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Guangyu Li, Lina Qiu, Chenguang Yu, Houwei Cao, Yong Liu, Fellow, IEEE, and Can Yang

Abstract—Internet Protocol TV (IPTV) normally has the
advantage of providing far more TV channels than the traditional
TV services, while as the other side of the coin it has the problem
of information overload. Users of IPTV usually have difficulties
finding channels matching their interests. In this paper, facilitated
with a large IPTV dataset, we analyze the dynamics of users’
channel switching behaviors and discover various patterns that
can contribute to building a more accurate channel switch
recommendation system. Based on user behavior analysis, we
develop several base and fusion recommender systems that
generate in real-time a short list of channels for users to consider
whenever they want to switch channels. A deep neural network
model that consists of a “Recommender System Attention (RS
Attention)” module and a “Channel Attention” module capturing
the static and dynamic user switching behaviors is also developed
to further improve the recommendation accuracy. Evaluation on
the IPTV trace demonstrates that our fusion recommender can
achieve 41% hit ratio with only three candidate channels and our
attention neural network model further pushes it up to 45%.

Index Terms—IPTV, Recommender System, Realtime Rec-
ommendation, Fusion Method, Attention Mechanism, Neural
Networks.

I. INTRODUCTION

Smart TVs and highly developed Internet video stream-
ing services have helped Internet Protocol TV (IPTV) gain
more popularity among users than the tradition TV service.
However, the long existing problem of “which channel to
watch” not only remains unsolved but even becomes worse
since there are more online contents available for users
to choose. Compared to the Over-the-Top (OTT) content
providers, such as Netflix or Hulu, who are equipped with
powerful Recommendation Systems (RSs), this problem has
become an obvious weak point for the IPTV service providers.
Recommendation Systems have been through a rapid de-
velopment process in both industry and academia. RSs are
now widely used by companies such as Amazon, Netflix,
and Spotify to enhance customer experience and improve
revenue. Advanced machine learning techniques, from the
well-known collaborative filtering to more recent deep neural
networks, have been developed to efficiently generate large-
scale recommendations to millions of customers. With the user
channel watching history data and abundant computational
power, IPTV providers have all the technical means to develop
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customized RSs to generate recommendations to users on-
the-fly. But not much RS adoption has been observed so far.
Electronic Program Guide (EPG), which provides a long list of
channels embedded in a hierarchical menu, is still the common
practice for IPTV providers. Personalized recommendation is
never the aim of general EPG. A general EPG can only provide
a long channel list that contains all channels’ descriptions
and/or sample videos for users to choose from. The burden
of decision is now on the shoulders of the users, which is
annoying since the list usually contains hundreds of channels.
A channel RS on the other hand can be designed to provide
a short list of channels tailored to a target user’s personal
taste. It is also more desirable to generate realtime channel
recommendation on-the-fly: instead of recommending a long
list of channels when a user turns on TV and using it for the
whole watching session, a new short channel list is generated
and popped up on TV whenever the user initiates channel
switching from her remote.

IPTV contents are different from online movies and on-
demand videos because they are mainly organized in program
sequences whose broadcasting schedules are mostly fixed and
periodic, e.g. daily news and TV series. Some programs
are only broadcasted once without fixed schedules, e.g. live
sports events and coverage of emerging events. One way of
recommending channels is to weaken the impact of “channels”
and recommend a channel x if we predict the user will
be interested in the program currently being broadcasted at
channel x. However, a few obstacles need to be overcome
before we can use this method. First, for most RSs (especially
those using Collaborative Filtering (CF)) we rely on the fact
that users consume online products asynchronously, which
makes it possible to predict user-item ratings by leveraging
previous user ratings and user-user similarities. Different from
online movie or video-on-demand providers, the “cold item”
problem for IPTV is much more severe since in IPTV system,
all users consume the items at the same time and most of the
items can be treated as “cold items” without previous user
ratings. To solve this issue, one would have to maintain and
analyze various metadata, e.g. the description of old programs
watched by users. One also needs to access detailed meta-
data for new programs to be broadcasted. However, detailed
program metadata are not always available, especially for one-
time and unplanned programs. Secondly, the traditional RSs
that only target on program-based channel recommendation
cannot determine the timing for switching, i.e., for a user who
is in the middle of watching a program when to switch to
another channel. This is a critical issue for realtime channel
recommendation.
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In this paper, we develop channel RSs that generate realtime
channel recommendations to guide user channel switching in
IPTV systems. Our RSs only need access to channel watching
sequences of users, and don’t need any program metadata,
nor involve any program content analysis. Specifically sev-
eral base RSs that can make recommendations individually
such as global and personal channel popularity, personal
schedule, channel transition pattern, etc., are proposed. Base
RSs are then combined through a fusion process at the last
stage to provide recommendations with improved accuracy.
Different fusion mechanisms are explored, such as ranking-
based approaches and data partitioning. Finally, a deep neural
network based RS model is developed to further improve the
performance. The model consists of two sub modules: the
“RS Attention module” and the “Channel Attention module”.
The former one captures the static user switching behaviors
reflected by the channels that users stayed in for long time,
the latter one captures the dynamic user switching behaviors
including the random tuning and channel exploration when the
users deviate from their routine channel watching. Through
evaluation on a real IPTV user channel switching trace, we
demonstrate that it is possible to generate accurate realtime
channel recommendations by only mining user channel watch-
ing sequences. The best fusion RS achieves an impressive hit
ratio of 41% when only three channels are recommended. The
performance can be further pushed to around 45% with the
proposed attention mechanisms.

