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Abstract—Recent advance in scalable video coding (SVC)
makes it possible for users to receive the same video with
different qualities. To adopt SVC in P2P streaming, two key
design questions need to be answered: 1) layer subscription:
how many layers each peer should receive? 2) layer scheduling:
how to deliver to peers the layers they subscribed? From the
system point of view, the most efficient solution is to maximize
the aggregate video quality on all peers, i.e., the social welfare.
From individual peer point of view, the solution should be fair.
Fairness in P2P streaming should additionally take into account
peer contributions to make the solution incentive-compatible. In
this paper, we develop utility maximization models to understand
the interplay between efficiency, fairness and incentive in layered
P2P streaming. We show that taxation mechanisms can be devised
to strike the right balance between social welfare and individual
peers’ welfare. We develop practical taxation-based P2P layered
streaming designs, including layer subscription strategy, chunk
scheduling policy, and mesh topology adaptation. Through exten-
sive trace-driven simulations, we demonstrate that the proposed
designs can effectively drive layered P2P streaming systems to
converge to the desired operating points in a distributed fashion.

I. INTRODUCTION

P2P live video streaming has recently emerged as a cost-
efficient IPTV solution on the Internet. It has attracted sub-
stantial attentions in research community and industry. Several
widely deployed commercial P2P live streaming systems [1]–
[3] routinely attract hundreds of thousands of users to watch
live video broadcast online. Extensive research [4]–[9] has
studied various aspects of system design, ranging from P2P
overlay construction, data sharing strategy, adoption of ad-
vanced video coding, to the application of network coding
technique. In-depth measurement [10]–[12] study further al-
lows us to observe the working systems in the field.

The success of P2P computing hinges on the underlying
principle that participants shall contribute their resources (in
terms of bandwidth, storage space, or computational power)
while enjoying the service. Most existing P2P streaming
systems assume the cooperation of peers and deliver the same
video quality to all peers. Recent advance in scalable video
coding (SVC) [13] makes it possible for users to receive
the same video with different qualities. SVC encodes video
into correlated layers. The base layer can be independently
decoded, while higher layers are decodable only if layers
beneath have been decoded. The video quality perceived by a
user increases as the number of decoded layers increases.

To adopt SVC into P2P streaming, two key design questions
need to be answered: 1) layer subscription: how many layers
each peer should receive; and 2) layer scheduling: how to
deliver to peers the layers they subscribed. From the system
point of view, the most efficient solution is to maximize the
aggregate video quality perceived by all peers, i.e, to optimize
the social welfare. From individual peer point of view, the
solution should be fair. However, in P2P streaming, due to
the dual server-consumer role of individual peers, the notion
of fairness is much more subtle than that in traditional server-
client systems, where clients are only considered as resource
consumers. A solution allocating the same video quality to all
peers regardless of their contributions would not be considered
as fair, and therefore would not provide incentives for peers to
contribute. A good layered P2P streaming solution has to strike
the right balance between efficiency, fairness and incentive.

In this paper, we develop analytical models and practical
streaming algorithms to understand and control the interplay
between efficiency, fairness and incentive in layered P2P
streaming. Specifically, we develop network-coding based util-
ity maximization models to obtain the most efficient layered
streaming solution. The choice of peer utility function reflects
the target fairness among peers when they are considered only
as video consumers. To incorporate contribution-awareness,
we adopt taxation as a peer-incentive mechanism and augment
the utility maximization models to make the solution incentive-
compatible.

Taxation based incentive mechanism [14], [15] offers a
flexible framework that allows the tradeoff between users’
personal fairness/welfare and the system-wide social welfare
(see Fig. 1). Let ud be the upload bandwidth contributed by
user d. Under a tax rate 0 ≤ t ≤ 1, the target received
video rate of user d is rd = (1 − t)ud + t

N

∑N
i=1 ui, where

N is the total number of peers in the system. The received
rate consists of two parts: a fraction of its own contribution,
and a fair share from the pool of taxed bandwidth. The tax
rate t adjusts the balance between individual peers’ welfare
and the social welfare. As t approaches zero, the received
video rate approach the contributed rate, mimicking the ‘tit-
for-tat’ strategy. As t approaches one, the received video rate
is the same for all peers, thus achieve the social optimum as
described in Section II.

Our contribution can be summarized as follows:
• We develop utility maximization models to study the
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Fig. 1. Social welfare vs. personal welfare.

interplay between efficiency, fairness and incentive in lay-
ered P2P streaming. The models enable us to numerically
investigate the impact of peering strategies and chunk
scheduling polices on the fundamental trade-offs between
the three.

• We adopt taxation mechanism to adjust the balance
between the social welfare and individual peer welfare.
We develop practical taxation-based P2P layered stream-
ing designs, including layer subscription strategy, chunk
scheduling policy, and mesh topology adaptation.

