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Abstract— Queuing analysis is important in providing guid-
ing principles for packet network analysis. Stochastic fluid
queueing models have been widely used as burst scale models
for high speed communication networks. In this paper, we
propose a novel two-level Markov On-Off source model to
model the burstiness of a packet stream at different time scales.
Analytical results are obtained to reveal the impact of traffic
burstiness at two levels on the queue lengths in a tandem
queue system. Our method combines the modeling power of the
Poisson processes with that of stochastic differential equations
to handle the complex interactions between the packet arrivals
and the queue content. Our results for the tandem queuing
network could be used to further justify the packet spacing
scheme in helping deploying small buffer routers.

I. I NTRODUCTION

In the past decade, we have witnessed the dramatic growth
of the Internet. On one hand, the speed of network links
and routers keep increasing. On the other hand, new appli-
cations, such as Peer-to-Peer file sharing [1], [2], Voice-over-
IP [3] and Video-over-IP [4], aggressively consume network
resources and quickly push the Internet traffic towards its
capacity. Congestion developed on network bottlenecks de-
grades user perceived quality of services, in terms of through-
put, delay and losses. The study of network congestion is
important for the management of operational networks and
the design of future networks.

Queueing analysis has proven to be an efficient approach
to evaluate the performance of communication networks
under different traffic profiles. Classical queuing theory often
requires renewal arrival assumption in order to obtain closed
form results. However, traffic in modern packet networks is
characterized by packet bursts. Traditional burst absorption
methods rely on the use of large buffers at intermediate
stations. Unfortunately optical packet switches can not afford
large buffers. As a result we have to find other ways to handle
the traffic bursts. For this and other reasons a quantitative
analysis of the burst impact in network of queues become
very critical. Towards this end, stochastic fluid queueing
models have been widely used as burst scale models for
high speed communication networks [5], [6]. In a fluid
model, discrete packets and cells within bursts are modeled
as continuous fluid. The continuous nature of fluid makes
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fluid models more tractable analytically. Many results have
been obtained for various fluid queueing systems [6]–[9].

Recently, Markov On-Off processes have been applied
to capture the correlation structure in network traffic [10].
Sample path analysis techniques, such as Poisson Counter
Driven Stochastic Differential Equation [8] (PCSDE), are
employed to study system queueing behavior in steady
state [11], [12]. However, most previous studies assume the
peak rate of a Markov On-Off source is larger than the
server’s capacity. This limited its modeling power. In this
paper, we propose a novel two-level Markov On-Off source
model to model the burstiness of a packet stream and derive
analytical results that reveal the impact of the burstinessat
each level. In our model, a source alternates between two
states, namely “On” and “Off” states. In “On” state, it keeps
sending data and at “Off” state, it sends nothing. Different
from normal Markov On-Off source model, the “On” state
is driven by another Markov On-Off process. Our model is
motivated by the traffic pattern of TCP connections. In a
regular TCP session, the sender tends to send out a burst
of packets as allowed by its current congestion window.
Then it keeps silent until the acknowledgments come back
after one round-trip time. As studied in [13], TCP’s window
behaviors contribute to network traffic burstiness at multiple
time scales. Our two-level Markov On-Off model essentially
captures the traffic burstiness at two different time scales. By
employing the PCSDE approach, we analytically study how
traffic burstiness at two time scales affect the queue lengths
in a tandem queue system.

Our method combines the modeling power of the Poisson
processes with that of stochastic differential equations,in
a way similar to the whitening filter in system theory, to
handle the complex interactions between the packet arrivals
and the queue content. Our analytical results demonstrate
that when the average incoming rate is smaller than the
server’s capacity, the packet level burst plays a major role
in determining the average queue length. Otherwise, the
high level TCP burstiness dominates the dynamic of the
average queue length. Thus, our proposed new model bridges
the classical queueing theory, which focuses on the packet
level burstiness, and the fluid queueing model, which is
dedicated to deal with the correlation structure in network
traffic. Our results for the tandem queuing network could be
used to further justify the packet spacing scheme in helping
deploying small buffer routers.