The rest of the paper is organized as follows. In Section
II, we discuss the related work on RSs for TV channels.
In Section III, we characterize IPTV user channel switching
behaviors and formalize the realtime channel recommendation
problem and its workflow. In Section IV, we develop our
base and fusion RSs. Attention-based neural network model
is presented in Section V. In Section VI, we evaluate the
performance of the proposed models. Section VII concludes
the paper.

II. RELATED WORK

Before IPTV gains its popularity and data gathering be-
comes easier through Internet, the behaviors of TV users
are insufficiently studied in the literature. The emergence of
OTT content not only stimulates the studies of OTT user
behaviors in several areas but also enables the widely adoption
of recommender systems among OTT providers, such as
Spotify, Netflix and YouTube. Both content popularity and
user behaviors have been studied for OTT video-on-demand
services, e.g, [1], [2] and [3]. Measurement and modeling
of video watching time in a large-scale Internet video-on-
demand system was presented in [1]. In [2], user behaviors
for live and on-demand content were compared for an IPTV
system delivering both types of content. Treating TV channels
as OTT content, Cha et al. [4] was able for the first time
to characterize a series of channel viewing properties, such
as viewing sessions, channel popularity, user geographical
distribution, and channel switching behaviors for a large IPTV
network. Later, Qiu et al. [5] also conducted IPTV channel
popularity analysis and focused on its temporal dynamics.

Different from the previous studies, where users’ channel
switching patterns are mostly overlooked, we dig deep into
the user channel switching behaviors for the latent information
about users’ channel/program/schedule preferences.

User experience is highly related to the prediction accuracy
of the next channel the user may switch to. Studies in [6], [7]
and [8] used channel popularity based content pre-fetching
to reduce channel switching delay, which is much longer in
IPTV than in the traditional TV. Meanwhile, other studies
used channel switching prediction to simply improve user
experience of finding interesting channels to watch. Various
RS algorithms, e.g., [9], [10], [11], have been proposed to
match users’ personal interests with the huge amount of
content choices. In the TV domain, most RSs were built to
address the program recommendation problem [12]. After the
first EPG was introduced by Das et al. [13], a series of rule-
based, statistical or machine learning approaches have been
proposed for TV program RS, e.g., [14], [15], [16], [17], [18],
[19], [20]. Yang et al.[20] described a TV program RS with
collaborative filtering approach based on statistic and affinity
propagation. Chang et al. [21] proposed a TV channel RS
based on the feedback loser tree (FLT) algorithm. In [19],
Turrin et al. combined three simple popularity metrics for
channel recommendation and demonstrated the significance of
considering temporal context of channels. Different from the
above studies we aim at recommending channels to users and
weaken the concept of “program” because of the minimum
data overhead and the advantages of exploiting the dynamic
behaviors of users.

Attention mechanism based neural networks are developing
very fast recently due to its remarkable effectiveness in the sev-
eral domains, including Natural Language Processing (NLP)
and Image Recognition, e.g., [22], [23], [24]. Several studies
used attention based neural networks to mimic the allocation of
human preferences. In [25], an attention based neural network
is proposed to mimic users’ preferences on different sub
models at different time for recommending articles. Some
of our earlier results were published in a conference paper
[26], that solely uses fusion method to combine all sources of
information to generate final recommendation. In this paper, on
top of [26], we further develop a novel attention mechanism
based neural network model which mimics users’ potential
attention allocation process to replace the fusion method.
Attention based neural network can learn more flexible “fusion
functions” with less limitation.

III. IPTV CHANNEL RECOMMENDER SYSTEM

A. Channel Switching and Terminologies

IPTV can be mainly classified into three groups based on
the type of services [27]: live television, time-shifted (replay
enabled) television, and Video on Demand (VoD). In this
paper, we consider an IPTV system that provides all three
types of services at the same time. We focus on an IPTV
system where clients can access live shows, replay a TV show
that was broadcast hours or days ago, and browse and view
contents in a stored media catalogue. Our study is based on
a dataset provided by a major IPTV service provider for the
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Fig. 1: A sample of raw channel-watching log and the derived user behavior statistics.

metropolitan area of Guangzhou, China. It consists of user
channel watching logs for the entire month of August 2014.
Each log is a five-tuple:

{userid, channelid, duration, title, description}

There are totally 222K users, 172 channels, and 73M logs.
Figure 1 illustrates sample channel-watching logs of a user.

From the logs, we can obtain the user’s channel switching se-
quence, and calculate her watching duration for each channel.
We can further derive the following user behavior data.

• Watching Session is defined as a period during which the
user turns on her TV, watches a sequence of channels,
till she turns off the TV. In theory, there shouldn’t be
any gap for two sequential channel watching activities
in a session. But in some cases, the user may turn her
TV off and on in just a few seconds. We still treat it as
a consecutive watching session. In our trace, to handle
the quick “on-off-on” activities, we cluster all channel
watching logs with time gap less than 10 seconds into
one watching session. Figure 1 consists of two sessions,
during each of which the user watched four and two
channels respectively.

• Channel Switching Type: A user can reach a channel
through three types of channel switching: she starts with
the first channel appeared after she turns on the TV
(initial); she intentionally jumps from her current channel
to another target channel by typing the channel number
on her remote (jump); she randomly navigates to the next
or previous channel by pressing the channel up or down
button on her remote (tune). Our trace does not have
user remote action logs. Instead, we classify a channel
switching into jump or tune by simply checking whether
the id of the channel switched to is adjacent to the id of
the previous channel. Channel switches in Figure 1 are
labeled correspondingly.

• Interesting Channels: The time that a user spends on
a channel reflects her interest in the channel. We define
an interesting channel as a channel being watched con-
tinuously by the user for a duration longer than some
threshold T . Two interesting channels are marked with
green color in Figure 1, when we choose T = 10 minutes.