• Through extensive trace driven simulations, we demon-
strate that the proposed layered streaming designs can
effectively drive P2P streaming systems to the desired
operating points in a distributed fashion.

The remaining of the paper is organized as follows. We
briefly go through related work in the following section.
Utility-maximization models and numerical studies are pre-
sented in Section II. Taxation-based layered streaming designs
are presented in Section III. The performance of the proposed
designs are evaluated in Section IV. The paper is concluded
in Section V.

A. Related Work

The majority of existing P2P live streaming systems ignore
the fairness requirement and focus solely on maximizing the
social welfare. For instance, [5] studies how to fully utilize
available upload bandwidth so as to maximize the video rate
that can be streamed. SVC stream is also employed to improve
the social welfare further in face of peer churn and fluctuation
of available bandwidth. Recently, [16] proposes a 3-stage
scheduling mechanism to achieve high throughput and low
video quality jitter. Fairness issue is studied in [9], [17], [18].
[17] proposes a service differentiated peer selection mecha-
nism for P2P media streaming systems. Higher contribution
peers are offered more flexibility and choice in selecting peers,
thus obtain better viewing quality. [9] proposes substream
trading technique which allows peers contributing more sub-
streams to receive more in reciprocity. Taxation was recently
adopted to provide incentives and service differentiation in
multi-tree based P2P video streaming [14], [15], [19]. Video
is encoded into substreams using multiple descriptions coding
(MDC). Each substream is distributed along a tree formed by
peers. The video quality perceived by a peer increases with the

number of received substreams. The number of trees joined by
a peer is dynamically adjusted to reflect the entitled video
quality determined by the taxation policy. We analytically
study the tradeoff between efficiency, fairness and incentive
in P2P streaming with SVC coding in general topology. We
employ mesh-based designs to implement taxation in P2P
layered streaming.

II. MODELING LAYERED P2P STREAMING

In this section, we develop analytical models to study the
interplay between the efficiency, fairness and incentive in
layered P2P streaming.

A. Maximizing Efficiency

When peers are cooperative, they are willing to contribute
their upload bandwidth without any incentive. The design
objective of the system is to maximize the aggregate video
quality on all peers. With layered coding, the perceived video
quality on a peer is an increasing function of the number
of video layers received. PSNR (Peak Signal-to-Noise Ratio)
is the standard objective metric to evaluate the quality of
a compressed video and thus can be adopted as the utility
function in layered video streaming. PSNR of a video coded
at rate rc can be approximated by a logarithmic function
β log(rc) [20], where β is a constant related to the video
feature. This approximation is also valid in the SVC case [13].
Let rd be the total rate of received video layers on peer
d. If the aggregate uploading capacity of the server and
all peers is U , the aggregate receiving rate on all peers is
naturally bounded by

∑N
d=1 rd ≤ U . Since log(·) is a concave

function, the aggregate utility can be maximized when all peers
receive video at the same rate, i.e., rd = U

N . For single-layer
video streaming, it was shown in [21] that, if peers are fully
connected, a two-hop relay streaming can achieve this optimal
rate. The solution for layered video streaming naturally follows
if we let all peers subscribe to the same number of video layers
allowed by the rate U

N and deliver each layer to all peers
using the two-hop relay scheme. However, it is unrealistic to
have fully connected mesh in a large-scale streaming system.
For arbitrary streaming topology, the utility maximization in
layered streaming deserves more study.

1) Network Coding Model: We consider a SVC system
where the source server encodes a video stream into L layers
with nested dependency. Layer l can be decoded if all the
layers below l are received. A peer can subscribe up to k,
k ≤ L, layers. The server multicasts each layer to all peers
subscribed to it. There are L simultaneous multicast sessions,
one for each layer, in the P2P overlay network.

We allow the server and peers apply network coding to
video blocks to reach the maximum multicast rate allowed
by peer upload capacities and the peering topology. Network
coding has been shown to achieve the maximum multicast rate
for single multicast session in general network topology [22].
For multiple multicast sessions, inter-session network coding
might be needed to achieve the maximal multicast rates.
However, the complexity of inter-session network coding is
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TABLE I
NOTATIONS

Notation Description
V set of nodes in the system
E set of overlay links
S video source server
R = V \S receiving peers
L number of layers
rl rate of layer l
~xd = {xl

d} layers received by peer d

gl,d
ij information flow of layer l on link 〈i, j〉

to peer d
f l

ij bandwidth needed for layer l on link 〈i, j〉
Ud peer d’s uplink capacity
Fd( ~xd) utility function of peer d

generally too high to be justified by its additional performance
gain on top of intra-session network coding. We only focus
on intra-session network coding. The server and peers apply
network coding to video blocks in the same layer.

