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Abstract— Queuing analysis is important in providing guid-  fluid models more tractable analytically. Many results have
ing principles for packet network analysis. Stochastic flil  peen obtained for various fluid queueing systems [6]-[9].
gueueing models have been widely used as burst scale models Recently, Markov On-Off processes have been applied

for high speed communication networks. In this paper, we . . .
propose a novel two-level Markov On-Off source model to to capture the correlation structure in network traffic [10]

model the burstiness of a packet stream at different time sdas. Sample path analysis techniques, such as Poisson Counter
Analytical results are obtained to reveal the impact of trafic  Driven Stochastic Differential Equation [8] (PCSDE), are
burstiness at two levels on the_ queue Iength_s in a tandem employed to study system queueing behavior in steady
gueue system. Our method combines the modeling power of the state [11], [12]. However, most previous studies assume the

Poisson processes with that of stochastic differential egtions .
to handle the complex interactions between the packet arrials peak rate of a Markov On-Off source is larger than the

and the queue content. Our results for the tandem queuing SErver's capacity. This limited its modeling power. In this
network could be used to further justify the packet spacing paper, we propose a novel two-level Markov On-Off source

scheme in helping deploying small buffer routers. model to model the burstiness of a packet stream and derive
analytical results that reveal the impact of the burstirass
I. INTRODUCTION each level. In our model, a source alternates between two

) , states, namely “On” and “Off” states. In “On” state, it keeps
In the past decade, we have witnessed the dramatic gro"‘é@nding data and at "Off" state, it sends nothing. Different

of the Internet. On one hand, the speed of network IinkﬁOm normal Markov On-Off source model, the “On” state

a”‘?' routers keep increasing. Qn the (_)ther hand, new apPRY- griven by another Markov On-Off process. Our model is
cations, such as Peer-to-Peer file sharing [1], [2], Voicero motivated by the traffic pattern of TCP connections. In a

IP [3]and Video-over-IP [4], aggressively consume networkaq jar TCP session, the sender tends to send out a burst

resources and qu_ickly push the Internet traffic towards itSt packets as allowed by its current congestion window.
capacity. Congestion developed on network bottlenecks depg, jt keeps silent until the acknowledgments come back

grades user perceived quality of services, in terms of tjilou ¢ one round-trip time. As studied in [13], TCP’s window

put, delay and losses. The study of network congestion {3haviors contribute to network traffic burstiness at mieti
important for the management of operational networks anghe seales. Our two-level Markov On-Off model essentially
the deS|g.n of futurg networks. o captures the traffic burstiness at two different time scags
Queueing analysis has proven to be an efficient approaghysjoying the PCSDE approach, we analytically study how
to evaluate the performance of communication networksffic burstiness at two time scales affect the queue length
under different traffic profiles. Classical queuing theditgo i, 5 tandem queue system.
requires renewal arrival assumption in order to obtainedos v method combines the modeling power of the Poisson
form results. However, traffic in modern packet networks iocesses with that of stochastic differential equations,
characterized by packet bursts. Traditional burgt absmp_t a way similar to the whitening filter in system theory, to
methods rely on the use of large buffers at intermediaigyngie the complex interactions between the packet asrival
stations. Unfortunately optical packet switches can niordf 54 the queue content. Our analytical results demonstrate
large buffers. As a result we have to find other ways to handi@ 5t when the average incoming rate is smaller than the

the tra_ffic bursts. For.this an_d other reasons a quantitativger's capacity, the packet level burst plays a major role
analysis of the burst impact in network of queues becomg getermining the average queue length. Otherwise, the
very critical. Towards. this end, stochastic fluid queueingigh level TCP burstiness dominates the dynamic of the
models have been widely used as burst scale models fQferage queue length. Thus, our proposed new model bridges
high speed communication networks [5], [6]. In a fluidihe classical queueing theory, which focuses on the packet
model, discrete packets and cells within bursts are modelgd,e| purstiness. and the fluid queueing model, which is
as continuous fluid. The continuous nature of fluid makegedicated to deal with the correlation structure in network
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model in a tandem queue network. The network is modeled XJ:LD_.il’ _
by a set of stochastic differential equations. A close form :

solution of average queue length is provided. Section IV fime

presents simulation result to validate our major resulisz O Fig. 1. A Tandem Queue Network with Single Markov On-Off Swmur
contributions and results are summarized in Section V.  capacities satisfy the conditions that> cy > - > ¢, > 0.