• Transition between Interesting Channels: It is impor-
tant for us to understand a user’s interest transitions,
which is defined as the transition between two adjacent
interesting channels. It is not necessarily an observed
channel switching sequence. In Figure 1, the transition

from channel 2 to channel 10 never shows up as a channel
switching sequence, but it might suggest that the user
tends to watch channel 10 after watching channel 2, even
though she watched channel 3 and 4 briefly in between.

Since the raw data has inconsistent entries and out-of-date
information, we pre-process the data by eliminating vague
entries and inactive users. The cleaned data consist of 135K
users, 172 channels and 51M logs.1

B. Recommendation Task and Workflow

Although channel RSs can generate realtime recommen-
dation at any time, we choose the user-initiated channel-
switching actions to be the recommendation trigger. For the
example in Figure 1, recommendation should be generated at
all channel switching moments after the user finished watching
channel 2 and before she finds channel 10. We will also
compare recommendation performance for different types of
channel switchings. Given historic channel-watching logs of
a large number of users, RS will generate a score scorec,u,t
for each candidate channel c at time t, and return a list of k
channels Ĉ(u, t) with the highest scores. The top-k channel
list gets a hit if it includes the channel c that is indeed watched
by user u for at least T = 10 minutes immediately after t.

There are mainly two workflows for our proposed system
as in Figure 2: training flow and recommendation flow. During
the training phase, base RSs are prepared/trained based on user
channel-watching logs. Each base RS will generate a score for
each (candidate channel, user) pair. These scores will serve
as features to train fusion RS models as will be described in
Section IV-C. During the recommendation phase, we use (user
ID, time) as the only input, and feed it to the trained base RSs
to generate features, which are fed to the trained fusion RS
models to generate realtime channel recommendations.

IV. BASE AND FUSION RECOMMENDERS

In this section, we first develop six base recommenders
based on simple statistics of user channel watching history. We
then investigate different fusion recommenders that combine
scores generated by base RSs using different fusion methods
to produce the final recommendation list.

1The data cleaning for this paper is slightly different from the conference
version [26], the results presented later in this paper will be slightly different
from their counterparts in [26] even with the same setting.
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Fig. 2: Work Flows for the Proposed Realtime Channel Recommender System

A. Base Recommenders

The logs contain various types of information that can be
used for channel recommendation. For each user, we mostly
focus on the channels that she watched for a time period more
than a threshold (e.g. 10 minutes). We develop six base RSs,
each of which focuses on one type of information. From logs
of user channel-watching, we can easily derive various user-
channel relation features, such as U(c, t): the set of users
watching channel c at time t; d(u, c, T ): the total time that
user u spent watching channel c within some time period
T , which can be either contiguous (e.g., the previous week)
or non-contiguous (e.g., all 9pm - 10 pm time slots of the
previous week).
1) Current Global Popularity. This method recommends the
most popular channels among all users at any given moment
t, i.e., the channels watched by the most users. The score of
each channel c for user u at time t is defined as: scoregpc,u,t =
|U(c, t)|, where | · | denotes the set size. This score is common
for users.
2) Historical Personal Popularity. This method recommends
the channels watched the most by the target user during a
history window (e.g. last week). The score of channel c for
user u at time t is defined as: scoreppc,u,t = d (u, c, [t−∆, t)),
where ∆ is the history window size (e.g., a week).
3) Personal Schedule. This method recommends channels
based on a user channel watching history at specific time slots
within a history window. The score of each channel c for user
u at time t is defined as:

scorepsc,u,t = d (u, c, [t−∆, t) ∩ S(t)) ,

where S(t) is the time slots that t belongs to. For example, if
the history window is one month, we use hourly slots to define

schedule, then t = 8 : 14pm belongs to the [8pm, 9pm) hourly
slot. The channels watched the most by a user between 8pm
and 9pm in the past month will be recommended to the user.
4) User-based Collaborative Filtering. This method recom-
mends channels that are being watched by the most similar
users, a.k.a. the nearest neighbors. Given a set C of available
channels, for each user u, we define her channel-watching
duration vector during a period T as DTu , with DTu [c] =
d(u, c, T ), ∀c ∈ C. The similarity sim(u, v, t) between user
u and v at time t is the cosine similarity of their channel-
watching duration vector D[t−∆,t)

u and D[t−∆,t)
v during the

window before t:

sim(u, v, t) =
D[t−∆,t)
u · D[t−∆,t)

v∥∥∥D[t−∆,t)
u

∥∥∥∥∥∥D[t−∆,t)
v

∥∥∥
We can then find the k-nearest-neighbors of user u as Uknnu

and calculate the user CF recommendation score as:

scoreucfc,u,t =
∑

v∈Uknn
u

d(v, c, [t−∆, t)). (1)

5) Personal Channel Transition. This method recommends
channels based on each user’s channel transition pattern. From
history viewing logs, we can derive the channel transition
probability: given the previous interesting channel c′ watched
by user u, the transition probability that the next interesting
channel watched by u is c can be calculated as:

pu(c|c′) =
|Su(c′ → c)|
|Su(c′ → ∗)|

where Su(c′ → c) is the set of user u’s interesting channel
switching actions from c′ to c, and Su(c′ → ∗) is the set
of user u’s interesting channel switching actions from c′ to
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any other channel. The recommendation score is defined as:
scorectc,u,t = pu(c|l(u, t)), where l(u, t) is the last interesting
channel watched by u prior to t.
6) Tune Probability. Different from the previous five base
RSs, this method focus on user channel tuning behaviors. It
takes into account all channels that a user visited, regardless
of how long she stayed with them. Specifically, it recommends
channels based on the last channel ID the user spanned
over and the probabilities that the user tunes to the adjacent
channels. Note that this recommender tries to predict the
likelihood of a user reaches a channel but not necessarily stays
(e.g. for over 10 minutes) at the channel. Given a user u and
the previous spanned channel s, let so be the next spanned
channel which resides a certain offset o away from channel s.
The probability that the next channel spanned by u to be so

given the previous channel is s can be calculated as:

pu(o) =

∑
sNu(s→ so))∑
sNu(s→ ∗)