Let a directed graph G = (V,E) be the overlay topology
of the P2P streaming system under study. Let S be the video
source server, and R = V \S be the set of peers interested
in receiving the video. Let ~xd = (x1

d, x
2
d, · · · , xL

d ) represent
the set of layers received by peer d: xl

d equals to 1 if peer
d received layer l, 0 otherwise. The video rate for layer l is
rl. To model network coding, we introduce gl,d

ij to denote the
information flow of layer l on link 〈i, j〉 ∈ E to destination
peer d. For a given peer d and layer l, {gl,d

ij , 〈i, j〉 ∈ E} form a
legitimate flow with rate rl from the source S to d and satisfy
the flow conservation on all nodes in the network. Denote by
f l

ij , maxd g
l,d
ij the maximum information flow on 〈i, j〉 for

all receivers of layer l. According to theory of intra-session
network coding [22], [23], the multicast session for layer l is
supportable if and only if a bandwidth of f l

ij is allocated to
layer l on link 〈i, j〉.

We are interested in seeking the optimal P2P streaming so-
lution to maximize the aggregate video experience of all peers.
By adopting the PSNR-Rate model, we quantify a user’s video
experience by a utility function: Fd( ~xd) = β log(

∑L
l=1 x

l
dr

l).
With notations summarized in Table I, the optimal streaming
solution can be found by solving the utility maximization
problem P1.

Constraint (2a) guarantees flow conservation for the infor-
mation flows of each peer. The benefits brought by utilizing
network coding are embedded in constraint (2b). In SVC
bitstream, higher layers depend on lower layers, and so peer
d may request l+ 1 layer only if it has received all layers up
to l. Constraint (2c) captures this dependency among layers.
Finally, (2d) is uplink capacity constraint on all peers and the
server.

B. Achieving Fairness

In classical resource allocation problems, utility maximiza-
tion achieves different notions of fairness between competing
resource consumers. In P2P video streaming, each peer plays a
dual-role of server and consumer. We ignore peer’s server role
in contribution-oblivious utility maximization. The obtained
optimal solution can also be interpreted as fairness among

P1: Utility Maximization
Variables:

gl,d
ij continuous non-negative variable

fij continuous non-negative variable
xl

d binary variable

Objective:

max
∑
d∈R

log(

L∑
l=1

xl
drl) (1)

Constraints:∑
〈i,j〉∈E

gl,d
ij −

∑
〈j,i〉∈E

gl,d
ji =

{
xl

drl, i = S

−xl
drl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (2a)

gl,d
ij ≤ f l

ij , ∀l ≤ L, ∀d ∈ R, ∀〈i, j〉 ∈ E (2b)

xl+1
d
≤ xl

d, ∀l ≤ L, d ∈ R (2c)∑
l

∑
〈i,j〉∈E

f l
ij ≤ Ui, ∀i ∈ V (2d)

peers without considering their contributions. Within the fair-
ness context, it is straightforward to show that the solution of
the utility maximization problem P1 achieves the proportional
fairness [24] among peers under the given overlay topology G
and node upload capacity profile U .

Another commonly used fairness measure is the weighted
fairness. In the context of layered streaming, because of the
layer dependency in SVC encoding, peers have to first retrieve
lower layers. A solution achieving weighted fairness should
give priority to streaming lower layers to peers. Weighted fair
streaming solution can be obtained by replacing the PSNR-
rate utility function in P1 with a weighted-sum function. We
assign weights to layers in a decreasing order. Let wl be the
weight assigned to layer l. We have wi > wj , if i < j.
Instead of using PSNR-rate model, the video experience of
a peer is characterized by the summation of the weights of all
the received layers: Fd( ~xd) =

∑L
l=1 x

l
dw

l. The marginal gain
of receiving a lower layer outweighs that of receiving higher
layers. As a result, the optimal solution with the weighted-
sum utility function will easily satisfy the constraint (2c). If
we further relax the binary variables xl

d in P1 to continuous
variables within [0, 1], the optimal solution will naturally have
the property that xl

d > 0 only if xk
d = 1,∀k < l. Formally,

the original non-linear mixed integer programming problem is
relaxed into the following linear programming problem.
P2: Linear Approximation
Variables:

gl,d
ij continuous non-negative variable

f l
ij continuous non-negative variable

xl
d ∈ [0, 1], continuous variable

Objective:

max
∑
d∈R

L∑
l=1

xl
dwl (3)

Constraints: (2a), (2b), (2d)

The solution of the linear programming problem P2 gives
weighted priority for peers to receive lower layer video.
Another commonly employed fairness criterion is the max-min
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fairness. We also derived a model to achieve max-min fairness
in layered streaming. Due to the space limit, interested readers
can refer to our technical report [25] for details.