The network dynamics can be presented by a set of stochastic

Il. DRAWBACKS OF SINGLE LAYER MARKOV ON-OFF . . .
differential equations:

SOURCES
In this section, we first introduce the related work of a dvi(t) = —cil(vi)dt + ha(t)dt
tandem queue network with a single layer Markov On-Off dva(t) = —col(vz)dt + c1X(vy)dt )
source. We present its stochastic fluid model and the corre- :
sponding analytical results. Finally we address the drakda don(t) = —cnl(vn)dt + cn1I(vn_1)dt.

of this simple Markov On-Off model. whereI(v;) = 1 if v; > 0 and equal to 0 ifs; = 0.

A. Tandem Queue Networks with a Markov On-Off Source To make the problem solvable, the peak rate of On-Off
Fluid model is used to analyze the impact of traffic bursEOUrce must be greater than To guarantee the system is

on network buffers. With the help of Poisson Counter Driverft@Ple, there isiE[z] < cn. The average queue length is
Stochastic Differential Equations [8], the fluid model carfi€rived in [8] and we quote the results here:

uantitatively analyze how much a burst traffic can impact 1 h—q
?he networkybuffer)s/. P Elei] = (Cl a hE[‘T]) At hElel, ®

A normal Markov On-Off source has two states. At “On”
state, the source sends data at a fixed kat€he duration Ev,] = Elz]) 4+ Elvp—1] + - - + E[v1]).
of “On” state follows an exponential distribution with rate ©)
u. At “Off” state, the source sends nothing and the duration
of “Off” state follows an exponential distribution with gt AN important observation is that, givefilz], the average

. The behavior of:(t) can be expressed by a PCSDE:  queue length at any stage linearly depends an + 1), the
autocorrelation time constant. Thet p illustrates how fast

da(t) = (1 — z(t))dNy — z(t)dNs (1) the correlation_ ofz(¢) decays and presents the burstiness
_ o of z(¢). Equation (9) demonstrates the impact of source
whereN; and N, are two Poisson counters indicating num-orrelation on the buffer sizes of the entire network.

ber of times a source turning “On” and “Off”, respectively.
By taking expectation on both sides, we get: B. Drawbacks of Single Level Markov On-Off Sources
Equation (8) and (9) are derived with the assumption

Cn—1—Cn A h
cn —hE[x] “A+u

dE[;t(t)] =X — (A + p)E[z(t)]. 2) that.h > c1. In general, this is an unrealistic assumption.
Particularly, when there are multiple On-Off sources, the
In steady state, there is peak rate ofevery source must be greater thanas well.
A Also the fluid model with a normal Markov On-Off source
Elz] = Py (3) only considers the burst at a certain high abstraction kel

_ o ) cannot take care of the packet level burst at the same time.
~ With PCSDE, it is easy to calculate the correlation func- 1o consider the packet arrival behavior and to relax the
tion of x(¢) too. Consider peak rate assumption, we propose a novel two levels Markov

dz(7)2(0) = (1 — 2(r)2(0)dN: (1) — 2(r)z(0)dNa(7)  (4) On-Off source in next section.

Taking the expectation on both sides of Equation (4) leads Il Two LEVELS MARKO.V ON-OFF SOURC.E )
to: Currently, there are two basic types of queueing analysis

d models, classical queueing theory approach and stochastic
- E0z(7)] = (A + W E[z(0)z(r)] + AE[z(0)].  (5)  fluid model. Classical queueing theory looks at the packet
Given the initial conditionz[z:(0)z(0)] = E[x(0)] = A/(A40), I_evel z_;md often requires renewal arnyal assumption. $90h
we can solve the correlation function of the source tlc.flwd model views thg packgt arrival purst as continuous
fluid. As demonstrated in previous section, Markov On-Off
5 (ue*@ﬂ‘)f +2). (6) fluid modelis able to capture the impact of source correfatio
(A +n) on the average queue size. In this section, we propose a
The correlation of Markov On-Off traffic decays exponennovel two levels Markov On-Off source to consider both the
tially with time constantl/(\ + u). This time constant is impact of low level (packet level) burst and the high level
often referred as autocorrelation time constant. (fluid level) burst.
A capacity decreasing tandem queue network with a single First we describe the two levels Markov On-Off source
Markov On-Off source is illustrated in Fig. &; andv;(t) are  model and then develop the average queue length of a tandem
the capacity and queue length of routerespectively. The queue network with this new source.