,

where Nu(s→ so) is defined as the number of times user
u is observed in the channel watching logs to switch from
any channel s to another channel with offset of o from s, o
takes values of -5,-4,-3,...3,4,5 in practice. Nu(s→ ∗) is the
number of times user u switch from any channel s to another
channel with any offset. At time t, given the last channel user
u watched before t is c(t), and the offset between the last
channel c and next channel c is o, the recommendation score
is then defined as:

scoretpc,u,t = pu(o), o = −5, ..., 5

B. Base RS Performance

Since all base RSs need enough history data to obtain stable
statistics, we test the performance of base RSs by letting them
generate recommendations for all channel switches in the last
seven days of our trace. For a channel switch initiated by user
u at time t, base RS x calculates scores scorexc,u,t for all
target channels based on user channel viewing history up to
time t as described above. All channels will be ranked based
on their scores, and the top k channels with the highest scores
will be returned as the top-k recommendation list generated
by base RS x. If the next channel user u watched for more
than 10 minutes after t is in the recommendation list, we call a
recommendation hit, otherwise it is a miss. The top-k hit ratio
is averaged over all switches from all users in the test set.
The top-k hit ratios for all base RSs are reported in Figure 3.
The “personal popularity” and the “personal schedule” base
RSs are generally the best among all base RSs. The “channel
transition” RS performs better when the recommendation list
is short (k < 2) and the “personal popularity” RS performs
the best when the recommendation list is longer (k > 4).

C. Fusion Recommenders

Since each base RS only captures limited information about
user channel watching behaviors, more accurate recommenda-
tion can be generated by efficiently utilizing all information
captured by all RSs. Now we study fusion RSs that combines
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scores generated by base RSs using some fusion function F(·)
to produce the final recommendation list.

scorec,u,t = F(
〈
scoregpc,u,t, score

pp
c,u,t, score

ps
c,u,t,

scoreucfc,u,t, score
ct
c,u,t, score

tp
c,u,t

〉
)

The performance of fusion RS is largely determined by
the design of F(·), including fusion models, data partition
methods, and ranking approaches.
Prediction Models. The goal of a fusion RS is to predict
whether a channel will interest a user based on the scores
obtained by base RSs. This is a typical binary classification
problem, and a lot of existing prediction models can be
adopted. We mainly explored three of them: Logistic Regres-
sion (LR) [28], Support Vector Machine (SVM) [29] and Ran-
dom Forest (RF) [30]. For each model, in the training phase,
whenever a user switches channel, we obtain the candidate
channels from all base RSs, and use their associated scores as
feature values. We then assign a binary label to each candidate
channel, depending on whether the user actually watched
the channel after the switch. Using training data, we obtain
binary classification models (LR, SVM, RF), which will be
used to generate fusion scores for channels, and consequently
recommendation lists in the test phase.
Ranking Approaches. We also investigated two approaches
of ranking channels: pointwise and pairwise. The pointwise
approach ranks all channels directly based on their fusion
scores. The pairwise approach, on the other hand, predicts if a
channel is more interesting than another channel based on their
feature values. To conduct pairwise ranking, original samples
are transformed into sample pairs. For example, at certain time,
there are three original samples (sch1, true), (sch2, false),
(sch3, false), where sch1 is the score vector of channel 1
and true/false is the label of whether the user watched the
channel. Then we can transform these three samples into
two sample pairs: (sch1 − sch2, true), (sch3 − sch1, false),
where the true label represents channel 1 is more interesting
than channel 2, and the false label represents channel 3 is
less interesting than channel 1. Pairs between samples with
original negative labels are ignored. Then we train binary
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classification models to predict the relative ranking between
channel pairs based on the difference between their score
vectors. To generate recommendation list in the test phase, we
first estimate the relative ranking among all candidate channel
pairs. If channel A has ranks higher than channel B, it will get
one vote. Finally, the channels with most votes will be placed
at the top of the recommendation list.
Data Partition. We also need to consider whether and how
our data should be grouped for model training. For examples,
on one hand, if we train a model for all users over all time, the
model granularity may be too coarse; on the other hand, if we
partition data according to users/hour and train per-user/per-
hour models, our training data will become too sparse for
training. We studied three ways of data partition: no partition,
per-user partition (different models for different users), and
per-hour partition (different models for different hour-of-day).

The performance of fusion RSs will be reported in Sec-
tion VI-A.

V. ATTENTION-BASED CHANNEL RECOMMENDERS

In this section, we show how the attention mechanism can
be used to improve channel recommendation accuracy.

A. Dynamic-attention-based Approach

Instead of directly estimating the probability of a user stays
in a channel, we want to first narrow down the searching range
of the interesting channels, and then keep refining this range
by exploring more information until we can generate a short
recommendation list. Similar approaches were proposed in
other research areas. For instance, in object detection in natural
images, the “Region of Interest (ROI)” is pre-calculated as a
rough estimate of the coordinates of the bounding box, and
later this bounding box is refined to improve the detection
accuracy [31]. In Neural Machine Translation (NMT), the
recent dominant methods adopted an“attention mechanism
based encoder-decoder framework” to achieve the superior
performance [24]. The gain is mainly due to the ability of
assigning different weights to previous samples in time series
or sequential data. In our IPTV system, we can also model
two types of attention. The first one is the “RS attention”.
It is assumed that users have several principles about how
to reach their interested channels. Although different users
have different principles, we further assume that they share
some common principles, such as “what is the most popular
channel right now?”, or “is it time to watch my favorite show?”
which can be easily captured by our base RSs previously
introduced (e.g. the “Global Popularity RS” and the “Personal
Schedule RS”). We can then use the weighted combination
of the base RS scores to mimic the decision process of
users’ channel switching. The “RS attenton” is the importance
weights users pay upon the six base recommenders implicitly.
The second attention is the “channel attention”. Just as the
machine translation and the auto-reply email system, our goal
is to predict the next word (or value) in a sentence (or time
series). Because of the high similarity between our problem
and the problem defined in [24], we propose to capture the
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Fig. 4: Performance of base RSs with different hour of day.

second type of attention using a model similar to [24], but
with customized model structure for IPTV system.

