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Abstract—In a multi-party video conference, multiple users . h@ @ h, )

simultaneously distribute videos to their receivers. Whié pure
server-based solutions are expensive, users in the conface \/ \
alone may not have sufficient upload bandwidth to sustain the

multiplied streaming workload in a pure P2P fashion. Recenly S s? S?
proposed hybrid solutions employ helpers to address the bah =

width deficiency in P2P video conferencing swarms. In this paer,

we focus on systems consisting of multiple video conferemg

swarms. Instead of dedicating helpers to individual swarmsgit is Swarm 1 Swarm 2
more economical to dynamically share a pool of helpers betve& oo
them. Peers in a bandwidth-rich swarm can also share their — Resource Flow @ source
bandwidth with peers in a bandwidth-poor swarm. We study > Data Flow O Receiver

the optimal bandwidth sharing in two scenarios: 1) Swarms ae

independent and only draw bandwidth from a shared helper pool; Fig. 1.
2) Swarms arecooperative and share bandwidth with each other.

For each scenario, we develop distributed algorithms for itra-

swarm and inter-swarm bandwidth allocation under a utility - . . . .
maximization framework. Through analysis and simulation, we P€ers in a bandwidth-poor swarm. Figure 1 illustrates an
show that the proposed algorithms are robust to peer dynamis, example of the coexistence of two swarms in a conferencing

and can dynamically allocate peer and helper bandwidth acrss  system. Cross-swarm bandwidth sharing effectively adess
swarms to achieve the system-wide optimum. the bandwidth heterogeneity and achieves theltiplexing
gain between swarms in P2P file sharing [5] and video
streaming [6]. How to optimally share bandwidth among peers
Video conferencing applications, such as MSN Messeand helpers in a multi-swarm multi-party video conferegcin
ger [1] and Skype [2], are getting increasingly popular oa thsystem is still an open research problem, which is the focus
Internet. Two-party video conferencing can be implemented this paper.
in a pure P2P fashion: one user sends its video directly toWe investigate optimal bandwidth sharing in two scenarios:
the other. In a multi-party video conference, multiple 8sel) Swarms ardndependentand draw bandwidth only from
simultaneously distribute their videos to multiple reees/ a shared helper pool; 2) Swarms areoperativeand share
In a pure P2P solution, users in the same conference fobandwidth with each other. For both scenarios, we study
a swarm and relay video to each other. However, users in the optimal bandwidth sharing under a utility-maximizatio
conference by themselves normally do not have enough upldeaimework. For scenario 1, bandwidth sharing operates @t tw
bandwidth to broadcast the videos from multiple users. Inlavels: within each swarm, users adjust their video muitica
pure server-based solution, a user’s video will first be agél  rates to maximize the aggregate utility of the whole swarm;
to a server, and then be relayed to the receivers. The dr&wbbetween swarms, helpers allocate their upload bandwidth to
is that the server bandwidth cost grows quickly with thenaximize the aggregate utility of the whole system. Through
number of users in the conference. In recently proposeddhybproximal approximation and dual decomposition, we develop
solutions [3], [4], helpers, which could be video conferiegc distributed algorithms for joint source rate control andpke
servers, are employed to address the bandwidth deficiencybamdwidth allocation to drive the system to the optimal aper
P2P video conferencing swarms. Video generated by a usey point. We further design marginal-utility based algioms
will be relayed to receivers by the helpers and other usersviith low overhead and quick convergence for practical im-
the same conference. plementations. For scenario 2, there is additional baniwid
A video conferencing system normally hosts multiple pasharing between bandwidth-rich swarms and bandwidth-poor
allel sessions, which are dynamic, and have different serviswarms. We design cross-swarm bandwidth sharing rules and
requirements and bandwidth availability levels. Instedd distributed algorithms that allow swarms to dynamicalljusd
dedicating helpers to individual sessions, it is more eauinal the amount of resources shared with others in the face of
to share a pool of helpers between live sessions. Peers iper churn and swarm churn. In the simulations, we show that
bandwidth-rich swarm can also share their bandwidth withe proposed algorithms are robust to peer dynamics, and can

Coexistence of Multiple Conferencing Swarms

I. INTRODUCTION



adaptively allocate peer and helper bandwidth across ssvarsources. Each source € S; distributes its own unique content
to achieve the system-wide optimum. to all other users in the conference. Videos from all sources
The remainder of this paper is organized as follows. Ware relayed by all users in the swarm and outside helpers. We
briefly discuss the related work in Section II. In Section llluse N; = V; U H to denote the set of nodes for swafnirhe
we present the architecture of multi-swarm multi-party P2Hdeo multicast ratez; on sources is upper-bounded by,
conferencing systems under study. The utility maximizatiovhich reflects the maximum video encoding capabilitysof
framework is formulated. In Section IV, we develop disttdl  Sources in the same swarm compete for bandwidth resources
algorithms for source rate control and helper bandwidtb-allfrom peers and helpers to increase their multicast rates for
cation for systems with independent swarms. The distributbetter quality. For the multicast sessionspfet U,(z,) be the
bandwidth sharing algorithms for cooperative swarms atility for a user to receive video from at ratez,. We assume
presented in Section V. The proposed algorithms are ewlual/,(-) is increasing and concave. For each conferencing swarm,
through numerical simulations in Section VI. The paper ite goal is to maximize the aggregate utility of all userslin a
concluded in Section VII. multicast sessions. The global welfare of the whole system
is the aggregate utility of all users in all swarms. We study
the system-wide utility maximization under two scenaribks:
It is challenging to provide multi-party video conferengin Swarms aréndependentand draw bandwidth only from the

service due to its hlgh bandwidth demand and Stringentmt'reashared he|per p00|; 2) Swarms m@operative and can share
ing quality requirement. Compared with traditional sefvepandwidth with each other.

