
Data-driven Hybrid Caching in Hierarchical Edge
Cache Networks

Abstract—Hierarchical cache networks are increasingly de-
ployed to facilitate high-throughput and low-latency content
delivery to end users. Meanwhile, user content requests present
both long-term and short-term variabilities. To achieve the
maximal caching gain, it is critical for the caching algorithms to
adapt to long-term and short-term content popularity dynamics.
However, the traditional reactive caching algorithms, such as
LRU and LFU, only respond to the short-term request dynamics,
missing the long-term popularity trend. The problem is especially
severe in the edge caching setting, due to the limited caching
capacity and the reduced degree of user multiplexing. On the
other hand, the recently proposed optimal proactive caching
solutions only update content caching and routing periodically
based on the estimated long-term content popularity. To fill in
the gap, we propose a novel hybrid proactive-reactive caching
framework. We first develop a fine-grained content popularity
estimation method that mines the future content interests of small
groups of users based on user content request history data. We
then design a sliding-window based mechanism to periodically
update content popularity prediction and optimize the content
placement and routing to trade-off between minimizing user
delays and controlling cache update costs in hierarchical cache
networks. We further show that reactive LRU caching algorithm
can be seamlessly combined with our proposed proactive caching
algorithms to respond to the real time content request dynamics.
Finally, we evaluate our algorithms using real world dataset and
show that up to 30% caching performance improvement can be
achieved over with the state-of-art methods.

Index Terms—edge caching, recommender system, cache place-
ment and routing

I. INTRODUCTION

The Internet traffic is dominated by the delivery of various
contents, ranging from web-pages, software packages, to 360
degree videos, etc. The emerging applications, such as Con-
nected Vehicle, Virtual Reality and Augmented Reality, require
contents to be delivered with high bandwidth and low latency.
A recent trend in Content Delivery Network (CDN) design
is to push content servers closer to end users in both wireline
and wireless networks [1]–[3]. While pushing content closer to
the network edge can facilitate high-bandwidth and low-delay
content delivery, edge caching faces new challenges resulted
from the limited resource availability and the reduced degree
of user multiplexing. More specifically, for financial viability,
an edge cache node is only equipped with limited computation,
memory, and storage resources. Due to its “shallow” network
location, an edge cache normally serves a small user popu-
lation within the same subnet, e.g, all users connected to the
same LTE base station. The aggregate content request patterns
for a small user population are more dynamic and more sensi-
tive to individual users’ behaviors than those for a large user

population. As a result, the traditional caching algorithms, such
as the Least-Recently-Used (LRU) and Least-Frequently-Used
(LFU), are not expected to work well for edge caching [1].
To address the challenges, hierarchical caching networks are
introduced so that content requests missed by the edge caches
can be served by upper level caches, which are equipped
with more resources and have a wider network coverage.
Many recent studies e.g., [4]–[7], have investigated the optimal
content placement and routing in cache networks based on the
estimated future content popularity. However, such solutions
are vulnerable to fine time scale content popularity dynamics
that cannot be captured by simple history-based popularity
estimations. As a result, the caching performance on edge
caches is still far from being optimal.

In this paper, we propose a novel hybrid proactive-reactive
caching framework to adapt the caching and routing decisions
to the long-term and short-term content popularity trends in
edge caching networks. Our main contributions are four-fold:

1) Group-Interest-Based Popularity Estimation. To cap-
ture the fine-grained content popularity dynamics, we
propose to use a recommender system technique, Matrix
Factorization, to mine the content interests of small
user groups from their content request history data. We
demonstrate that MF-based content popularity estima-
tion can significantly improve the estimation accuracy of
simple history-based estimation, especially for content
with medium and low popularity.

2) Proactive Optimal Placement and Routing. To adapt
to long-term content popularity evolution, we propose a
sliding-window based mechanism to periodically update
content popularity prediction and optimize the content
placement and routing for hierarchical cache network.
We study the trade-off between minimizing user content
request delays and controlling network costs for cache
updates. We also develop an approximate algorithm to
obtain good solutions with low computation cost.

3) Reactive Realtime Adaption. Periodical caching up-
dates cannot respond to sudden request pattern changes,
such as flash-crowds, in a timely fashion. To address
this problem, between two proactive updates, we pro-
pose to adopt the reactive LRU algorithm to update a
portion of the caches according to the realtime content
request patterns. We show that the LRU algorithm can
work seamlessly with our proposed proactive caching
algorithms in the hierarchical setting.

4) Experiments driven by Real Traces. We evaluate the

proposed caching framework and algorithms through
extensive experiments driven by video request traces
generated by real users. We systematically investigate
the performance impact of several key system parame-
ters. We demonstrate that our proposed hybrid caching
solutions can bring significant network delay/cost reduc-
tion over the state-of-art caching algorithms.

The rest of this paper is structured as following. In Section
II, we briefly go through the related work. The caching net-
work model and the overall system framework are introduced
in Section III. Matrix-Factorization based content popularity
estimation is developed in Section IV. The optimal proactive
placement and hybrid caching schemes are presented in Sec-
tion V. Section VI presents the results of experiments driven
by real video request traces. Finally, the paper is concluded
by Section VII.