One key question is how to capture the two types of user
attention in different context. The context can be external
environment information, such as the hour of day when a
channel switching occurs, or user behavior data, such as users’
recent channel switching sequence. So we propose a neural
network model that contains two sub modules to capture the
two attention we described previously. The model’s specialty
lies in its awareness of the context and its capability of
dynamically predicting users’ attention within the context. In
V-B we introduce the module that handles the type of attention
users pay to different base recommenders within a context
defined by two manually extracted features, and in V-C we
show the sub module which captures the attention users pay
on channel sequence by using a customized seq2seq model.

B. Attention-based RS Fusion

To learn the dynamic attention allocation we need to feed
features that can contribute to a user’s decision. In practice, we
find two features that can affect the attention a user pays on
different base RSs (which correlates to her channel switching
principles): the hour-of-day and the number of switches span-
ning over non-interesting channels since the last interesting
channel. The hour-of-day impacts the decision process because
users may change their searching strategies in response to the
ongoing schedules of the TV programs. For example, as show
in Fig. 4, for the most hours of the day, the “Global Popularity
RS” has the lowest performance among RSs, however at
10:00am, its performance increases rapidly and surpasses the
performance of the “Tune Probability RS”. At other hours of
the day, the relative accuracy order and the differences among
the six RSs are also changing. Another feature is the number
of switches spanning over non-interesting channels since the
last interesting channel (we will call it as “the number of
switches” for the rest of this paper). If a user cannot find
her interested channels after many switches, the laziness may
drive her back to her comfort zone, i.e. what she used to watch
before. Fig. 5 shows the effect of the number of switches
on base RSs. We can see that the relative accuracy order
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Fig. 5: Performance of base RSs with different number of
switches.
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Fig. 6: The structure of RS Attention Network.

of “personal popularity”, “personal schedule” and “channel
transition” keeps changing with different numbers of switches.

In practice, we represent the hour-of-day as a 24-d one-hot
vector and quantify the number of switches using 3 ranges:
1 ∼ 3, 4 ∼ 10, 10+. A 3-d one-hot vector is then generated
and appended to the 24-d one-hot vector of the hour-of-day.
The input of our algorithm is then a 27-d vector ~o containing
the above two sources of information. We then design a “RS
Attention Network” to capture both the results of six base RSs
and the effect of the hour-of-day and the number of switches.
The structure of “RS Attention Network” is illustrated in Fig.
6. The input ~o goes through L fully connected layers and the
“RS Attention Network” can be formulated in a hyperbolic
tangent form as below:

~λ0 = ~o · ~w0 + ~b0 (2)
~λi =

−−→
λi−1 · ~wi + ~bi, i = 1, 2, ..., L− 1 (3)

~σ = Tanh(
−−−→
λL−1) =

e2·
−−−→
λL−1 − 1

e2·
−−−→
λL−1 + 1

(4)

~y =

6∑
i=1

(~yi · ~σi) (5)

where λi, i = 0, 1, ..., L − 1 is the output of the i-th fully

loss

𝑒2 𝑒𝑡−1𝑒1

BILSTM BILSTM BILSTM BILSTM

(attention mechanism)

(encoder) (decoder)

∙ ∙ ∙
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ℎ0

ℎ1

ℎ1

Fig. 7: Encoder-decoder based Channel Attention Model with
Special Attention Mechanism Customized for IPTV Switch
Prediction Problem. The sequence length is fixed to 10 at each
time t.

connected (FC) layer among L FC layers in total, ~σ is the
allocated attention on six base RSs and ~yi, ~y are the normalized
output of six base RSs and the overall score for recommen-
dation respectively. The output of each intermediate layer
(from the input layer to the last hidden layer) in this module
is normalized by a batch normalization layer to prevent co-
variance shift. ~wi and ~bi are tunable parameters in FC layers.
The use of “Tanh” function makes sure that the contribution
of any base RS can be positive or negative.

C. Attention-based Sequence Model

Since we can only exploit the previous channel number
sequence to make predictions, a natural question would be how
users set the weights on the previous channels spanned over,
and how they combine the weighted experience of previous
channels to find the next channel to switch to. For example,
some switches may only be the intermediate states in the
course of finding the next interesting channel, thus should be
assigned with less weights. Note that this problem is very
similar to the machine translation problem [32] where the
goal is to translate a sentence in one language to one in
another language. The difference is that in our problem all
generated “translations” have a fixed size of one word (the
next channel number). The dominant models (e.g. “Seq2Seq
model” [33]) for machine translation are based on recurrent
or convolutional neural networks in an encoder and decoder
configuration to generate the translation. The best performing
models also connect the encoder and decoder through an
“attention mechanism” [34]. Due to the common nature of
our problem and the machine translation problem, we propose
to use a similar encoder-decoder model with special attention
mechanism customized for our channel switch problem. This
model serves as a module to the final model for prediction
of the interesting channels. Figure 7 shows the details of the
module which is explained as the following:
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• Encoder. We replace the vanilla LSTM module in the
traditional Seq2Seq model with Bidirectional LSTM
module (BiLSTM) to exploit the reversed sequence in-
formation. Let the input channel number sequence be
{cht−1, cht−2, ...cht−10}. Each channel number chi is
mapped to a one-hot vector ~xi ∈ RC , where C is the
number of unique channel numbers in system. Our goal is
to output the next channel to switch to (ŷt). The BiLSTM
module is then run t − 1 times and the hidden states
{et−1, et−2, ...et−10} are stored.