The paper is organized as follows. Section II presents the
drawbacks of existing single layer Markov On-Off source
model. Section III proposes our two levels Markov On-Off



model in a tandem queue network. The network is modeled
by a set of stochastic differential equations. A close form
solution of average queue length is provided. Section IV
presents simulation result to validate our major results. Our
contributions and results are summarized in Section V.

II. D RAWBACKS OF SINGLE LAYER MARKOV ON-OFF

SOURCES

In this section, we first introduce the related work of a
tandem queue network with a single layer Markov On-Off
source. We present its stochastic fluid model and the corre-
sponding analytical results. Finally we address the drawbacks
of this simple Markov On-Off model.

A. Tandem Queue Networks with a Markov On-Off Source

Fluid model is used to analyze the impact of traffic burst
on network buffers. With the help of Poisson Counter Driven
Stochastic Differential Equations [8], the fluid model can
quantitatively analyze how much a burst traffic can impact
the network buffers.

A normal Markov On-Off source has two states. At “On”
state, the source sends data at a fixed rateh. The duration
of “On” state follows an exponential distribution with rate
µ. At “Off” state, the source sends nothing and the duration
of “Off” state follows an exponential distribution with rate
λ. The behavior ofx(t) can be expressed by a PCSDE:

dx(t) = (1 − x(t))dN1 − x(t)dN2 (1)

whereN1 andN2 are two Poisson counters indicating num-
ber of times a source turning “On” and “Off”, respectively.
By taking expectation on both sides, we get:

dE[x(t)]

dt
= λ − (λ + µ)E[x(t)]. (2)

In steady state, there is

E[x] =
λ

λ + µ
. (3)

With PCSDE, it is easy to calculate the correlation func-
tion of x(t) too. Consider

dx(τ )x(0) = (1 − x(τ ))x(0)dN1(τ ) − x(τ )x(0)dN2(τ ) (4)

Taking the expectation on both sides of Equation (4) leads
to:

d

dτ
E[x(0)x(τ )] = −(λ + µ)E[x(0)x(τ )] + λE[x(0)]. (5)

Given the initial conditionE[x(0)x(0)] = E[x(0)] = λ/(λ+µ),
we can solve the correlation function of the source

Rxx(τ ) ≡ E[x(0)x(τ )] =
λ

(λ + µ)2
(µe−(λ+µ)τ + λ). (6)

The correlation of Markov On-Off traffic decays exponen-
tially with time constant1/(λ + µ). This time constant is
often referred as autocorrelation time constant.

A capacity decreasing tandem queue network with a single
Markov On-Off source is illustrated in Fig. 1.ci andvi(t) are
the capacity and queue length of routeri, respectively. The
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Fig. 1. A Tandem Queue Network with Single Markov On-Off Source.

capacities satisfy the conditions thatc1 > c2 > · · · > cn > 0.
The network dynamics can be presented by a set of stochastic
differential equations:



















dv1(t) = −c1I(v1)dt + hx(t)dt

dv2(t) = −c2I(v2)dt + c1I(v1)dt
...

dvn(t) = −cnI(vn)dt + cn−1I(vn−1)dt.

(7)

whereI(vi) = 1 if vi > 0 and equal to 0 ifvi = 0.
To make the problem solvable, the peak rate of On-Off

source must be greater thanc1. To guarantee the system is
stable, there ishE[x] < cn. The average queue length is
derived in [8] and we quote the results here:

E[v1] =
(

c1 − hE[x]
)

−1

·
h − c1
λ + µ

· hE[x], (8)

E[vn] =
cn−1 − cn

cn − hE[x]
· (

h

λ + µ
E[x] + E[vn−1] + · · · + E[v1]).

(9)

An important observation is that, givenE[x], the average
queue length at any stage linearly depends on1/(λ + µ), the
autocorrelation time constant. Theλ + µ illustrates how fast
the correlation ofx(t) decays and presents the burstiness
of x(t). Equation (9) demonstrates the impact of source
correlation on the buffer sizes of the entire network.