C. Providing Incentives

In the previous efficiency and fairness study, we do not con-
sider any incentive issues. This could cause serious problem in
reality. For example, if an Ethernet user with uplink capacity
of 2,000 Kbps and a DSL user with uplink capacity of 200
Kbps both receive video at rate of 500 Kbps, why would the
Ethernet user contribute more than 200 Kbps? If we assume
all peers are strategic, then the bandwidth contributed by peers
will decrease and everyone will get poor video quality. On the
other hand, if the DSL user uploads video at its full capacity,
he may deserve some “help” from Ethernet users to download
video at a rate higher than 200 Kbps.

1) Taxation: It is well-known that, in social welfare theory,
taxation can help to improve the total utility of the whole
society while maintaining a certain level of fairness. An
optimal tax rate is usually non-linear and is complicated to
determine given that taxes distort user behaviors. Here, we
adopt the simple linear taxation method in [14], [15], that is

rd = (1− t)Ud +
t

N

∑
i

Ui, (4)

where t is the tax rate, N is the total number of peers. Unlike
the definition in [15], we define (1− t)Ud as peer d’s entitled
rate, and then map this rate to layers. All layers other than
the entitled layers are denoted as excess layers. The trade-
off between efficiency, fairness and incentive can be balanced
by adjusting the tax rate t. Higher tax rate introduces higher
system utility and smaller tax rate moves closer to tit-for-
tat type of fairness. When the tax rate equals 0, the taxation
degrades to the “tit-for-tat” or “bit-for-bit” strategy. In such a
system, the system utility is obviously the lowest. Some poor
peers can only receive a small portion of the video and thus
obtain a rather degraded quality even though they contribute
all of their uplink bandwidth. At the opposite side, when tax
rate is 1, all peers retrieve the same video rate regardless of
their contributions. Clearly, both scenarios are not desirable.

2) P2P Layered Streaming with Taxation: Two kinds of
P2P layered streaming designs can be considered under taxa-
tion: Equal share and Biased share.

Equal share: In this case, the taxation pool is equally shared
by all tax payers, i.e., participating peers in the system, which
is exactly following (4). To perfectly implement the taxation
scheme, one has to fully utilize upload bandwidth available
in the system. A sophisticated scheduling design is needed to
meet this requirement by avoiding the wasting bandwidth as
much as possible.

Biased share: We only require a peer to receive all its
entitled layers, i.e., rd ≥ (1 − t)Ud. The bandwidth in the
common taxation pool is distributed to maximize the system-
wide utility. Towards this goal, we augment the utility maxi-
mization models studied in the previous sections by imposing
an additional constraint on peer’s receiving rate. At a given

tax rate 0 < t ≤ 1, the utility maximization problem P2 can
be reformulated as follows.
P3: Utility Maximization under Taxation
Variables:

gl,d
ij continuous non-negative variable

f l
ij continuous non-negative variable

xl
d ∈ [0, 1], continuous variable

Objective:

max
∑
d∈R

L∑
l=1

xl
dwl (5)

Constraints:∑
〈i,j〉∈E

gl,d
ij −

∑
〈j,i〉∈E

gl,d
ji =

{
xl

drl, i = S

−xl
drl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (6a)

gl,d
ij ≤ f l

ij , ∀l ≤ L, ∀d ∈ R, ∀〈i, j〉 ∈ E (6b)∑
l

∑
〈i,j〉∈E

f l
ij ≤ Ui, ∀i ∈ V (6c)

∑
l

xl
drl ≥ (1− t)

∑
l

∑
〈d,j〉∈E

f l
dj ∀d ∈ R (6d)

Constraint (6d) guarantees that every peer should at least
receive a rate proportional to its uploading contribution.

D. Numerical Case Studies

To gain insights on the interplay between efficiency, fairness
and incentive, we conducted numerical case studies on exam-
ple systems with different topologies. For each system, we
solve P2 and P3 using AMPL [26]. The obtained numerical
results allow us to study the impact of streaming topology on
the system performance. The results also serve as benchmarks
for the simulation evaluation of the streaming algorithms
proposed in Section III.

We first solve P2 with a 40-receiver topology under the
identical settings.1 There is one server and three types of peers
with different upload bandwidth as summarized in Table II.

TABLE II
NODES’ SETTINGS

Type Uplink Capacity Number
Server 8000 Kbps 1

Ethernet peer 4000 Kbps 3
Cable peer 1000 Kbps 12
DSL peer 400 Kbps 25

The server has degree of 8, and only connects to Ethernet
or Cable peers. We vary the degree of peers to investigate the
impact of peer connectivity. The maximum peer degree is 10.
Peers can operate at two different modes to select neighbors.
One is the hierarchical mode in which a peer prefers to connect
to peers with the same type (with 70% probability). The
other is the random mode in which peers randomly connect
to other peers, regardless of their type. The video stream
is coded in 20 layers, each layer is encoded at rate of 50 Kbps.