• Decoder. The decoder contains a BiLSTM module that
will run one time step (sequence length fixed to 1) since
we only predict the next channel number. The initial
hidden state of the BiLSTM equals to the last hidden
state of the encoder et−1. The input of the BiLSTM
module (besides the initial hidden state h0) is a con-
catenated vector containing 1) the most recent one-hot
channel number ~xt−1, and 2) the context vector calculated
from the attention mechanism which will be explained
later. We apply a function g which is implemented with
several fully-connected hidden layers to the output of the
BiLSTM. The output of g is a vector of the same size of
input ~xi. We then apply a softmax function to squeeze
the output of g into a vector of probabilities and a argmax
function to find the most probable channel for the next
switch.

~h1 = BiLSTM( ~h0, [ ~xt−1, ~ct]) (6)

~s1 = g( ~(h1)) (7)
~p1 = softmax(~s1) (8)
~i1 = argmax(~p1) (9)

• Attention Mechanism. The attention mechanism is a way
to force the decoder to connect to all hidden state in
encoder instead of only learning from the last hidden state
of the encoder as in vanilla Seq2Seq model. The context
vector ct used in the decoder is calculated as follows:

~αt = f(h1, et′ + ρt′ · dt′) ∈ R (10)
~α = softmax(~α) (11)

~ct =

t−1∑
t′=1

ᾱt′ · (et′ + ρt′ · dt′) (12)

t′ = t− 1, t− 2, ...t− 10 (13)

For the choice of f function, there are several widely used
versions such as [24] and [35]. In our model, we just use
the “dot” function for the simplicity of computation, i.e.

f(h1, et′) = ~h1 · ~et′ (14)

Unlike the traditional attention mechanism in machine
translation problem, we refine the attention weights
{α1, α2...} with the information of how long a user
stayed in previous channels. The idea is that the duration
that a user spent on previous channel {d1, d2...} also
reflect her strength of attention on each previous channel.
We then combine the duration with the hidden states
using a weight vector so that the input hidden vector

to attention module becomes {et−1 + ρt−1dt−1, et−2 +
ρt−2dt−2...}.

D. Unified Attention-based Recommender

We create a unified model for end-to-end training and
testing by combining the outputs of both RS attention network
~yRS and channel attention network ~ych:

~yfinal = softmax(β0 ∗ ~yRS + β1 ∗ ~ych + b ∗ ~1), (15)

where β0, β1 and b are tunable parameters, and ~yfinal is
the output of softmax function representing the probability
distribution for the user to stay in all channels.

Finally we use ~yfinal as the final likelihood vector that con-
tains the probability of any channel to be the next “interesting
channel”. With this final likelihood we can rank the channels
and choose the K channels with the highest probability as our
top-K recommendation. The parameters of the model used in
practice are shown in Table I.

Parameters Settings

RS Attention Network fc layer w/ 64 unites × 3
BiLSTM 128 units × 3

sequence length of BiLSTM 10
batch sizes 8
function g fc layer w/ 64 unites × 3

Learning rate 10−4

Optimizer Adam

TABLE I: Parameters in the model

VI. EVALUATION OF MODEL FUSION AND ATTENTION

A. Fusion RS Performance

For the fusion model, to search for the best fusion setting,
we enumerate all combinations of the previous three fusion
design dimensions. For each setting, we test and train a fusion
RS using a subset of our dataset which contains 13, 284 users.
Again, data from the first 24 days are used for training,
the last 7 days for testing. In Table II, we compare the
recommendation accuracy in terms of hit ratio. We also include
two baseline methods: 1) “Best Single” is the best base RS
when recommending top 1/3/5 channels; 2) “Score Sum” uses
the sum of scores of all base RSs as the final score for
a channel. Some settings such as SVM model and per-user
partition are skipped in Table II due to their bad performance.
Among all the other settings, we can see random forest (RF)
models generally outperform other models, and the setting of
per-hour pairwise random forest model is the best among them
all. It achieves significant improvement compared with the
baseline methods.

To evaluate whether RSs can provide complementary in-
formation, leave-one-out experiments are performed. We pick
one base RS at a time and compare the performance of fusion
RS without it. As in Figure 8, all base RSs can generally
improve the final performance (except some top-1 cases) and
the “personal popularity” and “tune probability” methods are
the most important two. One observation is that removing the
“personal schedule” and “channel transition” do not have too
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TABLE II: Fusion Model Comparison.