II. RELATED WORK

To meet the new challenges of content delivery, more
and more researchers are focusing on edge caching from
various angles, such as network architecture design, caching
algorithms design, and evaluation of edge caching algorithms,
e.g. [1]–[3]. There are also many recent studies on caching
network optimization. For example, [6]–[9] studied how to
jointly optimize routing and caching in single-level cache
networks with different user-cache delays. [4] studied the joint
optimization of routing and caching on arbitrary topology.
These studies focused more on the optimization formulation
and approximate algorithm development by assuming that
future content popularity can be accurately estimated. In
our work, we first develop a fine-grained content popularity
estimation model, and then use the estimated popularity dis-
tribution to optimize content placement and routing in “multi-
level” hierarchical cache networks, which are more realistic in
real world settings.

For centralized caching, most of the previous studies on
content popularity assume certain arrival process of the content
requests, such as the shot noise model [10] and Zipf’s distri-
bution [11]. However, in the edge caching problem, the real
content popularity distribution may not follow the assumed
distributions based on many users. The content distribution
for a small group of users is more dependent on the users’
personal interests. This motivates us to propose a user/group
interest based content popularity estimation method. In the
research line of user interest modeling and recommendation,
lots of methods have been proposed. Some methods, such as
matrix factorization [12] and collaborative filtering [13], [14],
rely on user-content rating information. Other methods employ
content analysis and Natural Language Processing techniques
to solve the problem [15]–[17]. However, the existing rec-
ommendation algorithms cannot be directly adopted to solve
the edge caching problem. Recommendation algorithms only
predict a user’s interest to a content, and do not predict when
the user will likely to consume the content, which is very
important for caching decision. Additionally, the traditional
recommendation algorithms focus on modeling individual user

interest profiles, while in the caching problem each cache
server serves a group of IP addresses and there may be
multiple users behind each IP address, so we need to profile the
content interests of a group of users for the caching purpose.

It has been shown in [18] that for a single cache that,
given a routing policy, static caching achieves the minimum
expected delay with a fixed number of contents stored in
network. However in practice nowadays, new contents con-
stantly emerge and some of them can suddenly become viral
and attract flash-crowds of users. Static caching alone cannot
handle such content popularity dynamics. We will show in
our work, by combining periodical proactive cache update
with realtime reactive caching adjustment, one can handle
both long-term and short-term content popularity dynamics.
We use the average network delay for user requests and
content updates as our main evaluation metric. There are other
caching studies that use other metrics, such as file download
latency and retention [19]–[21]. Our framework and algorithms
are open to adopt those metrics. Finally, we reported some
preliminary results of MF-based popularity estimation for a
single edge cache node in a recent workshop paper.1 This
paper is much broader than the workshop paper by focusing
on hybrid caching for hierarchical cache networks.

III. SYSTEM OVERVIEW

A. Hierarchical Edge Cache Network

We consider a hierarchical network of caches with ‘multi-
level’ topology. Users who generate requests are connected to
one or more edge caches at the bottom level of the network.
A request for a content that is not cached at the edge level
is recursively forwarded up along the hierarchy until it is
served by either the closest cache storing the requested content
or the back-end server storing all the contents. We further
assume that a content request will be forwarded along a pre-
determined single (e.g. shortest) path from an edge cache to the
back-end server. Figure 1 shows a toy example. The caching
network consists of six caches and N users. The caches are
placed at two different levels: c1, c2 at the upper level and
c3, · · · , c6 at the lower (edge) level, cache capacities are set
to C1, · · · , C6 respectively. Content requests are generated by
users {i1, ...iN}. The whole catalog consists of K contents
{j1, ...jK} of the same size. The content request arrival rate
of user i is λi, and for each request of user i the probability
of accessing content j is pij .

The delay incurred by a user’s content request depends on
where it is served: the shortest delay if served by the edge
cache, longer delay if served by a cache at a higher level, and
the longest delay if served by the back-end server. For the
two-level hierarchy in Figure 1, the delay incurred by user i
when downloading content from the back-end server, upper-
level cache m′ and lower-level cache m are denoted as dbi , d

u
im′

and dlim respectively. As is the case in reality, we assume that
dbi > duim′ > dlim. We also focus on a congestion-insensitive
setting where the delays are not dependent on the loads of

1We omit the citation to maintain the anonymity of this paper.

1 2 3 N

𝐶3 𝐶6𝐶4

...

𝐶1 𝐶2

back-end server

1 2 3 N

...

back-end server

𝐶3 𝐶2𝐶6

...
𝑝𝑖𝑗 𝑝𝑖𝑗

𝐶5

𝐶1

𝑑𝑖𝑚

𝑑𝑚𝑚′

𝑑𝑚′
𝑏

𝑑𝑖𝑚 𝑑𝑖𝑚′

𝑑𝑚
𝑏 𝑑𝑚′

𝑏

Fig. 1: Multi-level Hierarchical Cache Network Topology

Data
Collection

Reactive Caching
Placement Update

8:00 24:00

Time

Sliding Window

16:00

𝑇1=4 𝑇2=8

0:00 4:00

𝑇1=4

Data
Collection

𝑇2=8

12:00

Request
Sequence

Reactive Caching
Placement Update

Proactive Caching
Placement Update

Proactive Caching
Placement Update

Fig. 2: Periodical Popularity Estimation and Caching Update

cache and back-end servers.2 Our design goal is to jointly
determine the content placement policy (i.e. which contents
are stored on which cache(s)) and request routing policy (i.e.
where a request is served) to minimize the overall delays of
all users.