based solutions, P2P conferencing solutions are moreldeala
and incur less infrastructure cost. The authors in [7] psego B. Distribution Trees within Conferencing Swarm

an End System Multicast architecture to support video con-Although network coding can achieve the maximum rate
ferencing applications. [8] proposed a full mesh confeirenc in single-source multicast with polynomial complexity [15
protocol without a central point of control. Authors of [9g  [16], how to achieve the maximum rates in multiple-source
posed to integrate ALM based P2P conferencing system wi{yjiticast with general network topology is challenging and
IP-multicast. Utility maximization for a single conferengi still |argely open. On the other hand, in P2P overlay network
swarm with helpers is studied in [4]. Most previous work fecuyhere each peer can reach all others, it is commonly assumed
on single P2P conferencing session. All users in the sa@pgt the node upload links are the only network bottleneck.
conference form a swarm and help each other relay videgs uplink-throttled P2P network, it was shown in [17], [3]
In P2P systems, due to the heterogeneity in user bandwigi{it the maximum multicast rate for a single source can be
availability and the service differentiation requirem&nit achieved by packing a linear number of Steiner trees. For a
is necessary to enable resource sharing among swarmssd@rces, there are a set of receivefs, and a set of helpers
maximize the global welfare. Cross-swarm bandwidth slgariny  The maximum multicast rate can be achieved by packing
has been proposed for P2P file sharing applications [5].€8ery 1 |r,| + |H,| number of trees as in Figure 2.

bandwidth allocation schemes among parallel file sharingl) One depth-1 tree, source directly reaches all receivers i
swarms were studied in [10], [11]. In live video streaming, R.. indicated as 'éype (1) tree

cross-channel sharing was proposed to improve the qualityz) |R,| depth-2 trees, one receiverrelays traffic to all
of small channels and provide service differentiation agion otﬁer receivers ant;! € R., indicated as type (2) tree
channels [6], [12] . In video on-demand systems [13], a peer3) |H,| depth-2 trees, oné, helpér relays traffic to all

may serve cont_ent stored in the cach(_a to peers in sessions receivers inR, andh ¢ H, indicated as type (3) tree.
different from his current viewing session. However, cfoss

swarm resource sharing for P2P video conferencing has not
yet been explored. To the best of our knowledge, our paper is
the first one to study the optimal bandwidth sharing in multi-
swarm multi-party video conferencing systems.

Il. RELATED WORK

I1l. PROBLEM FORMULATION
A. Network Model

We consider a system consisting of a detof parallel
P2P conferencing swarms. All swarms share a Hetof

Type (1) tree Type (2) tree Type (3) tree

Fig. 2. Different Types of Distribution Trees

We adopt this two-hop relay scheme for multi-source mul-

helpers, which could be the dedicated servers from servigg,q in video conferencing. In each swarm, peers form the
providers, or other peers not participating in any confeeén above distribution trees for each source. Since the scade of

In conferencing swarm let V; be the set of users participatingenference swarm is commonly small, it is affordable to form

in the conference. A subsef; C V; of users are video s flly-connected mesh. The distribution trees have astm

1Those peers are either altruistic, or motivated to accutmutaedits two hOpS, which |mpI|es short propagation delays when video

to obtain conferencing service in the future under asymabuis incentive
frameworks, such as [14] 2We allow the existence of pure receivers generating no video



TABLE |

NOTATIONS Even thoughU; is strictly concave, the objective function

in (1) is not strictly concave ik = {z™}. The optimal

Deﬁ?“ion Detscl[iptiol? — S | solution is not unique. It hak”, |S;[|N;| number of variables
set of multiple-party swarms In the conierencing syst¢m . .
" set of helper nodes in the conferencing system and may involve complex computations. On the other hand,
Vi set of participating users in thi¢h conferencing swarm the aggregate multicast rate of sources z, = ZmENT: T
15\[2' Se: 0; “%des in theth _SWt?gE,Ni = Vg U HV We can observe the objective function is strictly concave in
i set of video sources In swarm,S; C V; _ . . .
T the multicast rate of tree relayed by from sources z = {ZS} If we could attain the 0pt|mal s_olutmn of and
Yo the aggregate upload rate of node recover eachr”" at low cost, the complexity of the original
Zs EEe aglgregage réWU!gftlsst fate_tf)flon; Sogme problem can then be greatly reduced. To ease the problem
Cy € uploa anawi capacity or noae . . .
Us the utility function of receiving video from source solving, V_Ve_t"_"Ckle the prOble_m In-an altema_tlve WE_‘y'
es the maximum multicast rate from 2) Optimizing Source Multicast Rate$n this section, we

study utility maximization based on source multicast rate
vectorz. We first investigate the domain afand then show
is forwarded along the trees. This makes the two-hop relagw to recoverx for any feasiblez.
scheme appropriate for video conferencing applicatiorth wi Let f!* denote the bandwidth contributed to swainby
tight delay requiremeng. Given the conferencing architecturehelper . We have the following results on the maximal
each source only needs to determine the multicast rates omitulticast rates in swarm
distribution trees. Theorem 1:Given a conferencing swarmi with helper
bandwidthf; = {f/*}, the maximal multicast rate regiof;

C. Utility Maximization is characterized by

1) Optimizing Rates of Distribution TreedAs illustrated
in Figure 2, letz?* denote the rate of video generated by |Ri| > 2s <>y co+ IIT;%IJI S fh 3)
s € S; and relayed byn € N; (x¢ denotes the video broadcast zs < min(cs, e5), Vs € S;.
rate in the depth-1 tree rooted &) Let y, and ¢, denote
the aggregate upload rate and upload capacity of modde For any feasible multicast rate vecterc Z7, a delivery rate
notations are summarized in Table . To encourage peers fi¥getorx for all distribution trees of all sources can always be
use their own bandwidth before resorting to the helpersga p&ecovered correspondingly.
incurs a cost of7, (f) when drawing bandwidtf from helper Proof: Since z, = >, .y, «¢", Equation (2) can be
h. To maximize the aggregate utility of all users, we obtainféwritten as

Jmax 3 ) IRU(Y @)= Ga( D IRila).

iel seS,; meN; heH iel s€s; Let z, = 0 for pure receivers € V;\ S;. Equation (1) can be
gformulated as

bs = (| R — D)2 + 2s. (4)

The aggregate multicast rate of each source is boundedhwHi
yields _ | v :
yo = (|Ri| — 1) L+ zy, YvEV,.

