vote their entire upload bandwidth solely to cluster k. Hence they are equal
at both sides of Eqn. (A.4). For cluster heads that are normal peers in clus-
ter k and are cluster heads in other clusters, they will be able to devote equal
or more upload bandwidth to cluster k in HCPS. These peers use equal/less
bandwidth in the clusters they head due to the fact rd < rH. Finally, the
cluster head of cluster k in HCPS is able to contribute as much bandwidth
as in optimal solution. Hence the inequality in Eqn. (A.4) does not hold,
which leads to the contradiction and concludes the proof.

Note that in case 2 where the aggregate ’pull’ signal arrival rate is smaller
than the server’s service rate, it is assumed that the peers receive F-marked
content immediately after issuing the ’pull’ signal. The above assumption is
true only if the ’pull’ signal does not encounter any queuing delay and can
be serviced immediately by the content source server. This means that (i)
no two ’pull’ signals arrive at the exact same time and (ii) a ’pull’ signal can
be serviced before the arrival of next incoming ’pull’ signal. Assumption (i)
is commonly used in queuing theory and is reasonable since a P2P system
is a distributed system with respect to peers generating ’pull’ signals. The
probability that two ’pull’ signals arrive at exactly the same time is low.
Assumption (ii) means that the data can be transmitted in arbitrary small
amounts, i.e., the size of data chunk, δ, can be arbitrarily small. In practice,
the size of data chunks is limited in order to reduce the overhead associated
with data transfers.

References

[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A
data-driven overlay network for live media streaming,” in Proceedings of
IEEE INFOCOM, 2005.

[2] PPLive, “PPLive Homepage,” http://www.pplive.com.

31



[3] SopCast, “SopCast Homepage,” http://www.sopcast.org.

[4] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p stream-
ing systems,” in Proceedings of IEEE INFOCOM, 2007.

[5] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling enough for p2p
live streaming?” in IEEE ICDCS, 2008.

[6] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-based Streaming,” in IEEE/ACM Transactions on Networking,
vol. 17, no. 4, August 2007.

[7] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proceedings of IEEE INFO-
COM, 2007.

[8] T. Bonald, L. Massouli, F. Mathieu, D. Perino, and A. Twigg, “Epidemic
live streaming: optimal performance trade-offs,” in Proceedings of ACM
SIGMETRICS, 2008.

[9] PlanetLab, “PlanetLab Homepage,” http://www.planet-lab.org.

[10] BT, “Bittorent Homepage,” http://www.bittorrent.com.

[11] unkown, “Skype webpage,” http://www.skype.com/.

[12] Y.-H. Chu, S. G.Rao, and H. Zhang, “A case for end system multicast,”
in Proceedings of ACM SIGMETRICS, 2000.

[13] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-Tree: A Com-
parative Study of Live P2P Streaming Approaches,” in Proceedings of
IEEE INFOCOM, 2007.

[14] X. Hei, Y. Liu, and K. Ross, “Inferring Network-Wide Quality in P2P
Live Streaming Systems,” IEEE Journal on Selected Areas in Commu-
nications, the special issue on advances in P2P streaming, 2008.

[15] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A Measurement Study
of a Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia,
November 2007.

32



[16] M. Wang and B. Li, “Lava: A reality check of network coding in peer-
to-peer live streaming,” in Proceedings of IEEE INFOCOM, 2007.

[17] ——, “R2: Random push with random network coding in live peer-to-
peer streaming,” in IEEE Journal on Selected Areas in Communications,
Special Issue on Advances in Peer-to-Peer Streaming Systems, vol. 25,
no. 9, December 2007.

[18] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power
of Pull-based Streaming Protocol: Can We Do Better?” IEEE Journal
on Selected Areas in Communications, 2007.

[19] A. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-min d-cluster for-
mation in wireless ad hoc networks,” in Proceedings of IEEE INFOCOM,
2000.

[20] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor net-
works: a hybrid, energy-efficient approach,” in Proceedings of IEEE IN-
FOCOM, 2004.

[21] M. Zhao and Y. Yang, “A framework for mobile data gathering with
load balanced clustering and MIMO uploading,” in Proceedings of IEEE
INFOCOM, 2011.

[22] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” in Proceedings of ACM SIGCOMM, 2002.

[23] C. H. Ashwin R. Bharambe and V. N. Padmanabhan, “Analyzing and
Improving a BitTorrent Network Performance Mechanisms,” in Proceed-
ings of IEEE INFOCOM, 2006.

[24] Trickle, “Trickle Homepage,” http://monkey.org/∼marius/pages/
?page=trickle.

33