1Due to the computation complexity, we couldn’t get numerical results of
P2 for systems with more than 40 peers.
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Fig. 2. Utility Maximization and Proportional Fairness in Hierarchical and Random Topologies

Fig. 2 shows the solutions of P2 under different average
peering degree. Fig. 2(a) compares the aggregated utility in
hierarchical and random cases. The Y-axe value is obtained by
dividing the aggregated utility by the maximum possible utility
(here it is the case when every receiver gets U

N ). The system
utility increases as peering degree increases. The random mode
gives better system wide utility. Fig. 2(b) and 2(c) compare
the average receiving rate for each type of peers under the two
peering modes. The hierarchical mode gives higher service
differentiation.

To study the impact of taxation, we study a numerical
example as shown in Fig. 3. The system has 15 cable peers
with uploading capacity of 1000 Kbps and 25 DSL peers with
400 Kbps and they are hierarchically connected with degree 3.
The video source is coded in 10 layers, each with 100 Kbps.
The layer weight wl is set as 2(10−l). We vary the tax rate
from 0.15 to 0.95.

As can be seen from Fig. 3(a), when the tax rate is small,
Cable peers with higher upload capacity obtain more layers.
The service differentiation provides good incentives for them
to participate in P2P sharing. As the tax rate increases, the
differences between Cable peers and DSL peers decrease. On
the other hand, the system wide utility increases with tax rate.

III. LAYERED P2P STREAMING PROTOCOL DESIGN

In this section, we present a mesh-based layered P2P
streaming design with the taxation based incentive mechanism.
Peers form a mesh over which the video is distributed. A
tracker or a rendezvous point serves as the bootstrapping node
for the system. The key design issues for such a layered P2P
streaming protocol are layer subscription, chunk scheduling,
and mesh topology adaptation. Multiple virtual overlays, one
for each SVC video layer, are formed among participating
peers. Due to the dependency among video layers, the upper
virtual overlay must have fewer peers than lower overlays. A
peer uses layer subscription scheme to determine how many
layers to subscribe to. The chunk scheduling algorithms on
peers allocate bandwidth among different overlays to balance
the streaming needs of different layers. Finally, the mesh
topologies need to be dynamically adjusted to adapt to the
changing layer subscription due to peer churn and/or other
network dynamics.

In the theoretic framework developed in Section II, network
coding is an essential component to achieve the optimum
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Fig. 3. Impact of Taxation on Fairness and System Utility

multicast efficiency in general overlay topology. However, the
gain of adopting network coding in real P2P systems is still
an open question [23]. In layered P2P streaming systems,
applying network coding to individual layers incurs extra
coding/decoding overhead, increases video playback delays,
and makes the protocol design more complex. Our design does
not employ network coding. As will be demonstrated through
simulations in Section IV, the efficiency of the proposed mesh-
based P2P streaming design is very close to the optimum
efficiency allowed by network coding.

A. Dynamic Layer Subscription

In real P2P streaming systems, due to peer churn and
network dynamics, it is unrealistic to calculate static layer-
subscriptions for all peers in a centralized fashion based on
P3. We thus develop a distributed algorithm that dynamically
adjusts peers’ layer subscriptions to approach the utility max-
imization under taxation.

Let Li denote peer i’s entitled layers. At a given time t,
let Ol

i(t) be a binary constant indicating whether peer i has
layer l. The layer subscription problem for peer i consists of
two sub-problems: 1) what layers should peer i subscribe to?
2) which peers should peer i download a subscribed layer l
from? The decision for the first sub-problem is represented
by the layer subscription variables {xl

i}. For the second sub-
problem, we introduce new decision variables {sl

ij}, with sl
ij

denotes the fraction of layer l peer i downloads from peer j.
Without networking coding, the optimal layer subscription is
governed by the low-level optimization problem P4.

Constraint (8a) guarantees that all peers receive their entitled
layers. Constraint (8b) defines how peer i retrieves layer l from
its neighbors. Constraint (8c) is uplink capacity constraint on
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P4: Flow Formulation for Dynamic Layer Subscription
Objective:

max
sl

ij
,xl

i

∑
i∈V

L∑
l=Li+1

wl
∑

〈i,j〉∈E

sl
ijOl

j(t) (7)

Constraints:
xl

i = 1, ∀l < Li (8a)∑
〈j,i〉∈E

sl
ij = xl

i, ∀i ∈ V, ∀l ≤ L (8b)

∑
l

rl
∑

〈j,i〉∈E

sl
ij ≤ Uj , ∀j ∈ V (8c)

all peers. P4 turns out to be a minimum cost flow problem,
which can be solved by centralized algorithms in polynomial
time. It can also be solved by distributed approximation
algorithms, such as the TCP-like algorithm proposed in [27].