E i <es, VseS,i€el. ;&

EN; .
" Because in type (3) trees, helpers need to broadcast cdatent

And the bandwidth contributed by each helper should bg |R;| participating parties, we havgh = |R;| Y, ¢ a"
1 3 T 03 seS; st

limited by the its upload capacity, we have The summation of bandwidth that all participating parties
Z Z IRi|z" < en, Vhe H. spend yields
i€l sES _ S o= Y at(R-)> D at
For a peerv € V; in conferencei, its aggregate upload rate ,cv; vev; s€S; veV;
cross all distribution trees for all sources in the swarm foan _ Z 2+ (IR — 1) Z (25 — Z ")
calculated as = ! ’ = ° ="
o bﬂ+ZseS-\{v}(|Ri|_1)IZ if vels; _ |R Zz _(|R|_1)Z th
"= S es, (Bil = 1)a otherwise ¥ = s
whereb; denotes the required bandwidth of sousct drive — IR Z I |R;| — 1 Z f—" < Z .
the associated distribution trees. SuppesesS;, we obtain ’ = ! Rl = T & !
bs = |R;i|xl + Z xy + Z al. (2) Hence, the maximal rate region is bounded by Equation (3).
reVi\{s} h€H, To prove the maximal region is achievable, it is sufficient

The upload rate of a peer is limited by his upload capacitiy Show that for any multicast rate vector falling in the
region defined by (3), we can find a set of delivery rates

for all distribution trees of all sources under the bandtwidt
3Server-based conferencing solution also incurs two-hopamation delay. constraints on peers and helpers. We present an algorithm to

i.e., Yy < Cyp.



recoverx from z favoring the depth-1 tree, which has shorthe equilibrium. We resort to the standard proximal opti-
propagation delays. mization algorithm [18]. A quadratic term+-£||f — d||3 =
« Givenz,, the source would try to maximize the delivery —5 >, >-;(f{* — d')* is added to the objective function to

rate of depth-1 tree. Based on (4) ahd < z,, we Make it strictly concave, wherg= {f'}, d is an additional
construct vector andc is a positive constant. The proximal algorithm

operates in iterations. At théth iteration, the problem is

s zs if ¢s > |Ri|zs i
xd = { \Cﬁjfsl otherwise (5) solved in two steps.

Step () Fix d? = d?(t) for all h € H,i € I and solve the
« A source first allocates bandwidth @®;|% to broadcast following problem to get the optimal solutiof{’ (t).
on its depth-1 tree. It then needs to upload one stream c
to its desth-z trees. The total rate is p— x5, Let ¢, maxz Z |Ri|U5(ZS)_Z Gh(z fzh)_EHf_ng (11)
denote the remaining bandwidth on nadeo relay video i€l seS: het el
for depth-2 trees of other sources. Then we haye= Subject to the constraints (7)(8)(9)(10).
cs—ys = cs — (|Ri| — 1)z — z, for sources and, = ¢, Step (2 Set_d?(t +1) = fl) forall he H,i e r
for pure receivers. In the proximal algorithm, after we get the optim&l in
e Let¢, = 2 for v € V; and ¢, = Ilc%_h_l for h ¢ H. Stepl, then we turn to next step to asslt{la—i—l_) =f*(t+1)
Sources calculates the delivery rate of the depth-2 tre@nd begin the next iteration. Actually it requires converge

through noden as at two levels. An outer level adjustment in step 2 needs to be
conducted after the inner level iteration converges in dtep
2" = (2, — %) Cm ) Our later simulation results show that this algorithm coges
2 vev, Sv T 2nen fast. To make it more amenable for online implementation,

It can be easily verified that the constructed delivery ratgtar SOme extended approach [19] can allow the fixed number of
x recovers the multicast rate vectar and the bandwidth inner iteration in step 1 and still guarantee the convergeric
constraints on all peers and helpers are preserved. m €ntire problem.

In the type (3) trees, the helpers would distribute content2) Dual DecompositionTo solve the problem (11) of step
after they receive one copy of content from sources firstesinl in @ distributed fashion, we can apply the dual decomposi-
helpers do not require these content, this inevitable @ah tion techniques. We relax the constraint (9) with Lagrangia
may occupy up td /|R,| helper bandwidth. Here we formally multipliers \;. Then we can get the Lagrangian function

define it as follows. h
L sy Ji a/\ = Rz Us s) — )\i Rz s
Definition 1: The helper bandwidth efficiency factamf a (20, £, 2) Z Z [RilUs (=) Z Z IRl

i€l seS; i€l seS;
swarm is defined ap; = i1 \which represents the ratio ¢
; T R o _ hy & h _ jh\2
of helper bandwidth efficient to increase the system ultility Z Gh(z fi) 2 Z Z(fi d)
Now we can reformulate the utility maximization problem het —iel hel iel
using{z,} and {f!'} as follows. D N Y Y N e (12)
iel heH iel veV;
, _ h . . . .
ID-OPT {ﬁ?%}z; ZS |RilUs(25) }lz;ich(; 1) (®) By duality, we obtain the following equivalent dual problem
v rael seS; € 1€
min gx>o(A) = min max Lx>o(zs, 7', A).- (13)

subject to
We can observe that the problem has nice separable prop-

s < i Sy ~S /)y [z } I 7 H H
Zh < min(e,€), Vs €Sii€ (7) erty for decomposition. Hence, we can solve the following
Zfi < ¢n, VheH (8) subproblem in a distributed manner.
i€l Source multicast rate adjustmem swarmi, given\;, each
> IRilzs < ) ewtpi » f, Wiel (9) sources solves a local optimization:
e vevi het max  |Ri|Us(2s) — \i| Ri2s. (14)
Ze, f > 0, VseS;,iel,heH. (10) 0< 2 <min(cs es)
IV. DISTRIBUTED ALGORITHMS FORINDEPENDENT Thens should adjust its rate as follows:
CONFERENCINGSYSTEM 0 if UL(0) <N\
In this section, we develop distributed algorithms for epti 2s(t) = { (U)™'(\)  else ifU{(min(cs, e,)) < A;
mal bandwidth sharing in independent conferencing systems min(cs, es)  otherwise (15)
A. Proximal Approximation Based Algorithm Helper bandwidth allocationgiven \;, each helper nodé

1) Main Steps of Proximal AlgorithmThe problem ID- Solves a local optimization:
OPT s still not strictly concave inf*. Directly solving max a hy_ € h_ ghy2 h
g o . o o2 —Gp, i) — 3 S —=d)T Dy Aipifi
it in a distributed manner may incur oscillation, which i9<>,, 7 <cs (; 1) 2 g(fl i) ; ipifi
not amenable for implementation before the system enters (16)