B. Data-driven Proactive Caching with Periodical Updates

One caching solution is to proactively load contents into
caches based on the predicted content popularity. To deal
with content popularity dynamics, one can periodically update
the popularity estimation and adjust the preloaded content
accordingly. We consider an online proactive caching frame-
work as shown in Figure 2. Let T1 be the time interval used
to collect past content request history data. After sufficient
data are collected, the content popularity for all users will be
estimated and content placements on all caches and content
routing for all users will be adjusted. The content placement
and routing will remain static for a subsequent interval of T2.
At the end of T2, the next popularity estimation and content
placement/routing updates will be conducted based on the data
collected during the previous time interval of T1. The timing
of periodical updates is controlled by T1 and T2. Specifically,
T1 controls the “freshness” of data used for the estimation:

2Our framework and algorithms can be extended to cover congestion-
dependent delay. For the clarity of presentation, we only focus on congestion-
insensitive delay in this paper.

adopting smaller T1 makes the estimation more sensitive to
the recent demand dynamics, but less stable. T2 controls the
cache update frequency: adopting larger T2 can reduce the
frequency and cost of cache updates, but at the risk that the
estimated popularity may not match well with the actual user
content interests in a longer future time window.

C. Hybrid Proactive and Reactive Caching

One drawback of proactive periodical update is that it only
updates caches once at the end of each T2 interval, therefore
cannot respond to content popularity dynamics in realtime. The
problem can be severe when T2 is large. On the other hand,
the traditional caching strategies, such as Least-Recently-Used
(LRU) and Least-Frequently-Used (LFU), don’t proactively
estimate future content popularity and don’t preload content.
Instead, they reactively update the cached contents after serv-
ing each request. As a result, they tightly follow the content
popularity in realtime. To take the advantages of both proactive
and reactive caching, we will augment our estimation-based
proactive caching with LRU to adapt to realtime content
popularity changes between two periodical updates. More
details will be given out in Section V-D.

IV. GROUP-INTEREST-BASED POPULARITY ESTIMATION

To achieve good performance in proactive caching, it is
crucial to accurately estimate the content popularity in future.
One naive approach is to take empirical content popularity
distribution in T1 and simply use it as popularity estimation
in T2. Such an approach was adopted by previous studies, e.g.
[8], for its simplicity. However, the estimation accuracy is poor
when the user population served by each cache server is small
(which is the case for edge caching). In order to achieve more
accurate popularity estimation, we should dig deeper into the
user request data and generate more fine-grained estimation.

Specifically, we adopt the widely used recommender system
algorithm — Matrix Factorization (MF) [22] and customize
it for the edge caching problem. Given a sparse rating matrix
~Rm×n = [r(i, j)]m×n that a set of m users generated over n
contents, the goal is to estimate the missing rating (entry) in
~Rm×n. The MF model assumes that each user has an unknown
latent vector ~ui ∈ Rd and each content has an unknown latent
vector ~vj ∈ Rd (d � min(m,n)). ~vj can be interpreted as
the latent features of content j, such as genre and topic; ~ui
can be interpreted as user i’s preference on different features.
The predicted rating of user i for content j is:

r(i, j) = ui1vj1 + ui2vj2 + ...+ uidvjd = ~ui
T ~vj . (1)

The problem then can be formulated as finding matrices
~U and ~V such that ~U ~V T approximates ~R with the least
approximation error:

minimize
~U,~V

‖~R− ~U ~V T ‖

subject to ~U, ~V ≥ 0.

(2)

In our caching problem, we treat a group of users be-
hind a set of IP addresses as a superuser and predict each

superuser’s content accessing probability. Formally, given a
set of IP addresses: ~I = {IP1, IP2, ...IP|I|}, and K con-
tent files: ~f = {f1, f2, ...f|K|}, we partition ~I into small
groups: ~G = {g1, g2, ..., g|G|}, where for a certain group i,
gi = {IPi1 , IPi2 , ..., IPi|gi|

}. All users behind IP addresses
in group i are assumed to be served by the same edge content
server. In content request data collection window T1, we define
~S(IPix , cj) as the frequency at which any IP address in group
i accesses content j. To calculate the preference of group i
over content j, we use:

r′(i, j) =

∑|gi|
x=1 S(IPix , cj)∑|C|

j=1

∑|gi|
x=1 S(IPix , cj)

, (3)

where r′(i, j) is the observed rating of group i to content
j. We then use r′(i, j) as the entries in our “group-content
rating matrix” ~R. Notice that we use a normalized score
(r′(i, j) ∈ [0, 1]) instead of the absolute frequency to measure
the preference to avoid any large groups or popular contents
dominating the rating matrix.

By recording the access logs of all users in the group to all
the contents, we can use MF to estimate the future preference
for those contents that have not been accessed by this group.
In practice, we choose the Root Mean Squared Error (RMSE)
as our objective function in the training phase of MF:

RMSE =

√√√√ 1

N

∑
(i,j)

(r(i, j)− r′(i, j))2, (4)

where N is the number of data points. In order to minimize
the RMSE, we use the algorithm in [23]. The running time
of matrix factorization over a 103 × 105 rating matrix is on
the order of minutes. In practice, it is not scalable to generate
rating matrix and MF results in real time. According to our
periodical update framework Figure 2, we only run MF to
update {r′(i, j)} every T2 period.