Best
Single

Score
Sum LR RF LR

per-hour
RF

per-hour
LR
Pair

RF
Pair

RF Pair
per-hour

Top 1 16.8% 16.2% 18.4% 19.4% 18.4% 18.9% 18.1% 19.1% 19.9%

Top 3 31.9% 34.8% 37.1% 38.9% 37.2% 39.5% 37.1% 39.5% 41.6%

Top 5 44.3% 46.7% 48.3% 50.6% 48.5% 51.1% 48.6% 50.8% 51.5%

Best of Fusion (%) Channel Attention (%) RS Attention (%) Channel&RS Attention (%) Gain over Fusion (%)

Top 1 19.9 15.7 19.4 20.2 1.5
Top 3 41.6 32.6 40.6 44.3 6.5
Top 5 51.5 42.7 52.3 57.5 11.7

TABLE III: Performance Comparison of Fusion and Attention Networks with Different Settings.
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Fig. 8: Performance of Fusion RS after Removing One Base
RS.

much negative effect on fusion RS as indicated in Fig. 8,
even though “personal schedule” and “channel transition” are
the second and third most effective base RS when operating
alone, as shown in Fig 3. This suggests that the complementary
information these two base RSs provide to the fusion RS is not
much in general. The potential performance decline caused by
removing them could be compensated by other base RSs to
some extent (not completely). On the other hand, we notice
that although the individual performance of tune probability
RS seems mediocre in Fig. 3, the complementary information
it provides to the fusion RS is significant. This is because
the “tune probability” can capture the exploration process
which cannot be captured by other RSs. We also found that
the fusion RS generally perform better for “jump” type of
channel switching as illustrated in Figure 9. It is not surprising
because users usually have some ideas about which channel
may interest them when they directly “jump” to a channel.
Therefore “jump” switching is more predictable than “tune”.
This result suggests that our RS can catch users’ realtime
personal preferences. Meanwhile, our RS is still accurate for
“tune” switchings. Indeed, the utility of RS might be even
higher for “tune” switchings, since this is when a user is less
clear about what she should watch, and needs guidance to
find interesting channels.
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Fig. 9: Top-k Hit Ratio of Fusion Channel RS for Different
Switching Types.

B. Attention Networks’ Performance

For the attention networks, in Table III, we show the rec-
ommendation accuracy (hit ratio) with RS attention, Channel
attention, and combined RS-Channel attention. We compare
them with the previous fusion methods. For example, the col-
umn corresponding to “Channel Attention” means only using
previous channel switch sequence with duration spent on each
channel as features to recommend, “Channel&RS Attention”
means using the unified model to generate recommendations.
Table III shows that by applying attention networks the per-
formance of top-1, top-3 and top-5 can be improved by up
to 1.8%, 10.1%, 11.7% respectively comparing to the best
performance of fusion method (RF pairwise per-hour model)
while they use similar set of features. The performance of
using “RS Attention” alone to control the weights among
six base RSs can match the performance of the best fusion
method and it also provides an interface that enables the
model to cooperate with the “channel attention module” in
an end-to-end training framework which can achieve better
performance. Besides the difference of techniques, the major
difference between dynamic attention based approaches and
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the static behavior based approaches is that the former ones use
the “non-interesting” channel logs as additional information
to make recommendations. Because in our dataset, a large
proportion of the users have stable switching behaviors which
can be best reflected by top-1 hit ratio. The dynamic RS
approaches (attention networks) do not outperform much (by
only 1.8%) over the static approach (fusion method). However,
when the users have no clear choices of the next channel,
they tend to explore the channels. This is the situation where
dynamic attention based approaches perform better (outper-
form the fusion methods by up to 12%). We also tried to
combine fusion method with the “channel attention module”,
the accuracy cannt match the unified neural network model.
The reason may be the end-to-end training can make the “RS
attention” and the “channel attention” module to cooperate.
Due to space limit, We don’t show the detailed results for this
experiment.

We also tried different configurations of models by varying
combinations of the following choices: 1) BiLSTM or vanilla
LSTM, 2) with or without Attention Mechanism and 3) if
Attention is applied, with or without duration information. Fig.
10 shows the comparison of the results in different configura-
tions. It can be shown that with BiLSTM the performance is

BiLSTM

Attention

Duration

Fig. 10: Different Experiment Configurations with Combina-
tions of Components.

slightly improved, while adding Attention Mechanism to the
model brings larger improvement. The duration information as
“the hard attention” to the model can improve the performance
by up to 5% (relative). The full model with all 3 choices
enabled can outperform the vanilla model (encoder-decoder
with only LSTM) by up to 8%.

VII. CONCLUSIONS

In this paper, we studied channel switching recommendation
for IPTV users. Using a large IPTV user channel watching
trace, we first developed six base RSs that generate channel
recommendations using basic user-channel features, such as
user schedule, personal hot channels, channel transition pat-
terns, as well as classic recommendation methods, such as

global popularity and user-based CF. We improve the accuracy
of base RSs using different fusion methods. A deep neural
network model that consists of a “Recommender System
Attention” module and a “Channel Attention” module cap-
turing the static and dynamic user switching behaviors is also
developed to further improve the recommendation accuracy
Through evaluation, we demonstrated that our fusion RS and
attention models outperform individual base RSs and can
accurately guide user channel switching by using extremely
short recommendation lists. Our proposed RSs are suitable for
real-time channel recommendation in practical IPTV systems.
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review of recommender systems in the television domain,” Expert
Systems with Applications, vol. 42, no. 22, pp. 9046–9076, 2015.

[13] D. Das and H. ter Horst, “Recommender systems for tv,” in Recom-
mender Systems, Papers from the 1998 Workshop, Technical Report WS-
98-08, 1998, pp. 35–36.

[14] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. Difino, and B. Ne-
gro, “User modeling and recommendation techniques for personalized
electronic program guides,” in Personalized Digital Television. Springer,
2004, pp. 3–26.

[15] M. Chen and C. Yang, “Private recommendation system based on user
social preference model and online-video ontology in interactive digital
tv,” in Intelligent Human-Machine Systems and Cybernetics (IHMSC),
2012 4th International Conference on, vol. 2. IEEE, 2012, pp. 260–263.

[16] S. H. Hsu, M.-H. Wen, H.-C. Lin, C.-C. Lee, and C.-H. Lee, “Aimed-a
personalized tv recommendation system,” in European Conference on
Interactive Television. Springer, 2007, pp. 166–174.