The above sub-problem is strictly concave fifi and can be a sources to another source’, we will obtain mgf )

Iocally_solved bthe helpét. Under the Karush-Kuhn—Tgcker U (=") |n the optimal solution, the rates of any pair of
cqndmons [20], |.t can be solved by the_approach in [1930?1%830 andq satisfy

with the complexity ofO(|I|log(]I])). The first term can be AUy (%) AU (")

removed, i.e., letG, = 0, if the aggregate bandwidth of * —*= < — =, if 25 =0,2;>0

helpers is not large enough to let all sources in the system, dU;(ZZ> — dU;(ZD, if 2 € (0,min(ep,cy)) andz: €
reach their maximum multicast rates. (O,fﬁin(eq, Cq))Zq i !
After source and helper nodes adjust their rates, the La- du,(z}) > dUa(z))

<

s/

grangian multipliers will be updated with gradient projent  ° Ode, > —g, 7 it 25 = min(ey, ) andzg €
algorithm [18] (0, min(eq, ¢4))
Proof: Please refer to the Appendix A. ]
h
Ai(t+1) = [A(t) + 9t(z [ Rilzs — Z Co = Pi Z FOITS Using the above properties, we propose the following pasew
s€5i veVi heH (17) balance algorithm to optimize the resource allocation with

whered, is a positive stepsize to guarantee the convergen% warm. The sources notify each other their current margina

and[]+ means the projection onto the domain of non-negatiﬁé' ity periodically. Then each source finds another soucce
real number. Due to the strict concavity in and f”, the alance their multicast rates. During the pair-wise baanc

(R !/ !/
optimal solution of the dual problem is primal feasible. ~ °€tween source andq, supposeJy(z,) > U, (z,), the source
ith smaller marginal utility shifts its owned resourcezto

In practical implementation, one node in each swarm can %éN.I he diff b hei inal utilities isdeh
promoted as theoordinatorto communicate with the helpers.untl t I? ' Frence etw?]en thelr margina ut |t||¢s Issehan
The coordinator maintains the Lagrangian multiplier asod Small scalae or p reaF: es the maxmum njut.|cast rgte.
ated with its own swarm. It broadcasts the latest multipier ~ ~WBalance(z,) algorithm describes the distributed imple-
the sources within the same swarm and all the helpers. Uggfintation of pair-wise balance process on sogrce
receiving the multiplier information, the helpers decideet (1) Forming a Pair Sourcep establishes the balance process
bandwidth allocation among the swarms, and the sourcesV§fih another source. It could be triggered either by acoepti
each swarm adijust their multicast rates accordingly. Gitien €quests from other sources or initiating requests preglgti
helper allocated resources, the sources try to grab remeurc 1) Accepting requestsSourcep receives multiple requests

to reach their targeted multicast rates. They will notife th from other sources.

coordinators with the resource gap information. Then the a) It accepts the request from the one with the maxi-
coordinators can update the multiplier information acawyd mum marginal utility if it is idle.

to (17) after they collect information from all sources. The b) It rejects all requests once it is already in a balance
updated multipliers are broadcasted to all sources anct=lp process with another source.

to trigger the next iteration. The system finally enters the

equilibrium after multiple iterations. 2) Initiating requests Sourcep sends requests to other

sources. Source maintains a candidate sef =

B. Marginal Utility Driven Algorithm {qlU,(zp) > U,(z4) +€,2¢ > 0} wheree is a scalar
In this section, we present an alternative approach which ~Parameter.
relies on the optimality condition and primal decompositith a) It sends request to the oge S with the minimum
incurs less computation overhead and iterations, and stsnsi marginal utility. If ¢ rejects the request, sourge
of two levels of optimization. Within each swarm, sources removesq from the candidate set = S\ {¢}.
adapt multicast rates asynchronously to reach the optimum. The operation repeats until one source accepts the
At the outer level, helpers adjust their resource allocatm request orS becomes empty.
maximize the system-wide performance. b) If one source; updates the marginal utility infor-
1) Inner-swarm AdaptationGiven certain bandwidth from mation, it can be inserted into the candidate set of
helpersf!*, each swarm needs to adjust the resource allocation sourceyp if it satisfies the constraint of the set.
to achieve the optimum. We intend to maximize the aggregatg(l) Negotiating Marginal Utility After forming a pair, the
utilities U* of swarm: with resource allocation, source with larger marginal utility prepares a list accogdi
max Z \Ri|Us () 1) © the marginal utility information. Supposé)(z,) > U, (24)
{0<z:<min(es,es)} (=7 and M is a constant.

1) Sourcep issues a list of\/ elementsd;, Uy (zp) — £9)

bject t ilzs < Y i h. B
SUBJECt 103 e, [Filzs < Dyev; v + Pidonen fi'- BY to sourceq, where A = U}(z,) — Ul(z,) and §; =

adding a virtual source node connecting to all sources of N i
. h L U’ 1(U’(z)—é])—z
swarmi, the problem becomes a pure routing problem (similar P p\*P) M P

to that in (pp.452 [21])). We have the following sufficientdan a) The first item is the possible increase amount of
necessary optimality conditions. multicast rate. _ N
Theorem 2:Let z* be the optimal streaming vector of the b) The second item corresponds to the marginal utility

above problem. If it is feasible to shift some resources from for the new session multicast rate of sougce



2) Letm = argmax; d; + 2, > min(cy, ep). If the number lims_o p;(ff — J), since the source with the minimum
of feasible entries is not enough, i.es;, < M, we add marginal utility is also the last one to reach its maximum
an additional entrymin(c,, e;) — 2, U, (min(cp, e,))). multicast rate if we keep increasinff until the swarm is

(1) Adjusting Rates After sourceq receives the list from choked.

p, it determines the amount of resource to shift between themWhen one swarm enters inner-swarm equilibrium, the co-

1) Sourcey picks the appropriate and feasible one to makydinator of the swarm broadcasts the marginal utiIi_ty_cof t_h
them first derivative nearest= argmax; U;,(z,,—i—&j) ~ swarmto all helpers. When helpers receive the marginatyutil

Ul (24 — 8;) of all swarms, they can adapt the bandwidth allocations amon

q 27" . . .