Rao(T) = Elz(0)z(7)] =



A. Network Mode
x(y(t)||

The high level On-Off process is similar to the normal T (e M IREINITAIL
On-Off model, which presents the traffic burst behavior. The I I
low level On-Off source presents the behavior of packet HH W
arrivals and departures. In classical queueing theoryyeve x(t) | Lo
packet arrival consumes some resources and costs delay. So | i | \
we assume the peak rate of low level On-Off source is
always larger than the link capacity. The low level source y®) ’ ’ ‘ ’
is modulated by the fluid level source as well. time

Fig. 2 presents the two levels Markov On-Off source. High. .
level On-Off source is denoted by stochastic pro Fig. 2. Two Levels Markov On-Off Sourcg(t) presents the fluid level On-

y process  off source.z(t) presents the packet level On-Off soure¢t)y(t) denotes
wherey(t) = 1 indicates source “On” and O otherwisk, the new On-Off source.
andp, are Markov On, Off rates, respectively. The low level Sincez(t) andy(t) are independent, we have
On-Off source is denoted by another stochastic proggss
z(t) takes values of 1 and 0 if source is “On” and “Off”, Elzy] = Ez]E[y]. (12)
respectively.z(t) and y(¢) are independent processes. The
modulated source is in state “On” only when battt) and From (10), we have
y(t) are 1. dE w2
The notations are summarized as following: d[t 1 o, Bfoi] + 2he Bleyon], (13)
o z(t): stochastic process presenting the packet level
Markov On-Off source;

time

0
TN
0
TRIRI |
TN
TR

time

« y(t): stochastic process presenting the fluid level % =(ha — c1) E[z] Ely] + Ay E[zv1] + Az Elyvi]
Markov On-fo source; — Elayv1] O + s + Ay + 1) (14)
e Niz, Niy: Poisson counters for “On” events oft) and
y(t), respectively; In steady state, Equation (13) and (14) lead to
e Nz, Noy,: Poisson counters for “Off” events eft) and
y(t), respectively; c1Ev1] = ha E[zyvi]
e Az, Ayl “On” rates ofx(t) andy(t), respectively; _4 (he — c1)E[z]E[y] + Ay E[zv1] + Az E]yv1] (15)
o g, py: “Off” rates of z(t) andy(t). Since the high level * Az + pa + Ay + py '

and low level On-Off sources are at different timescales,
Ay and u, are much smaller than,, u, and (A, +
py) << (Az + pa);

o hg: peak rate of the source;

e c;: capacity of routeri. To make the system stable,

To solve E[v1] we have to get botlE[zv;] and E[yv1].
1) Solve E[zvi]: From (10), we have

dzvy = — c1zI(vy)dt + hezydt + v1(1 — )dN14; — 2v1dNay.

the server’s capacity should be always larger than the (16)
average incoming rate; > hy E[z]E[y]; By taking expectation on both sides @fv;,, we haveE[zv]
« v;(t): queue size of router in steady state:
Then the system can be modeled by following differential
equations: Elovy] = 2efil= ClEimIJ(rUL)] +haBRIEW] (47
do(t) = (1—x(t))dNig — 2(t)dNag -
dy(t) = (1= y(t))dNry — y(t)ANa, where Efzl(v,)] Is:
dvi(t) = —c1I(v1)dt + hez(t)y(t)dt Elad — Prlr =1 0
dva(t) = —caX(vo)dt + c1X(vy)dt (20) [zX(v1)] rfz ,v1 > 0]
) =Prlz=1,y=1,v1 >0+ Prlz =1,y =0,v; > 0]
: =Prlz=1,y=1]+Prlx =1,y =0,v1 >0
don(t) = —cn(on)dt + cn1L(vp_1)dt. e =Ly =1+Prle =1y=0v>0]

= E[z]Ely] + Prlzr =1,y = 0,v1 > 0]. (18)
Since steady state average queue size is important forrbuffe

design and network operations, we are interested in solvidgefine P, = Prjz = 1,y = 0,v1 > 0], Equation (17) can be
E[v;] at any stage of tandem queues. We start with solvinggwritten as

the average queue length of the first queue. Then we extend (he — c1)E[2]Ely] — ¢1P1

our analysis taE[vy,). Elzv1] = E[z]E[v1] + (19)

Az + Hx
B. Average Queue Length E[v1]
The solutions of£[z] and E[y] in steady state are:

Az Ay
—2% andE[y(t)] = )
e (o] = 52

2) Solve Efyvi]: By symmetry ofz(¢) andy(t), we have

dyvi = — cryI(v1)dt + haxydt + v1(1 — y)dN1y — yv1dNay,
(11) (20)