We propose a distributed algorithm with Additive Increase
Additive Decrease (AIAD) and exponential backoff for peers to
dynamically adjust their layer subscriptions. Upon joining the
streaming session, peer i sets its initial layer subscription, li,
to be Li, the number of its entitled layers. It also starts a retry
timer, ti = rand(1, T ), where T is the retry time period. Upon
the expiration of the retry timer, if all currently subscribed
layers can be received and at least one neighbor peer possesses
chunks of layer li + 1, peer i increases subscribed layer by
one, li = li + 1, and enters a trial period of T ′. Peer i sends
out requests for chunks in the newly added layer. If peer i
is able to successfully obtain most of requested chunks at
the end of the trial period, it passes the test and the new
layer subscription is accepted. Otherwise, peer i falls back
to original subscription, and enters exponential backoff stage.
The retry timers is set to be ti = rand(1, 2kT ), where k
is number of consecutive failures. Meanwhile, peer i runs a
parallel subscription decrease process to ensure that it can
receive all subscribed layers. Subscription decrease process
periodically monitors the status of received layers. If the top
subscribed layer, li, becomes undecodable, and peer is not in
the aforementioned trial period, peer i reduces the number of
subscribed layers to li = max(li − 1, Li).

B. Chunk Scheduling

Each peer maintains a downloading window that moves
forward periodically. Peers periodically exchange chunk avail-
ability with their neighbors using buffer-maps. Neighbors help
each other retrieve missing chunks. Chunk scheduling decides
how to issue chunk requests to neighbor peers, and how to
serve the chunk requests from neighbor peers. The goal is to
properly utilize peers’ uplink bandwidths so that peers always
receive the entitled layers and receive the subscribed excess
layers with high probability. In the following, we present the
peer chunk requesting and chunk serving algorithms.

1) Chunk requesting: In SVC coded video, lower layer
bit-stream is more important than higher layer bit-stream.
Hence in principle, lower layer chunks should be requested
before higher layer chunks. In order to increase the data
chunk diversity and improve the chance that two peers always
have chunks to exchange, we further assume that data chunks

Fig. 4. Peer serves neighbors

belonging to the entitled layers are equally important. This
is reasonable because the available upload bandwidth in the
system is sufficient to deliver the entitled layers to all peers.
There is no need to distinguish different entitled layers. The
chunks are requested in the order of their importance: from
entitled layer chunks to excess layer chunks. A peer selects
one neighbor peer that owns the missing chunk to request
for the chunk. The probability of choosing a specific peer is
proportional to its serving rate to the requesting peer.

2) Chunk serving: Chunk serving is more sophisticated.
Individual peers maintain two FIFO queues for each neighbor
(see Fig. 4). One queue is called entitled queue and the other
is called excess queue. Entitled queue holds chunk requests for
entitled layers, while excess queue holds chunk requests for
excess layers. The chunk requests in excess queues are sorted
in ascending order of video layers, with lowest layer chunk
requests at the head. The entitled queues have strict priority
over the excess queues. Excess queues would not be served
unless all entitled queues become empty. If entitled queues
become empty, the leftover bandwidth serves the requests in
excess queues in a round robin fashion. The requests that have
passed their playback deadlines are cleared out of the queues
and won’t be served.

C. Mesh Topology Adaptation

As discussed in Section II, hierarchical mesh topology is
more favorable than random topology in providing differ-
ential service while random mesh is better for maximizing
the system-wide utility. In this section, we consider how to
efficiently adapt the mesh topology to achieve different design
goals. Mesh topology adaptation is achieved through neighbor
adaptation. A peer periodically contacts the tracker to retrieve
a list of candidate neighbors. It then applies the adaptation
strategy as described below to ensure the overlay topology
converging to the desired topology.

Every peer has a preset peer out-degree. If the number
of neighbors falls below the preset out-degree, a peer in-
creases the number of neighbors by adding neighbors ran-
domly selected from the candidate list. If the current number
of neighbors is ok, a peer still selects one peer with low
contribution and replaces it with a new peer from the candidate
list. Specifically, a peer uses a replacement index to determine
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Fig. 5. CDFs of Received Video Layers for Different Types of Peers Under Various Tax Rates

which peer to be replaced. Suppose peer i needs to adapt
its neighbors. Let clj be the number of retrieved chunks of
layer l from peer j, and wl be the weight associate with
layer l. The replacement index for peer j is defined to be∑

l∈i′s entitled layers c
l
jwl. In addition, weight w is set to be

as such that wl > wk if l > k. The neighbor with the smallest
replacement index is selected and swapped out. The length of
the adaptation period is chosen as ten seconds in our design.

The philosophy behind this design is two-fold.
• Layer Level: a neighbor offering high level layers up to

the entitled layers should stay. There are fewer peers in
the higher virtual overlay. Peers who can offer high layer
chunks are more precious and are more likely of the same
class (with the same entitled layers).