2) S?)urceq shifts the amount of resource equivalen®io all swarms accordingly. Given the new helper bandwidth
session multicast rate to sourge ° allocation, the sources in each swarm then continue to aindu

. the pair-wise balance process to maximize the utilitied thre
(IV) Updating Once the balance process completes, the Y '

. S s swarm enters a new equilibrium. The system finally enters the
sourcep quits the pair-wise balance process if it reaches th

maximum multicast rate, — min(e,,c,) and U’ (z,) > global equilibrium after multiple above iterations.
U (24), Vs € {s]zs < min(”e co)) Otzrjl’erz\)/vise it tfrogdca_sts In the following algorithm, helpers adapt the distribution
s\~s)y s 55 Ls . ’

. ! o . among swarms dynamically. Sinc®? , is also concave
its new marginal utility to all other sources in the swarm. 9 y Y opt

In the above pair-wise balance process, to reduce the-dif“ffeurnCtlon on f,,, intuitively we need to put more resource to

ence of the marginal utilities of two sources less than inertafsr giﬂ?nvé';hhggefg E]:r:(gjllr\;%ltﬁ t\'ll\;%’m: Tg%iﬁ g ert]r?;ezvsg?m
thresholde, i.e., (4)"A < ¢, we only needO(log, (L)) P y

} h .
steps. Given a reasonably lardd, ¢ can certainly find a Zé iﬁ:igrﬁjipear(jiin) [\;/g]u Id update the allocations towards the
feasible entry. In case the two functions have very Iargeq P '

At stage t, givenp(n), supposev = arg max;c s it;, where

H l ! _
dlf_'ference thatU.P(Zp - o) <, Ug(zq — 01), sourcep can J = {i|swarmi € I,not choked. The split ratio of helpe#h
reissue a new list with newA’ = A/M to narrow the gap. )

would be updated according to

Furthermore, the sources can adapt asynchronously tovachie

inner-swarm optimization in this pair-wise balance praces PRt 4 1) = ol (t) + 41 (t) (20)
2) Helper SchedulingAfter the swarms enter equilibrium, .

helpers adapt the amount of bandwidth allocated to swarmsWéEh

an outer level. First we need to find out the marginal utility —min{f (t), fn(pw —pa)} i iFw
of each swarm to helpers. CHOER S DN ifi=w

A swarmi is calledchokedif all sources in the swarm reach 0 if p1; > p and choked
the maximum possible multicast rates, i.e,,= min(es, ¢;) (21)

for all sourcess € S;. For an unchoked swarm, it hasWheres, is a positive scalar stepsize. _

Mo |Rilzs = oev, o + pi Spep [ Suppose we in- For swarms, withy; > 1, but choked, which are unable

crease the helperubahdwidth contribution Byf, then the O accept further resources, the bandwidth fractions odehe

increase space for source ratesyis,_ g |Ri|Az, = p,Af. Swarms remain unchanged. The helpers shift resource from
SES; : . . - .

To maximize the increase in the swarm’s aggregate utilit§varms with smaller marginal utility to the one with the lesg

one should increase the rates of sources with the maximém!f the amount of the shifted resources is more than that

marginal utility. As indicated in the equilibrium propertye makes_the swarm choked,l the helpers would .spend_'ghe_surplus

sources with positive multicast rates have the same margiRgndwidth to the swarm with the largest marginal utility fire t

utility after we rule out the sources whose rates are alrea@§Xt iteration.

AU, = Z \R;|(Uy (25 + Azg) — Us(2s)) | _ Co_OPER/_ATNESWARMs _ _
<€5, In this section we investigate the resource sharing siegeg
~ / _ between cooperative swarms.
> Unas SGZS [Ril Azs Let 7} denote the bandwidth shifted from swairto swarm
NN (19) j. The nodes in swarmwho share bandwidth with nodes in
v mar T swarmj can be regarded as extra helper nodes. Hence, the
We have the following definition accordingly. sources in swarmi can build additional depth-2 tree relayed by
Definition 2: The marginal utility of swarmi to helper's these nodes. Given the new resource distribution, the lpessi
bandwidth is defined asu; = piU,(z,) , where p = rate region of sources can be formulated as follows,
argmaxsecs, Ul(zs) andz; < min(eg, ¢y). h )
Suppose swarr(nis)choked with re(sourc%c from helpers. The Do MRilz < cotmibp D [ Viel,  (22)

choked swarm could not gain any utility because they cannot SES: vevi heH _
7! denotes the

receive any bandwidth further. To facilitate the descoipfi where 7; = =2 jeljti ﬂ';».—l-.pi D ierjziTi .
we define the marginal utility of an choked swarfjnas swarmi’s net resource gain in cross-swarm sharing. If the
wi = p;minUl(zs),s € S;. Actually we havey;(ff) = problemis directly solved in optimization based approana



TABLE Il

Section IV-A, additional variables for the resource altbma SWARM STATUS

among all swarms of each node in the system need to be

introduced. It will inevitably incur heavy computation and Type K Choked | Resource Inflow
slow convergence. Furthermore, the resources of a swarm may Eﬁ; Z N Zni $ $

be shared by too many other swarms, resulting in excessively © | u<pm N N

large number of connections, which might be difficult for (d) Any Y N

practical implementation. To ease the problem solving, are ¢
leverage the approaches of independent conferencing swarm
o ) If swarm i of type (c) determines to share resource, it will

A. Criteria of Cooperation among Swarms choose a swarm in status of type (a), which has the maximum

After the system enters the equilibrium under the adaptidharginal utility while not choked. With the balance of hetpe
of helpers, swarms can also conduct the similar resourdglltiple swarms may belong to this type. Instead of picking
allocation process as those of helpers. For swatire amount one of them randomly each time during adaptation, the swarm
of resources available for sharing are from all participgti @ can always stick to a specific one until it no longer belongs
parties, i.e.,B; = Zvew Co- to this type. In this way, the number of swarms those share