Elz(t)] =



and in steady state, we have

Elyi] = Ely]Eloy] + e ERIEY] = a1 BlyTI(v)]

Ay + by
= BB + M= EEIED] _/\51—:3;[:1 >0,y =1]
_ BBy + BRI = C/\lyPi[ZI; Oy = UEW]  (p9)

Now we need to solver[v; > Oly = 1]. Wheny(t) = 1,
if the average incoming rate, E[x] > c1, the average queue
keeps increasing and the queue length is non zero duri
almost all the time. In this scenari®r[v; > Oly = 1] is
close to 1.
If heElx] < c1, taking conditional expectation oveft) =
1 on Equation (20) leads to
dEvi|ly =1
P =1 Bl = 1] + he Elaly = 1]-
Elvily = 1py (22)

where E[I(v1)ly = 1] = Pr[v1 > Oy = 1], Efv1,y = 1] =
Efvily = 1] Prly = 1] = E[v1]y = 1]E[y]. Also sincex(t) and
y(t) are independent, we have

Elzly = 1] = Ela]. (23)

Therefore, after solving Equation (22) in steady state, w,

have

_ haElz]  pyElyvi]

aBEly]
Finally, by solving Equation (21) and (24) and also con

sideringPr[v; > Oly = 1] & 1 whenh,E[z] < ¢1, we have

Elyv] = {
(25)

3) Solve E[v1]: After substituting Equation (19) and (25)
into (15), we can solveZ[v;].
o If hyE[x] > c¢;: Consider that\, and u, are much
larger than)\, andp,, E[vi] can be approximated as

he Ez] Ely] . ( he Elx] — cl)
c1 — he Bz Ey] Ay + Hy 26)

where1/(\; + pz) and1/(\y + uy) are autocorrelation
time constants of(t) andy(t), respectively. Therefore,
Equation (26) shows that[v;] depends on the bursti-
ness of bothz(¢) andy(t).

If haElz] < et

Pr[v; > Oly = 1] (24)

C1

E[v1]7

By (

if haE[z] < c1,

heBlz]—cy | E[vl]), otherwise.

AyFpy

hy — 1
Az + Uz

Elvy] =~

~ ha E[z]Ely] (hm - )
c1 — haE[z] Ao+ pz /)
In this scenarioE[v1] only depends on the burstiness
of z(t). For fixed E[z] and E[y], E[v1] linearly changes
with x—-——.
Special casedVhen E[z] = 1, sinceh, > c1, the result
fits into the case that, E[z] > c;.

Elv1] (27)

ha E [y]
c1 —haE [y]

hz —C1

Flvi| =
[or] Ay + py

(28)

which is exactly the result when there is only high level
On-Off source.

When E[y] = 1, to make the system stable we require that
hzE[z] < ¢1. Then according to Equation (27),

hg E[x] ( hz —c1 )
c1 — ha Blz] \ Xz + pz
which matches the result when there is only one level Markov
On-Off source ofz(t).

In summary, Equation(26) and (27) show that the average
Qoeue lengthE[v;] depends on burst of(t) and y(t). The
importance of their impacts varies according to the diffiese
betweenh; E[x] andc;.

If heE[x] > 1, E[v1] depends on the burstiness of both
x(t) and y(t). Because the average incoming rate is larger
than the capacity, queue length is not zero whgh= 0. In
this scenario, the off period af(t) plays an essential role in
dequeuing. Since the timescale mf) is much larger than
that of z(¢), E[v1] is mainly dominated by the burstiness of
y(t) in this scenario.

If hyE[x] < c1, Ev1] is only dominated by the burstiness
of z(¢). Wheny(t) is on, the average input traffic is less
than the system capacity. Since the timescalg(©fis much
larger than that ofz(¢), the queue can be absorbed mostly

E['Ul] ~ (29)

\?/heny(t) = 1. In other words, when(t) = 0, the queue is
empty most of time. Therefore, the burstiness,@f affects
E[v1] very little.

C

C. Average Queue Length E[vy,]
In the previous part, we derived the[v;]. Now we can
continue to calculate th&[v,], wheren > 1.