[17] W.-P. Lee and J.-H. Wang, “A user-centered control system for person-
alized multimedia channel selection,” in Consumer Electronics, 2004
IEEE International Symposium on. IEEE, 2004, pp. 430–435.

[18] B. Smyth and P. Cotter, “Surfing the digital wave,” in International
Conference on Case-Based Reasoning. Springer, 1999, pp. 561–571.



11

[19] R. Turrin, A. Condorelli, P. Cremonesi, and R. Pagano, “Time-based
tv programs prediction,” in 1st Workshop on Recommender Systems for
Television and Online Video at ACM RecSys, 2014.

[20] Y. Yang, C. Liu, C. Li, Y. Hu, Y. Niu, and L. Li, “The recommendation
systems for smart tv,” in Computing, communication and networking
technologies (ICCCNT), 2014 international conference on. IEEE, 2014,
pp. 1–6.

[21] H.-Y. Chang, C.-C. Lai, and Y.-W. Lin, “A fast svc-based channel-
recommendation system for an iptv on a cloud and p2p hybrid platform,”
The Computer Journal, vol. 57, no. 12, pp. 1776–1789, 2014.

[22] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

[23] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-based
convolutional neural network for modeling sentence pairs,” Transactions
of the Association for Computational Linguistics, vol. 4, pp. 259–272,
2016.

[24] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[25] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang,
“Dynamic attention deep model for article recommendation by learning
human editors’ demonstration,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’17. New York, NY, USA: ACM, 2017, pp. 2051–
2059. [Online]. Available: http://doi.acm.org/10.1145/3097983.3098096

[26] C. Yu, H. Ding, H. Cao, Y. Liu, and C. Yang, “Follow me: Personalized
iptv channel switching guide,” in Proceedings of the 8th ACM on
Multimedia Systems Conference. ACM, 2017, pp. 147–157.

[27] A. Punchihewa and A. M. De Silva, “Tutorial on iptv and its latest
developments,” in 2010 5th International Conference on Information
and Automation for Sustainability (ICIAFs), 2010, pp. 45–50.

[28] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley &
Sons, 2012, vol. 329.

[29] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[30] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[32] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[35] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

Guangyu Li is a Ph.D. candidate at the Electrical
and Computer Engineering department of New York
University. He received his bachelor and master de-
gree in the field of automatic control from Electrical
and Computer Engineering department at Tianjin
University, Tianjin, China in July 2011 and 2014
respectively. His general research interests lie in data
mining methods in networking and recommender
system.

Lina Qiu is a Ph.D. student at the Department
of Computer Science at Boston University. She
received her master degree in Computer Science
from New York University in 2019, and her bachelor
degree in Computer Science and Electronics from
University of Edinburgh in 2017. Her general re-
search interests lie in data systems and information
retrieval.

Chenguang Yu received a BS and MS degree in
Biology from University of Science and Technology
of China in 2006 and 2013, and a PhD degree in
Electrical Engineering from New York University
in 2016. He is a research scientist in Facebook.
His research spans the area of machine learning
and data mining with an emphasis on online social
network based recommender systems. His current
work is focused on data science related research for
Instagram.

Houwei Cao is an assistant professor in the Depart-
ment of Computer Science at New York Institute of
Technology (NYIT). She was an adjunct professor at
the Computer Science and Engineering Department
of the Tandon School of Engineering of New York
University before joining NYIT. She obtained her
Ph.D. degree in Electronic Engineering from the
Chinese University of Hong Kong in 2011, and
worked on an RGC grant on automatic speech recog-
nition of Cantonese-English code-mixing speech.
She was a postdoctoral fellow at University of Penn-

sylvania from 2011 to 2014 and worked on an NIH grant on the computational
quantification of emotion in faces and voice for neuropsychiatry. While at
Tufts University from 2014 to 2015, Cao worked on an NSF grant on social
robotics and Parkinson’s disease. She was also an Insight Data Science fellow
in 2015.

Yong Liu is an associate professor at the Electrical
and Computer Engineering department of New York
University. He joined NYU-Poly as an assistant pro-
fessor in March, 2005. He received his Ph.D. degree
from Electrical and Computer Engineering depart-
ment at the University of Massachusetts, Amherst,
in May 2002. He received his master and bachelor
degree in the field of automatic control from the Uni-
versity of Science and Technology of China, in July
1997 and 1994 respectively. His general research
interests lie in modeling, design and analysis of

communication networks. His current research include P2P systems, overlay
networks, network measurement, online social networks and recommender
systems. He is the winner of ACM/USENIX Internet Measurement Con-
ference (IMC) Best Paper Award in 2012, IEEE Conference on Computer
and Communications (INFOCOM) Best Paper Award in 2009, and IEEE
Communications Society Best Paper Award in Multimedia Communications
in 2008. He is a Fellow of IEEE.



12

Can Yang is an associate professor since 2005 and
a professor in advance since 2013 at the School of
Computer Science and Engineering of South China
University of Technology. He was a postdoctor in the
School of Computer Science and Technology from
August 2002 to October 2004 at Huazhong Uni-
versity of Science and Technology (HUST) Wuhan,
China. He received his Ph.D. and bachelor from the
Department of Electronic Science and Technology at
HUST in 2002 and 1994, respectively. He received
his master degrees in the field of Pattern Recognition

and Intelligent Control from HUST in June 1997. He had been a visiting
scholar for one year at the Polytechnic School of Engineering of New York
University since 2013. His interest focuses on multimedia networking. His
current research includes P2P media streaming, mobile video networking and
online recommendation for multimedia systems. He won the Science and
Technology Progressive Award of Guangdong Province in 2011 and 2015, and
the Sci. and Tech. Innovation Award of SARFT of China in 2012, respectively.
He is a member of IEEE and ACM and a senior member of CCF.