1) Comparison of marginal utilitiesFirst we identify the the resources of swariis to be minimized.
marginal utilities of swarms receiving the resources from Furthermore, we can observe that the swarm of type
swarmi. If swarm i shares its own resources with swarnyvithout incoming resources may have surplus bandwidth not
j’ swarm: can be regarded as another he|per to SW_@.”TD fU”y Utilized, which should be Spent at the beginning. The
build type (3) tree is subject to the same overhead. Henee, finount of surplus bandwidth of swargnin this type equals
marginal utility of swarm j to swarm i would still bg;. When 10 3, ¢y, ¢o — [R;[ 22, min(es, cs).
swarmz‘_ takes its resource back, the marginal utility would bB- Cooperation Strategies of Swarms
wi/p; since there is no overhead to increase the rates of it
own type (1)(2) trees. Therefore, if it could bring utilityig
by shifting the resources of swaritto swarmj, then it needs
to satisfy

S\Nith the above insights, we would conduct an additional
adjustment at larger timescale. Each time it needs to béeabpl
after the system enters the new equilibrium. Lb?tdenote the
fraction of resources from swarirto swarmj. SCSWarm(z;)

1l pi < pj- (23)  adapts the fraction of resources of swaim

a) If swarmi identifies itself of type (d), it spends the

getting help from other swarms may have extra bandwidth ?(5”9'”5_ bandwidth 1o other_ swarms of type (a) at the system
inning. In later adaptation procegs, would denote the

share with other swarms. On the other hand, a swarm helpﬁ\ . o
ction of remaining resources.

others may run into resource deficit and need to get help frd A i h d f hel

others. Both cases lead to resource relays between swarm?.) L staget, | swarm: has accepted resource from elpers

However, the resource relay is not efficient. As illustrated or other swarms, it would not conduct the below adaptation
process.

s / N s ¢) For swarm: to adapt the resource allocation, first we
:>(\+ﬂr5 —5/):> identify the swarmw to receive resource. Ifi;/p; is larger
than the marginal utility of type (a) swarm,,, thenw = 1.
Fig. 3. lllustration of overhead due to resource relay Otherwise, swarm chooses one from the s@ﬂwg > 0,0 =
m and not chokepl In case this set is empty, swarinpicks
Figure 3, swarm j shift§ amount of resource to swarm i whichone from the remaining type (a) swarms.
is not choked, and swarm i moves the same amount of its owrThen we update the bandwidth allocations. Let

2) Avoidance of resource relayAs churn occurs, a swarm

resource to swarm k at the same time. Swarm i would suffer i/ pi T
(1 — p;)d resource loss, compared with the case that swarm j s = { Hz ’ otherwise
directly shifts resource to swarm k. The resource relay khou *
be prevented to avoid resource loss. And we have
3) Minimizing the degree of cross-swarm sharingach ¢;‘_(t+ 1) = ZZJ;-(t) +19§-(t) (24)

time swarms conduct an adaptation, they will wait the system
enter new equilibrium before the next adaptation. HeIpeY‘!ljth

will re-allocate the bandwidth to reach this new equililoniu — min{! (), Kn (flw — f5)} if j#w
Without resource relay, there are four possible swarm statu ﬁ;ﬂ(t) =< — Zj S 19;'. if j=w
after the system enters new equilibrium with helper schedul 0 if fi; > ji,, and choked
ing. There exists a constant,,, the relationship between the (25)

marginal utility of swarms can be listed as follows. We sugowherex,, is a positive scalar stepsize.
the aggregate amount of helper resources is not large enougte can deduce that if swarirdetermines to share resource
to make all swarms choked. to another swarnk at certain iteration withus, > pu;, it never



takes place that another swagrsends resource offer to swarm . °7
i at the same time. After each swarm determines the ni:°°
resource allocation, swarinmay receive resource offers from & °°
others. g0,

o If >, Y5 = 0, swarmi only receives resource from go.z

o
fﬁO'A

—Swarm 1

others. Swarm will preferentially receive the resources go1 — Swarm 2

3 —Source 1

— S

) . - - Swarm 3 Sowces
from the ones with smaller marginal utility. O3 20 8 s 100 22% 0 a0 & & 100

i . . . Number of Proximal Iterations Number of Proximal Iterations

o If 3,9, > 0, swarmi shares its own resource with
others. To avoid resource relay, instead of accepting th
offers, it reclaims its own resource back. The amountig 4. system Evolution with Proximal Approximation Bas&fjorithm
of resource claimed back would be the minimum of its
resource shared with other; Zj {0k and that of the

resource offer. the evolution of the multicast rates of all sources in swarm

Similarly, if a swarm with resource shared by others getde let the utility weight of source 1 slightly larger than eth
offer from helpers during the inner-level helper resourcgources. The multicast rate of sourtes slightly larger in
adaptation, the swarm reclaims its own resource back idstégturn. The rate of source 3 increases first with other ssurce
of accepting the helper resource. The amount of resourceUdil it reaches the upload capacity limit. We can obsereg th
be claimed is determined as the minimum of the resourcetfie resource allocation of helpers can be coordinated and th
shares with others and that of the resource offer from hglpemulticast rates of sources can achieve the optimum.

Finally, we briefly discuss how a swarm share its own 2) Marginal Utility Driven Algorithm: First we study the
resources of its member nodes with other swarms. The Rerformance of pair-wise balance algorithm. We let theshre
sources to be shared can firstly come from those non-souf@ of marginal utility gap be = 0.1 andM = 10. Figure 5(a)
participating users, i.eV; \ S;. When only the resources ofillustrates how the multicast rates of sources in a single
sources remain, some optimization based allocation needs$¥arm can converge to the optimum by the pair-wise balance

be conducted. Please refer to the Appendix B for details. Procedure. The three sources have utility weight in deargas
order. After few times of pair-wise balance procedure, the

VI. SIMULATION RESULTS aggregate system utility gets close to the optimum. When a

In this section, we provide numerical results of the propos&@€W party joins the ongoing conference suddenly, the ssurce
algorithms. To present clearly how the system evolves, \@apt the rates and quickly converge to the optimum. This
conduct the simulation with a small scale. Table 11l liste thShows the robustness of the procedure against peer churn.
normalized bandwidth of all swarms. There are two helpersNext we show the system evolution under swarm churn.
with normalized bandwidti0 and 60. To ease the analysis, | he helpers adjust the bandwidth distribution dynamically
the maximum multicast rate for all sources is set tosbén the beginning, there are only the firtconference sessions.
this case, the sources of swafean all reach the maximum The 4th swarm joins the system later. Figure 5(b) shows the
multicast rate without any helper resource. The utilitydiion ~€volution of helper bandwidth allocation. We can obserw th
for sources is set to b&, = C, log(z, + 1), whereC, is the the system is able to enter the equilibrium in less than