First we solveE[v;]. An easy way to do it is to view
the first two queues as a single queue. Now, the new queue
has inputh,zy and capacitys. We define theE[v)] as the
average queue length of this new queue. From the analysis
of previous section, we know

ha Bz Ely) (hw—cQ )
co—hg E[z]Ely] \ Az +ua )

{ hoE[2]Ely]  ha—cy
(30)

co—hgElx] Ag+pz”
Since the packets in the new queue are actually either in
the first queue or in the second queue, we haye,] =
E[v1] + E[vsg]. Thus, E[vs] is

hy E[x]—co
Ay+hy

If heElx] > c2:
If heEz] < c2:

Elvy] =

. hgE[z]E[ylhy(1—E[z])(c1—c
If he Blz] < c>: (kw+u[x%(c[;]—hw(EHw])[(0]1(—’1le2[9)0])’
( hwEm—cQ) he Elz) E[y)(hs—c1)

If ¢1 < haElz]:

hz—co
Az +pz

Elv] = AyFpy ~ (e1—ha Ela]) Qo tha)’
he Ez] E[ylha(c1—c2)

(c2—ho E[2]Efy])(c1—ha E[z]E[y])
(1—E[w]E[y] 4+ El#l(-Ely))
Azt )\y‘i’l‘y !
(31)
More generally, we have
Elvn] = Elvp] — E[vj_1]. (32)

So, forn > 1, the steady state average queue length is



average incoming rate is bigger than capacities of all gsleue
he E[z] E[ylhe (1— Elz])(ch_1—cn) Thus, the burstiness af(t) dominates the average queue

It ha Blz] < e’ 5 i) en—he BTl (en—1 —F2Ela)’  behavior.
Fig. 6 illustratesE[v,] whency < hzE[z] < ¢1. Fig. 6(a)
If ¢, <hzElz] <c i te BB i 1
n < ha n=l- o by E[z)E[y] shows that wherh, E[z] < c1, E[v1] increases a Py
Elo 1 ~ hy—cy | heBle]cn ) _ haElz]Bly](hs—cn1) increases. The simulation result is close to the model dutpu
[un] & NoThe Ny iy en1 e El2) Owrin)’ : ,
However, Fig. 6(b) shows big errors dnjv,]. The reason
If o1 < ho B[al: ha E[2] E[y]ha(cn—1—cn) _is that model output qu[vl] over estimates.the impact
not =T “(en—ha Ble]Bly])(cn—1—ha E[2]ElY])  Of A\, + pe a@s shown in the right end of Fig. 4(a) and
(1}2%5[‘7’] + E[””iil;#i[y])). 6(a). After removing the impact of’[v;], we get a close

(33) match to the simulation result. This indicates that when the
. . average incoming rate. E[z] is betweenc; andc;_;, we
Formula (33) summarizes our major result of average . :
. should carefully evaluate the impact Bfv;_1] wheni, +p.
gueue length of a tandem queue network. Depending on . ) X
) ) " is small. Fig. 6(c) shows thak[vs] doesn’t change with
different traffic conditions, the average queue length atev N . :

. : /(Az+puz). This is consistent with our model becausgs]
stage in a tandem queue network may be dominated by tﬁsedominated by burst of(t) only whenhs Ejz] > ¢ >
burstiness of either level or both. y y sfpl > ez =~ Cs

When the network is light loaded (in the casenpfz[z] < V. CONCLUSION
cn), the average queue length only depends on the packe
level burst. For fixedE[z] and E[y], queue length at every s
stage of the network linearly changes w&h}rT.

When the network is heavy loaded (in the cazsem[:c] >

Yin this paper, we propose a novel two-level Markov On-Off
ource model to model the burstiness of a packet stream at
different time scales. Analytical results are obtainedetceal
. . : the impact of traffic burstiness at two levels on the queue
c1), the high level burstlne_ss play_s_a major role. _ lengths in a tandem queue system. Both our analytical and
When the network traffic condition is in the m|ddlg Ofsi ulation results demonstrate that the burst of both sevel
them, the average queue length depends on the burstmes%gn\?/e linear impact on the average queue size throughout
both Igvels. , . the entire tandem queue network. Depending on the traffic
In elth_er case, for fixed[z] and Efy], when we simulta- load conditions, the importance of the two level burst may
neously increase both the, + ue andy + uy linearly, the vary. Our proposed new model bridges the classical queueing
average queue length at every stage of the tandem quqHsory, which focuses on the packet level burstiness, and

network will linearly decrease. Therefore, packet spacing_|e fluid queueing model, which is dedicated to deal with

at both levels helps the entire tandem queues performant%% correlation structure in network traffic. Our results fo

gracetully the tandem queuing network could be used to further justify
[V. SIMULATION VALIDATION the packet spacing scheme in helping deploying small buffer
In this section, we use simulation to validate our mairCUters.
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, but E[vs] doesn't. hy = 150, ¢1 = 80, co2 = 70, c3 = 60.
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