V. DATA-DRIVEN CACHING PLACEMENT AND ROUTING

Similar to [5], we model the cache placement problem as
follows: let xjm to be the binary cache placement variable,
xjm = 1 if content j is to be placed in cache m and xjm = 0
otherwise. Let rijm to be the binary routing variable, rijm = 1
if the request for content j from user i is routed to cache m
and rijm = 0 otherwise. We use lim to denote the connectivity
between user i and cache m, lim = 1 if i and m are linked
and 0 otherwise. In the context of hierarchical cache network
where only the adjacent levels can be connected and there
is no peering link between caches at the same level, a user
can potentially download content from his connected edge
cache nodes and their ancestor cache nodes towards the back-
end server, following the pre-determined single (shortest) path.
We can therefore flatten the multi-level cache network into a
single-level network and create virtual links between each user
and all cache nodes that he can potentially access. Each virtual
link is weighted by the delay between the user and the cache
node. For the example in Figure 1, the upper-level caches c1, c2

are moved to the lower-level, and virtual links with new delays
di1, di2 are added between c1, c2 and users who can access
them. Our goal is jointly optimizing the content placement
and routing strategy to minimize the overall network delay.

We define the overall delay function as F (x, r) which
depends on the routing and placement strategies x, r. The
problem can then be written as:

min
x,r

F (x, r)

rijm ≤ lim, rijm ≤ xjm, ∀i, j,m∑
m

rijm ≤ 1, ∀i, j∑
j

xjm ≤ Cm, ∀m

s.t. rijm ∈ {0, 1}, ∀i, j,m, xjm ∈ {0, 1}, ∀j,m,

(5)

where the first constraint guarantees the connectivity between
user i and cache m, and the content availability on cache m,
the second constraint says each user will choose at most one
cache to download content, the third constraint models the
limited capacity on each cache.

In proactive caching, the caches update the stored contents
to adapt to new content request patterns. Downloading content
from the back-end server to caches will incur extra delay
and network bandwidth cost. For the two scenarios where
the downloading delay/cost for cache updates can or cannot
be ignored, we introduce two models i) basic model and
ii) update-cost-aware model with two different objective F
functions in the following sections.

A. Basic Model

First we consider the scenario where the downloading cost
for cache updates can be ignored. Given the fixed routing and
placement policy, x and r, the overall delay function F in this
case can expressed as:

F (x, r) =
∑
i

∑
j

λipij

[∑
m

rijmdim +

(
1−

∑
m

rijm

)
dbi

]
,

(6)
where the first term is download delay from a selected cache,
the second term is the delay when the content has to be
downloaded from the back-end server.

Note that there may exist multiple paths from user i to
an upper-level cache m′ through different lower-level edge
caches. For the optimal routing policy without considering
congestion delay on caches, there is no incentive to choose
the path with larger delay, so we can define the virtual link
delay dim′ as the minimum delay between user i and upper-
level cache m′. For the two-level hierarchy in Figure 1, the
delay on the virtual link between user i and upper-level cache
m′ can be calculated as:

dim′ = min
m

(dim + dmm′), (7)

where m is chosen from all edge caches that user i is
connected to in the original topology.

B. Update-cost-aware Model

Next we consider the scenario where the downloading cost
for cache updates cannot be ignored. In proactive caching, the
downloading cost is proportional to the difference between
the new cache list and the current cache list from the last
update. The cost for downloading one content from the back-
end server is proportional to the distance between the cache
and back-end server. We define the content downloading delay
for cache m to be ddm. In periodical proactive caching, there
is only one update in each T2 interval. Let t be some time
slot and xt be the placement policy at t. Then the aggregated
downloading delay for update at time slot t can be written as:

Dt(xt,xt−1) =
∑
m

∑
j

(
xtjm − xt−1jm

)+
ddm, (8)

where (x)+ = x if x > 0, and 0 otherwise.
Note that, instead of downloading from the back-end server,

a cache can download content j from its closest ancestor cache
node that stores j to reduce download delay. For the two-
level hierarchy, the downloading delay ddm when content j
is requested for the lower-level cache m can be reduced to
dmm′ if there exist an upper-level cache m′ that stores j and
is connected to m. That is:

ddm(j) =

 min
m′∈M ′(j,m)

dmm′ , if M ′(j,m) 6= ∅

min
m′

dmm′ + ddm′ , otherwise

where M ′(j,m) , {m′|j ∈ cache m′ and lmm′ = 1} is the
set of upper level caches that are connected to m and have
content j. Given the downloading delay for each update, the
overall delay F t at time t in update-cost-aware model can be
calculated as a weighted sum:

F t(x, r) = F (x, r) + ηDt, (9)

where F is calculated in (6), and η is the weight of cache
content update cost in the overall objective function.

C. Approximate Solution

Using techniques similar to [5], the problem described in
Section V-A can be shown to be NP-complete, and approxi-
mate solution with a performance factor of (1− 1/e) can be
developed. Due to the space limit, we skip the presentation
here. However that solution ignores the downloading cost
for each update, which is not acceptable when updates are
frequent i.e., T2 is small. In this section, we will develop
an approximate algorithm for the update-cost-aware model in
Section V-B, which shares the NP-completeness as the basic
model in Section V-A.