• Chunk Level: among all neighbors offering chunks at the
same layer, those uploading more chunks should stay.

Simulation results in Section IV indicate that the mesh topol-
ogy will converge to desired structures. At a small tax rate,
which emphasizing differential service, hierarchical topology
is achieved. At a large tax rate, which optimizing the system-
wide utility, more random topology is realized.

IV. PERFORMANCE EVALUATION

We conduct extensive trace-driven simulations to evaluate
the performance of the proposed taxation-based P2P layered
streaming design. Specifically, we investigate the following
aspects: (1) the effectiveness of taxation-based incentive mech-
anism; (2) peer uplink bandwidth utilization; (3) the mesh
topology adaptation; (4) user/peer perceived video quality; and
(5) the convergence and optimality of AIAD layer subscription
scheme.

A. Simulation Setup

A packet-level event-driven simulator is developed in C++.
Unless stated otherwise, the simulations are driven by a trace
collected from the measurement study of PPlive [10], a real-
world P2P live streaming system. The trace was collected
from Nov 22nd 17:43, 2006 to Nov 23rd 17:43, 2006. More
than 10,000 video sessions are observed and the number of
concurrent peers varies from 100 to more than 9,000.

The video is encoded into ten layers, with layer rate of 100
Kbps. There are three types of peers: DSL peers (400 Kbps),
Cable peers (800 Kbps) and Ethernet peers (1500 Kbps). The
fraction of individual peer types and their respective uplink

bandwidths are summarized in Table III. In our simulation,
there is one video server with upload capacity of 10 Mbps.

The peer download window is set to 30 seconds. Peers
exchange buffer-maps every second to calculate the missing
chunk downloading schedule. Mesh topology adaptation is
conducted every ten seconds. The values of T and T ′ in
AIAD layer subscription algorithm are set to be 5 seconds
and 10 seconds, respectively.

TABLE III
PEER UPLOAD BANDWIDTH DISTRIBUTION

Peer Type Uplink Bandwidth Percentage
DSL 400 Kbps 45%
Cable 800 Kbps 40%

Ethernet 1500 Kbps 15%

B. Simulation Results

1) Effectiveness of Taxation Based Incentive Mechanism:
To reduce the randomness introduced by short-lived peers,
only peers with life time greater than one minute are counted
in this experiment. In taxation based P2P streaming, a peer’s
received video quality, or the number of layers, reflects its
bandwidth contribution and the system wide tax rate. In ad-
dition, the peers with similar bandwidth contributions receive
similar video quality. Both are true as shown in Fig. 5, which
depicts the Cumulative Distribution Functions (CDFs) of the
numbers of received layers for different types of peers at
different tax rates. The peers from the same class consistently
receive a similar number of layers, while the numbers of
video layers received by different peer classes are close to
the optimum values–(5,9,10) under tax rate 0; (6,8,10) under
tax rate 0.5 and (7,7,8) under tax rate 0.95.

2) Bandwidth Utilization Efficiency: Peers’ uplink band-
width utilization is a key performance metric for any P2P
streaming system design. If the system is not well designed,
the so-called “content bottleneck” lowers down the uplink
bandwidth utilization, and degrades the average peers’ re-
ceived video quality.

Table IVlists the uplink bandwidth utilization (UBU) and the
TABLE IV

SYSTEM BANDWIDTH UTILIZATION

Tax rate UBU WBR
0 99.4% 0.4%

0.5 97.9% 0.1%
0.95 93.1% 0.6%



8

TABLE V
TOPOLOGY STATISTICS FOR TAX RATE 0

Neighbor Type Ethernet Cable DSL
Ethernet 28.4% 19.0% 9.0%

Cable 47.3% 58.1% 21.1%
DSL 24.3% 22.9% 69.9%

wasted bandwidth ratio (WBR). Overall, the uplink bandwidth
utilization is consistently over 90%, indicating the efficiency
of the protocol without network coding. Interestingly, UBU
is worse at larger tax rates. As tax rate increases, the peers
become more altruistic, which requires more bandwidth shar-
ing among different types of peers. Due to the peer churn and
mesh topology constraint, the bandwidth sharing may not be
always possible, thus lower the utilization.

In layered video, received chunks become undecodable if
the lower layers are not fully decoded. Wasted bandwidth
ratio (WBR) defines the fraction of bandwidth that is used for
delivering undecodable chunks. Again, the wasted bandwidth
ratio is pretty small, pointing to an efficient protocol design.