Normalized Source Multicast Rates

éa) Fractions of Helper Bandwidth (b) Source Rate Evolution

utility weight pertaining to source. steps. Still swarm 3 has no helper bandwidth input. Figueg 5(
shows the marginal utility of swarms. The marginal utilitfy o
TABLE Il swarmy; anduy converge to the same value. After swarm 4
NODE BANDWIDTH SETTING joins the system, part of the bandwidth fraction allocated t
Sources| Other Parficipating Users the first two swarms is gradually shifted to the newly joined
Swarm 1| 55,4 5,4,5,3 one. The marginal utilities of swarms change accordingly,
Swarm 2| 10,7.4 5485 and they converge to the new level. Figure 5(d) presents the
Swarm 3| 10,20 52,3 . . .
Swarm4| 6,63 6.8.10 multicast rate evolution of two sources belonging to swarm

As the amount of incoming resources from helpers changes,
the multicast rates of these two sources adapts accordingly
The small gap between the achieved rates and the optimal
ones comes from the allowed marginal utility differencin

1) Proximal Approximation Based Algorithnn this sim-  pair-wise balance algorithm. Setting smaltethreshold could
Ulation, Only the first three swarms jOin the system. We let theduce the gap further, while possib|y increases the inner-

inner loop iterate at mosi00 times. Swarml has the least swarm adjustment times in pair-wise balance algorithm.
amount of resources, while the swanhas the maximum

amount of resources. Figure 4(a) shows the fraction of helge: Cooperative Conferencing System

1 bandwidth at different proximal steps. The helper resairce First we study the performance of the algorithm in static
have been allocated to the first two swarms accordingbcenario. Only the first three swarms join the system. After
Swarm3 does not need any helper resource. Figure 4(b) shothie system enters equilibrium, the marginal utility of smar

A. Independent Conferencing System
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Fig. 5. Simulation results of marginal utility based algjom. (a) illustrates the evolution of source multicast natth the pair-wise balance algorithm in a
single swarm. (b)(c)(d) present the system evolution ussiarm churn.

3 is far lower than those of other two swarms. Swarm | 04 R
does not receive any resource from helpers and spares its « '
bandwidth to others gradually. It gradually shifts resesrto
swarm 2 untilus/ps = pe, a@s shown in Figure 6(a). We can
observe from Figure 6(b) that as the fraction of bandwid
from swarm 3 spent to swarm &) increases, the system £,
utility increases. Actually swarm 3 only shares its reseurt

. 3 . 0 50 Ti 100 150 0 50 Ti 100 150
with swarm 2 and keepg; = 0. Each time when swarm ime ime
3 shifts some resource to swarm 2, the helpers would move (&) Marginal utility of swarm (b) Bandwidth fractions
certain amount _Of resource preVIOUSIy spgnt _In swarm 2 Iri?g 7. Simulation results in cooperative conferencingtays. (a)(b) show
swarm 1 accordingly to reach the new equilibrium, as showgw the system evolves with swarm cooperation strategieswsvarm churn

w
43}

rginal Utility of Swarm
w

Bandwidth Fraction

in Figure 6(c). happens.

4 O S ———————
E.. system Uity 5 of receiving resources from helpers, swarm 3 takes its resou
i & back from swarm 4 gradually until the system enters a new
5 o e .
3 TS 2 equilibrium.
S2s B et H
g TN g
g Hy —Swarm 1 e
= ‘ —Swarm 2 2

15 —Swam 3 0 VIl. CONCLUSION

0 150 0 10 150

50 100 50 0
Adjustment Times of Swarms Adjustment Times of Swarms

(a) Marginal utility of swarm (b) Bandwidth fraction of swarm

In summary, our paper investigates the bandwidth sharing
strategies in multi-swarm multi-party P2P conferencing-sy
tems. Specifically, we study two possible scenarios: swarms
are independent or cooperative. For each scenario, we de-
velop distributed algorithms for intra-swarm and interasm
bandwidth allocation under a utility-maximization franta.
Towem 1 Through analysis and simulation, we show that the proposed
—Semd algorithms are robust in the face of peer churn and swarm
churn, and can dynamically allocate peer and helper baridwid
across swarms to achieve the system-wide optimum.

o
3

o o
o o

o
=

o
w

o
N

Fraction of Helper Bandwidth

o
[

=

50 100
Adjustment Times of Swarms

(c) Bandwidth fraction of helpers

Fig. 6. Simulation results in cooperative conferencingtays. (a)(b)(c) How to guarantee low latency is crucial in multi-party
present the system performance gain due to swarm cooperatio conferencing applications. Although our paper focusesmn o
Next we investigate how the system adapts under swatmization system utility from the aspect of bandwidth shgyr
churn. First the four swarms join the system at the beginnirigis amenable for further work on reducing latency undes thi
and then swarm 1 leaves the system in the middle. Figurdr@mework. In practice, swarms can only be associated with a
shows the evolution of marginal utility and bandwidth fiant subset of the helpers given large system scale. How to group
The system first enters the equilibrium and swarm 3 shamsarms and assign helpers has impact on the system latency
resource with swarm 4. After the swarm departure happepgrformance. It can also be optimized combing with ISP-
a part of helper resources originally assigned to swarmfrlendly considerations. In the next step, we are also asted
is shifted to swarm 2 and swarm 4. The marginal utility o prototyping the system with the distributed algorithrmasd
swarm 3 is larger than others at that time. However, insteagdamining the performance in real Internet environment.
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APPENDIX . dUPZ(Z;) < dU;Z(Z;), if 25 =0,z >0
v, (22) v (") .
A. Proof of Theorem 2 . U’;Z = ;qu , if 25 € (0,min(ey, ¢p)) andz; €

The inner-swarm utility maximization problem can be (0, mln(eq,cq))
converted to a routing problem by adding a virtual source , dUZ;( 0 dU;(zq),
. . . . . z - z
connecting all sources. As illustrated in Fig. 8, the viltua (g, mm(eqch)) !