Algorithm 1 is developed based on the following procedure:
first the algorithm starts with empty caches and initialize the
delay for user i to access content j to the delay for accessing
the back-end server dbi . Then at each step the algorithm
greedily finds a position in all caches that maximize the
delay reduction of

∑
i λipij(dij − min(dij , dim)) minus the

download cost of ηddm(j) if the content is not currently cached

Algorithm 1: Approximate solution for update-cost-aware
model at time t
Initialize: S = {S1, S2, ...SM};

Sm = {1, 2...K},∀m = 1...M ;
dij = dbi ,∀i, j;

1 while S 6= ∅ do
2 Gjm ← [0]K×M ;
3 for Sm ∈ S,m = 1...M do
4 for j = 1...K do
5 g ← 0 ;
6 for i=1...N do
7 g = g + λipij(dij −min(dij , dim))
8 end
9 if xt−1jm == 0 then

10 G[j][m]← g − ηddm(j)
11 else
12 G[j][m]← g
13 end
14 end
15 (j?,m?)← argmaxj,mGjm ;
16 if K − |Sm| < Cm then
17 Sm ← Sm − j? ;
18 else
19 S ← S − Sm

20 dij? ← min(dij? , dim?),∀i
21 end
22 Caching: obtain new cache placement {xtjm,∀j,m} ;
23 Routing: each user downloads content j from the nearest

cache storing j.

(xt−1jm == 0) based on the previous solution. The procedure
iterates until all caches are filled.

After Algorithm 1 completes, we get the new cache place-
ment {xtjm} for time t. To implement the new placement,
on cache m, one only needs to download content j with
xtjm = 1 and xt−1jm = 0, and remove content with xtjm = 0

and xt−1jm = 1. To facilitate a lower-level cache downloading
missing content from an upper-level cache, we can update
caches in a bottom-up fashion: first update the bottom level
caches according to the new placement, download missing
content from a upper level cache if possible; move one level
up, repeat the step until caches at all levels are updated.

D. Hybrid Caching: MF+LRU

To adapt to the content request dynamics between two
cache updates in a timely fashion, we combine the periodical
proactive caching placement with a reactive caching strategy
Least Recently Used (LRU) [24]. LRU is a widely used
reactive strategy that simply evicts the least recently used
content all the time. We divide the capacity of each cache
into two portions: one is used to store the suggested contents
from proactive placement, the other one is used to store
the suggested contents from LRU. Between any two cache
updates, the “proactive” part of the cache remains unchanged,

while the “LRU” part is constantly updated according to
its replacement rule. When a request is routed to a cache
according to the proactive placement and routing solution, if
there is a hit in the proactive cache portion, the content will
be served directly; if it is a miss in the proactive portion,3

the LRU portion will be checked, if hits, it will be served by
LRU, if LRU also misses, the content request will be routed
back towards the back-end server along the shortest path in the
cache network. When the back-end server sends the content
to the user, all caches along the shortest path check whether
it already has a copy of the content in its proactive portion, if
yes, no action required; if not, it will add a copy of the content
into its LRU portion and evict another content according to the
LRU rule. For a content request that is routed to the back-end
server according to the proactive routing solution, it will be
processed in a similar way as in the LRU miss case. We control
the sizes of the two portions by a weight α. For example, if α
is set to 0.6, 60% of the contents in the cache are pre-loaded
by proactive placement at each update instant, and the rest are
constantly updated by LRU.

VI. PERFORMANCE EVALUATION

In this section, we present performance evaluation results
from experiments driven by real world user content request
dataset. Our goal is to evaluate: 1) how well the MF-generated
popularity helps with reducing the overall network delay? 2)
whether combining reactive and proactive caching strategies
will outperform the pure proactive strategy? 3) how the
update-cost-aware model controls the cost of cache updates?

A. Video Request Dataset

We use a real world content request trace collected by a
major Over-The-Top (OTT) video streaming service provider
in China. The served contents range from TV shows, movies,
to live news and sports programs. The trace includes the
sequence of video content requests generated by IPs located in
several provinces in China from June 2014 to September 2014.
In Table I, we show the basic statistics of the trace. From the
trace we know in real world video streaming systems content
requests are highly time-varying and can be sparse at times.

Statistics Value

Avg. requests 1,335,488.0/day
Avg. # of Unique IP addresses 215,908.6/day
Avg. # of Unique Contents 83,859.4/day
of groups under prefix 16 544
of groups under prefix 18 1,307
of groups under prefix 20 4,068

TABLE I: Basic Statistics of the Trace

3Since the proactive cache portion is smaller than the cache size in the
original calculation, some content that are supposed to be cached in the pure
proactive solution cannot be cached in the hybrid solution.