3) Mesh Overlay Adaptation: Mesh overlay topology plays
a key role in service differentiation. Table V and VI list the
peer neighborhood statistics with the tax rate of 0 and 0.95,
respectively. With tax rate 0, the optimal number of video
layers for Ethernet users, Cable users, and DSL users are 10, 9,
and 5, respectively. Around 76% of Ethernet peers’ neighbors
are either Ethernet or Cable users, and around 77% of Cable
peers’ neighbors are either Ethernet or Cable users. In contrast,
DSL users mainly connect with other DSL users (70%). The
strong bias toward connecting with similar peers leads to a
hierarchical mesh topology, which allows Ethernet and Cable
users to exchange higher video layers (from layer 6 to layer
10) that are not available at DSL users.

With tax rate 0.95, all peers are supposed to receive a
similar number of video layers regardless of their individual
bandwidth contributions. Numerical results in Section II-D
suggest that random mesh topology is better at achieving high
social welfare. Our mesh topology adaption scheme is able to
reflect this requirement. For DSL users, the fraction of DSL
neighbors is reduced from 70% (with tax rate 0) to 44%. For
Ethernet users, the fraction of DSL neighbors is increased from
24% to 40%. Compared with the mesh topology constructed
at tax rate 0, this is a more randomized topology.

4) Smoothness of Received Video Quality: Video quality is
related to the number of received video layers. In addition,
viewing quality is affected by the variations of the received
video layers over time. Quality of experience (QoE) is de-
graded if the number of received video layers changes fre-
quently. We define the following smoothness index to quantify
the smoothness of playing back received video.

SI =
1
K

K∑
k=0

|v(k)− v(k − 1)|
v(k)

, (9)

where v(k) is the received decodable layers at time period k,
and K is peer’s total number of online time period. The time
period is one second. Large smoothness index indicates bad
viewing quality caused by constant layer increasing/droping.

TABLE VI
TOPOLOGY STATISTICS FOR TAX RATE 0.95

Neighbor Type Ethernet Cable DSL
Ethernet 21.1% 14.9% 14.5%

Cable 38.5% 39.9% 41.5%
DSL 40.4% 45.2% 44.0%

Fig. 6 shows the CDFs of smoothness index under different tax
rates. As tax rate increases, the smoothness indexes for strong
peers increase, while the smoothness indexes for slow peers
decrease. We suspect this is caused by the peering topology
at different tax rates.

As discussed in Section IV-B3, a hierarchical topology is
formed at tax rate 0. DSL peers are mainly connected with
other DSL peers and have to actively look for bandwidth
resources, which causes more layer changes. In contrast, Ether-
net and Cable users are mainly connected with each other, and
have abundant bandwidth within the cluster. Thus fewer layer
changes. As tax rate increases, the overlay topology becomes
more randomized. Different peers have equal/similar access to
bandwidth, leads to similar smoothness index.

5) Layer Subscription Convergence: In order to examine
the behavior of layer subscription algorithm without the impact
of peer churn, 500 peers with fixed topology is used in this
experiment. The peers’ uplink bandwidth obeys the distribu-
tion as stated in Table III. We randomly pick one peer from
each bandwidth category and plot the evolution of its layer
subscription. We also vary the tax rate to examine its impact.

Fig. 7 shows the layer subscription process over time
with tax rate of 0, 0.5, and 0.95, respectively. With tax rate
of zero, peers are entirely selfish. The Ethernet peers with
bandwidth of 1500 Kbps receive all ten layers. The leftover
bandwidth subsidizes other peers. As a result, the optimal
layer subscription for Cable and DSL peers are 9 layers and
5 layers, respectively. With tax rate of 0.5, the optimal layer
subscription for DSL, Cable, and Ethernet peers are 6 layers,
8 layers, and 10 layers, respectively. Finally, with tax rate
of 0.95, peers are altruistic and every peer should receive
700 Kbps except for Ethernet peers (800 Kbps). Since video
is encoded at 100 Kbps per layer, there are more “free”
bandwidths in this case, introducing minor oscillations in layer
subscription. In all cases, AIAD algorithm is able to quickly
converge to the target subscription layer and peers stay in their
optimal layers for most of the time.

V. CONCLUSIONS

Designing an efficient P2P live streaming system that is fair
to all peers and offers strong incentive for them to contribute
is challenging. In this paper, we develop utility maximization
models to understand the interplay between efficiency, fairness
and incentive in layered P2P streaming. The models enable
us to numerically investigate the impact of peering strategies
and chunk scheduling policies on the fundamental trade-offs
between the above three factors. We further integrate taxation-
based incentive mechanism into P2P layered streaming, and
develop a practical streaming system. Taxation-based P2P
streaming allows us to freely adjust the balance between the
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Fig. 6. CDFs of Smoothness Index for Different Types of Peers Under Various Tax Rates
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Fig. 7. Layer Subscriptions Over Time for Different Types of Peers Under Various Tax Rates

social welfare and individual peer welfare. Extensive trace-
driven simulations demonstrate that the proposed designs can
effectively drive layered P2P streaming systems to operating
points with the desired balance between efficiency, fairness
and incentive.
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