/
sourceS’ has fixed traffic input rate and intends to optlmally Next we prove the above properties can also be shown to

allocate the transmission rates along the paths. Compitiad e sufficient for optimality. Since the utility functions afl

the optimal routing problem in pp.452 [21], the inner- SWallsurces are concave, the aggregate utility functiinis also

utility maximization problem has the foIIowmgldlffererE:e concave in that it is the summation of concave functions. Due
1) Itis a utility maximization problem an@* is concave (g jts concavity, to prove multicast rate vecter is optimal,

if z; = min(ey,c,) andz; €

function. _ ~we need to show that the above properties can lead to
2) The multicast rate; of each source in the swarm is _
additionally subject to the maximum multicast rate S (- Z*)aUl(Z*) <0
s s >~ U,

besides the capacity limit;. 0z

3) The upper bounds af, can be attained, i.e., it is possible
to let z; = min(es, c,). In the contrast, the flow rate of afor any fea5|ble multicast rate vectog. Let D =
pathp must be less than the capacities of links containedaxyses, \ry 25 (Actually it is the marginal utility of
by the path in the optimal routing problem, due to thewarm in Def|n|t|on 2). Provided another feasible multicast

M/M/1 model based delay cost approximation. rate vectorz, we can divide the sources into three types.

1) For sources € F; in optimal rate vector:*, we have
zs < z} sincez} is already saturated. And the properties

indicate that the marginal utllllﬁ% > Dr.

2) For sourcess € {S; \ Fi|zs < 2%}, z5 < zF implies
z¥ > 0. In terms of the Equation (26), the marginal
utilities of them are also no smaller thdpy'.

3) For the last set of sourcese {S; \ Fi|zs > zX}, the

marginal utilities of them are no larger thdn since
Fig. 8. Conversion to a routing problem zs > 2} implies z: < 0.

sSES;

For each above type, we then have
Despite these differences, we can still extend the opttynali yp
conditions for this inner-swarm utility maximization pren. L OUH(2%) s
S, ; ) (2 — 25)———= < (2s — 22)D;.
Let z* = {z!} be an optlmal multicast rate vector for swarm S Ozg s/
i, wheres € S;. Let F; = {s|z; = min(es,¢s),s € S;} Therefore, We obtain
denote the set of sources whose multicast rates are saturate

and F; C S;. It is infeasible for sources € F; to increase ( = Z(zs —25)D;}
their multicast rates. s€5;
First we provide the necessary condition for optimality of Y Ty *
: = —23)D; —22)D;
z*. If z¥ > 0 for some source, we must be unable to shift a Z (25 = 2) D7 + Z (2 = 2)D;

small amount > 0 from sources to another source/, if the {echi} {oeSi\Filze<z3}
shift is feasible, with improving the system utility; othése, + > (25 — 25)D;
the optimality would be violated. The utility change fronisth {s€Si\Fi|zs>25}
shift is , , ou'(z")
(% 1 ok > . — * .
SOUET)  OU (=) > Y (2 —23) 7.
0z 0z SES;
and the change must be negative. Furthermore, the shiftis Bo Optimal Sharing of The Resources of Member Nodes
feasible whens’ € F;. Therefore, we obtain Suppose a swarm decides to share its resources with other
. oU(z*) _ oU(z*) , swarms through outer-level iterations, how it shares it ow
2 >0 Dz < 0zs vs' € Si\ Fi. (26) resources of its member nodes with other swarms needs to be

taken into account carefully. The resources to be shared can
firstly come from those non-source participating users, i.e
Vi \ S;. The resources of non-source participating users which

In terms of Equation (18), we haM |R| »(5) - facilitate the distribution of type (2) tree, can be regarde
Hence, when the swarm enters eqU|I|br|um with opt|mal mués the public resource to the sources. The pair-wise balance
ticast rate vector*, the marginal utility relationship betweencan enable the system reach the optimum allowed by the
any two sources can be elaborated equivalently as follows.achievable rate region.

For two sourcep € F; andgq ¢ F;, the above condition
indicates (Z ) < a%( ! sincez; > 0.
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However, we need to resort to optimization based techniqualgorithm 1: Resource Sharing of Source Nodes

when only the resources of sources remain in the system;
Suppose source sharesn, amount of bandwidth with other
swarms. This directly changes the achievable rate regian of
to z; < min(es, cs — ms). How to share the resources of the
sources has impact on the maximum achievable utility of the
swarm.

We formulate this problem as follows. Give swaimwithin
which only the resources of sources remain, we want to decide
the m, of each source ani’  m, = A. The target aggregate
amount of resources to be sharedis We then obtain

CO-OPT U (2 27
{20220} ; BifUa(za) - (@7)
subject to
D IRilzs < Y ei—A (28)
sES; SES;
zs < cs—mg, VseES; (29)
zs < ez, VseS;. (30)

Since the problem does not involve any network entity
(helpers, nodes in other swarm) outside the swarm, once the
coordinator knows all the inner-swarm information, if pibses,
the problem can be solved with KKT conditions. Actually the
problem solving of CO-OPT can also leverage the techniques
in Section IV-A.

n
output: my
while A > 0 do

put : s(z,z,

dUg
dzs )’ A

p <« ChooseM nMar gi nal Ui | Sour ce( z,Us)
t— ¢
while ¢t > 0 && z, > 0 do
if 3z > 0 then
Tq = min(t, zf)
t=t—r,
/lreduce the rate of depth-2 tree by
=) —reandz, =z, — 71,
/Ishare the resources for this rate decrease
my =my + 1, andmg = mg + (|R;| — 1)rg
else
if 28 > 0 then
7 = min(t, 27)
t=t—r,
/lreduce the rate of depth-1 tree by
rh=ah —r, andz, =z, — 7,
/Ishare the resources for this rate decrease
my =myp + |Ri[ra
end
end
end
A = A — |R;|t /lupdate with the achieved amount

Next we present a greedy approximation algorithm, which end

can be readily implemented in a distributed manner. We define
a step siz&d for each iteration. Suppose at the beginning, the
system has already entered the equilibrium under the ga&-w(;1)
balance process. In the Algorithm 1, each time the source
with the minimum marginal utility intends to share its owne?
resource equivalent ® amount of multicast rate. The rates o ]
depth-2 trees are reduced preferentially. The processtéer
until the target of sharingh amount of resources is fulfilled. [*3]
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