B. Experiment Setup

As discussed in section IV, we customize the widely
used recommender algorithm “Matrix Factorization” (MF) to
achieve better content popularity estimation. For Matrix Fac-
torization algorithm to work in caching problem, we first need
to construct a rating matrix that represents users’ preferences
on each content. However in practice, due to NAT and multiple
users sharing the same OTT device, it may be hard to identify
who are the users behind each IP address. Instead of estimating
content access probability for each user, we estimate content
accessing probability for a group of users. Specifically, we
group all IPs sharing a common prefix at certain length k
and treat each group as one super user, and use the number
of accesses of one content from all IPs in this group in a
time window as the group’s content rating. Since we don’t
have access to each IP’s geographic location, for simplicity,
we further assume that the IPs sharing with the same prefix
form a subnet and are served by the same CDN edge server.4

For this reason, we can assign a cache list to each subnet.
The longer the IP prefix length, the fewer the IPs falling into
each subnet. As a result, the requested content distribution
fluctuates more, and is more sensitive to individual users’
personal interests. When determining the network location of
a CDN server, we set a long prefix for each subnet if we want
to push the CDN server close to the edge, and a short prefix
if we want to place the CDN server deep in network core.
In our experiments, we choose prefix 16 for the upper-level
caches and prefix 18 for the lower-level caches. All the IPs
sharing a prefix 20 are grouped and treated as one superuser
for the corresponding prefix 18 cache. In our dataset, we have
554 upper-level caches, 1,307 lower-level caches and 4,068
superusers.

We divide the dataset along time and use the T1, T2 param-
eters discussed in Section III-B as the history data collection
interval and proactive caching list holding time. For example,
for T1 = 8, T2 = 2, the proactive caching update times
in one day are: 8 : 00, 10 : 00, 12 : 00, ...24 : 00, and
the data collection interval for the above updates would be
(0 : 00 ∼ 8 : 00), (2 : 00 ∼ 10 : 00), ...(16 : 00 ∼ 24 : 00).
We test the performance of our algorithms with different
cache capacity setting in each /16 network, consisting of one
upper-level cache (/16), four lower-level caches (/18), and
maximally sixteen superusers (/20). We set the total capacities
of all five caches to be 10%, 30%, 50%, 70% of the size of the
catalog observed. In reality, the upper-level caches normally
have larger capacity than the lower-level caches. So in our
experiments, we test several situations where the upper-level
cache capacity is 4, 8, 16, 32, 64, 128 times of the lower-level
cache capacity. We set the user downloading delays from the
back-end server as dbi = 50, ∀i, from the lower-level caches as
dim = 5.5, ∀i,m, from the upper-level caches as dim′ = 11,
∀i,m′.

4In reality, IP grouping method can be complex, but our algorithm works
with any other grouping method.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cache budget (fraction of catalog)

25

30

35

40

45
Av

er
ag

e
de

la
y

hisroty-based pop
MF-generated pop

Fig. 3: Caching performance at dif-
ferent cache sizes. Upper-level cache
size is four times of each lower-level
cache. T1 = 2 hours, T2 = 2 hours.

large subnets medium subnets small subnets
0

10

20

30

40

50

60

Av
ea

ge
 d

el
ay

history-based pop
MF-generated pop

Fig. 4: Caching performance for dif-
ferent subnet sizes. Upper-level cache
size is 4 times of lower-level cache.
T1 = 2 hours, T2 = 2 hours.

2 3 4 5 6 7 8
Evaluating length T2(hours)

34

36

38

40

42

44

Av
er

ag
e

de
la

y

history-based pop
MF-generated pop

Fig. 5: Caching performance at differ-
ent update frequencies: T1 is fixed at
2 hours, while T2 is varied from 2 to
8 hours.

100 101 102 103 104

Popularity Rank

10 6

10 5

10 4

10 3

10 2

10 1

100

Li
ke

ly
ho

od

history-based pop
MF-generated pop

Fig. 6: Difference between history-based and MF-generated
content popularity estimation: CCDF of content access likeli-
hood as a function of content rank

C. MF-generated vs. History-based Popularity Estimation

Based on the prefix-based grouping, we now compare the
history-based empirical content popularity distribution col-
lected in T1 period with the content popularity generated by
MF. Figure 6 shows the difference for one of the /20 superuser.
Due to the capability of inferring the unobserved ratings of
superusers, compared with the history-based content popular-
ity, MF-generated content popularity has similar but smoother
popularity decay for those popular contents. Meanwhile, for
those unpopular (cold) contents, MF-generated popularity has
reasonably accurate estimation, while history-based popularity
estimation assigns zero probability to contents not observed in
the T1 period.

Figure 3 compares the network delay performance between
feeding history-based popularity and MF-generated popularity
into the greedy algorithm 1 with different cache sizes. It can
be seen that using MF-generated popularity can reduce the av-
erage content request delay at all cache sizes. The performance
gap between using MF and history-based popularity increases
as the total cache size increases.

Figure 4 compares the performance for /16 IP subnets with
different sizes. We label a subnet whose total content request
number within T2 = 2 hours falls into 50K ∼ 100K, 5K ∼
10K and 0.5K ∼ 1K as a large, medium, or small IP subnets,
respectively. We then sample several subnets from each of the
three categories out of the dataset and test the performance of
our algorithms for subnets in each category. It can be shown
that as the subnet size decreases, caching driven by history-
based popularity estimation performs worse (delay increases),
while caching driven by MF-generated popularity performs
better. This is because MF algorithm can more accurately
predict the content accessing probability of each superuser
and adapt better to the more fluctuated and unstable observed
content distribution as subnet size decreases.

The above results demonstrated that MF-generated popu-
larity estimation can truly help with reducing the network
delay. In this experiment we will show how caches at both
levels perform. Table II shows the numbers of hit requests
at each level. It can be seen that for history-based popularity
estimation the upper level hit numbers are significantly less
than the lower level hit numbers. One explanation could be
the lower-level caches have already taken care of the most
popular contents, the contents escaped from the lower level
to the upper level are the cold contents that are harder to be
predicted by the simple history-based popularity estimation.
To the contrary, MF-based popularity estimation works better
with cold contents. Another observation is that when the cache
size is large, the MF method could outperform the history-
based method by up to 30%. This is because MF method can
rank the cold contents which can be cached to reduce delay
when the cache size is large.

Figure 5 shows the performance impact of the update
frequency controlled by parameter T2. The results show that
the performance of two popularity estimation methods degrade
almost at the same pace as the updating frequency decreases.
This is because, if not updated frequently enough, the es-
timated popularity gets outdated and cannot keep track of
the current content popularity. Figure 7 shows the caching

TABLE II: Hit Number at Different Level and Different Cache Sizes (T1 = 2, T2 = 2)

Total Capacities
(% of catalog)

Popularity Est.
Method

Back-end Server
Download Times

Hit # in
lower-level

Hit # in
upper-level

Average Delay
(time units)

Gain(%)

0.1 history-based 1735.66 102.38 58.72 46.39069255 —
MF-generated 1597.27 188.72 110.77 43.29484489 6.673424098

0.3 history-based 1525.66 212.44 158.66 41.75366414 —
MF-generated 1264.5 354.94 277.33 35.9705183 13.85063074

0.5 history-based 1371.16 271.22 254.38 38.40648791 —
MF-generated 1012.05 447 437.72 30.51288243 20.55279175

0.7 history-based 1244 299.22 353.55 35.71058167 —
MF-generated 742.33 518.66 635.77 24.75937915 30.66654758

2 3 4 5 6 7 8
Evaluating length T1(hours)

30

32

34

36

38

40

42

44

Av
er

ag
e

de
la

y

history-based pop
MF-generated pop

Fig. 7: Caching performance at differ-
ent update frequencies: T2 = 8, while
T1 is varied from 2 to 8 hours.

0 50 100 150 200 250
Level factor

23

24

25

26

27

28

29

Av
er

ag
e

de
la

y

history-based pop
MF-generated pop

Fig. 8: Caching performance under
different ratios of upper cache size
over lower cache size. T1 = 6, T2 = 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cache budget (fraction of catalog)

32

34

36

38

40

42

44

Av
er

ag
e

de
la

y

MF-generated pop
MFLRU
LRU

Fig. 9: Caching performance of MF,
MFLRU and LRU with large update
interval: T1 = 24, T2 = 24.

performances when the data collection interval is set to
T1 = 2, 4, 6, 8 while T2 is fixed at 8. It shows that the system
achieve the best performance when T1 = 6. This suggests that
the history data collection window has to be carefully chosen:
too small a window does not collect enough data for accurate
prediction and too large a window will introduce estimation
interference from old content request history.

Within a /16 network, the cache capacity distribution among
upper and lower level caches will have big impact on the
caching placement, content routing and the final delay per-
formance. We define the “level factor” as the ratio between
the size of an upper-level cache and the size of a lower-level
cache. Figure 8 shows how the level factor affects caching
performance within a particular /16 subnet. The optimal level
factor is 32 which means that with the total cache capacity of
18,980 files (70% of the total unique files) in this case, one
may put very few contents on the edge caches (450 files/cache)
and put most of the content in the upper level caches (14,426
files/cache) and still get the best performance.

D. Performance of Hybrid Solution – MFLRU

The periodical proactive caching may not perform well if
the content request patterns change dramatically between two
updates. Such dramatic changes could be due to either large
group size or long time intervals between two updates. Figure
9 shows the results for T1 = 24, T2 = 24. Since the time
interval between two cache updates is large (24 hours), the
MF-based proactive caching algorithm has bad performance
while the hybrid MFLRU algorithm performs much better.

To understand how LRU helps with reducing delay in our
network model, we list the hit numbers for MF, MFLRU and
LRU algorithms at both levels in Table III. It can be seen
that although LRU performs worse than MF at the bottom
level, it significantly outperforms MF at the upper-level. The
reason is that the upper-level cache handles mostly the cold
contents, while most of the popular contents are handled
by the lower-level caches. Since it is hard to predict the
popularity of cold content, the proactive strategies perform
worse than the reactive strategies. That is the reason why
the LRU perform much better in the upper-level. By tuning
the size ratio between the MF and LRU portions in MFLRU
algorithm, we can achieve shorter average delay than only
giving all capacities to MF. In addition, to achieve the best
performance, we can use different MF/LRU size ratios at upper
and lower levels. For example, in the lower-level we can set the
MF portion large to exploit its ability to estimate the popularity
for the most popular and medium popular contents. In the
upper-level, we set the LRU portion large to exploit its ability
to adapt to the cold contents. Due to the limited space, we
only present results from experiment where MF proportions
at all levels are 0.6.

E. Impact of Cache Update Cost

We calculate the average user delay and the average cache
update delay for both the Basic model and the Update-cost-
aware model when they handle the same number of user
requests. We set η = 1. We can see from Figure 10 that
the average user delay increases as the update interval T2

TABLE III: Hit Numbers at Different Levels for MF, MFLRU
and LRU (T1 = 24, T2 = 24)

Method
of Downloads

from Server
Hit # in

lower-level
Hit # in

upper-level Gain(%)

MF 9523 1489 149 —
MFLRU 8789 1533 839 6.28

LRU 9574 722 865 -1.37

2 3 4 5 6 7 8
Test Length T2(hours)

40

60

80

100

120

Av
er

ag
e D

ela
y

user delay/req
net delay/req
download aware: user delay/req
download aware: net delay/req
overall avg. delay
download aware: overall avg. delay

Fig. 10: Compare User Delay and Cache Update Cost between
Basic and Update-cost-aware Models

increases, while the average cache update cost per user request
decreases as T2 increases. This is because the cache update
cost is shared between all user requests between T2. After
we consider the cache update cost (dashed lines), the cache
update cost decreases considerably while user delay increases
are almost negligible. This suggests that our update-cost-aware
algorithm can effectively control the cache update cost at the
price of minor user delay increases. This user delay and cache
update cost trade-off can be further fine tuned by changing the
weight η. We will explore it further in our future work.

VII. CONCLUSION

In this paper, we developed a novel data-driven hybrid
caching framework for hierarchical edge cache networks. It
consists of fine-grained content popularity estimation obtained
by mining the content interests of small user groups from
user content access history data, periodical proactive optimiza-
tion of content placement and routing to trade off between
minimizing user delays and controlling content update costs,
and LRU-based adaption to realtime content request patterns
between two updates. Through extensive experiments driven
by video request traces of real users, we demonstrate that our
hybrid solution can adapt to long-term and short-term content
popularity dynamics and outperform the state-of-art caching
solutions by up to 30%.

REFERENCES

[1] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[2] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge caching/off loading
for dynamic content delivery,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 11, pp. 1411–1423, 2004.

[3] A. Dabirmoghaddam, M. M. Barijough, and J. Garcia-Luna-Aceves,
“Understanding optimal caching and opportunistic caching at the edge
of information-centric networks,” in Proceedings of the 1st ACM con-
ference on information-centric networking. ACM, 2014, pp. 47–56.

[4] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” arXiv preprint arXiv:1708.05999, 2017.

[5] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in Computer Commu-
nications (INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp.
936–944.

[6] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[7] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled
wireless heterogeneous networks,” IEEE Transactions on Wireless Com-
munications, vol. 15, no. 1, pp. 131–145, 2016.

[8] K. Poularakis and L. Tassiulas, “On the complexity of optimal content
placement in hierarchical caching networks,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 2092–2103, 2016.

[9] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, “Wire-
less content caching for small cell and d2d networks,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1222–1234, 2016.

[10] E. Leonardi and G. L. Torrisi, “Least recently used caches under the shot
noise model,” in Computer Communications (INFOCOM), 2015 IEEE
Conference on. IEEE, 2015, pp. 2281–2289.

[11] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[12] M. Jamali and M. Ester, “A matrix factorization technique with trust
propagation for recommendation in social networks,” in Proceedings of
the fourth ACM conference on Recommender systems. ACM, 2010, pp.
135–142.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web. ACM, 2001, pp. 285–295.

[14] Z.-D. Zhao and M.-S. Shang, “User-based collaborative-filtering recom-
mendation algorithms on hadoop,” in Knowledge Discovery and Data
Mining, 2010. WKDD’10. Third International Conference on. IEEE,
2010, pp. 478–481.

[15] A. A. Kardan and M. Ebrahimi, “A novel approach to hybrid recommen-
dation systems based on association rules mining for content recommen-
dation in asynchronous discussion groups,” Information Sciences, vol.
219, pp. 93–110, 2013.

[16] Z. Lu, Z. Dou, J. Lian, X. Xie, and Q. Yang, “Content-based collab-
orative filtering for news topic recommendation.” in AAAI, 2015, pp.
217–223.

[17] N. Pudota, A. Dattolo, A. Baruzzo, F. Ferrara, and C. Tasso, “Automatic
keyphrase extraction and ontology mining for content-based tag recom-
mendation,” International Journal of Intelligent Systems, vol. 25, no. 12,
pp. 1158–1186, 2010.

[18] Z. Liu, P. Nain, N. Niclausse, and D. Towsley, “Static caching of web
servers,” in Multimedia Computing and Networking 1998, vol. 3310.
International Society for Optics and Photonics, 1997, pp. 179–191.

[19] J. Li, T. K. Phan, W. Chai, D. Tuncer, G. Pavlou, D. Griffin, and M. Rio,
“Dr-cache: Distributed resilient caching with latency guarantees,” in
IEEE INFOCOM. IEEE INFOCOM, 2018.

[20] G. Carofiglio, L. Mekinda, and L. Muscariello, “Analysis of latency-
aware caching strategies in information-centric networking,” in Proceed-
ings of the 1st Workshop on Content Caching and Delivery in Wireless
Networks. ACM, 2016, p. 5.

[21] S. Shukla and A. A. Abouzeid, “Proactive retention aware caching,”
in INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE. IEEE, 2017, pp. 1–9.

[22] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[23] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing systems,
2001, pp. 556–562.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“Lrfu: A spectrum of policies that subsumes the least recently used and
least frequently used policies,” IEEE transactions on Computers, no. 12,
pp. 1352–1361, 2001.