B. Drawbacks of Single Level Markov On-Off Sources

Equation (8) and (9) are derived with the assumption
that h > c1. In general, this is an unrealistic assumption.
Particularly, when there are multiple On-Off sources, the
peak rate ofevery source must be greater thanc1 as well.

Also the fluid model with a normal Markov On-Off source
only considers the burst at a certain high abstraction leveland
cannot take care of the packet level burst at the same time.

To consider the packet arrival behavior and to relax the
peak rate assumption, we propose a novel two levels Markov
On-Off source in next section.

III. T WO LEVELS MARKOV ON-OFF SOURCE

Currently, there are two basic types of queueing analysis
models, classical queueing theory approach and stochastic
fluid model. Classical queueing theory looks at the packet
level and often requires renewal arrival assumption. Stochas-
tic fluid model views the packet arrival burst as continuous
fluid. As demonstrated in previous section, Markov On-Off
fluid model is able to capture the impact of source correlation
on the average queue size. In this section, we propose a
novel two levels Markov On-Off source to consider both the
impact of low level (packet level) burst and the high level
(fluid level) burst.

First we describe the two levels Markov On-Off source
model and then develop the average queue length of a tandem
queue network with this new source.



A. Network Model

The high level On-Off process is similar to the normal
On-Off model, which presents the traffic burst behavior. The
low level On-Off source presents the behavior of packet
arrivals and departures. In classical queueing theory, every
packet arrival consumes some resources and costs delay. So
we assume the peak rate of low level On-Off source is
always larger than the link capacity. The low level source
is modulated by the fluid level source as well.

Fig. 2 presents the two levels Markov On-Off source. High
level On-Off source is denoted by stochastic processy(t),
wherey(t) = 1 indicates source “On” and 0 otherwise.λy

andµy are Markov On, Off rates, respectively. The low level
On-Off source is denoted by another stochastic processx(t).
x(t) takes values of 1 and 0 if source is “On” and “Off”,
respectively.x(t) and y(t) are independent processes. The
modulated source is in state “On” only when bothx(t) and
y(t) are 1.

The notations are summarized as following:

• x(t): stochastic process presenting the packet level
Markov On-Off source;

• y(t): stochastic process presenting the fluid level
Markov On-Off source;

• N1x, N1y : Poisson counters for “On” events ofx(t) and
y(t), respectively;

• N2x, N2y: Poisson counters for “Off” events ofx(t) and
y(t), respectively;

• λx, λy: “On” rates ofx(t) andy(t), respectively;
• µx, µy: “Off” rates of x(t) andy(t). Since the high level

and low level On-Off sources are at different timescales,
λy and µy are much smaller thanλx, µx and (λy +

µy) << (λx + µx);
• hx: peak rate of the source;
• ci: capacity of routeri. To make the system stable,

the server’s capacity should be always larger than the
average incoming rate,ci > hxE[x]E[y];

• vi(t): queue size of routeri.

Then the system can be modeled by following differential
equations:



































dx(t) = (1 − x(t))dN1x − x(t)dN2x

dy(t) = (1 − y(t))dN1y − y(t)dN2y

dv1(t) = −c1I(v1)dt + hxx(t)y(t)dt

dv2(t) = −c2I(v2)dt + c1I(v1)dt
...

dvn(t) = −cnI(vn)dt + cn−1I(vn−1)dt.

(10)

Since steady state average queue size is important for buffer
design and network operations, we are interested in solving
E[vi] at any stage of tandem queues. We start with solving
the average queue length of the first queue. Then we extend
our analysis toE[vn].

B. Average Queue Length E[v1]

The solutions ofE[x] andE[y] in steady state are:

E[x(t)] =
λx

λx + µx
, andE[y(t)] =

λy

λy + µy
. (11)

Fig. 2. Two Levels Markov On-Off Source.y(t) presents the fluid level On-
Off source.x(t) presents the packet level On-Off source.x(t)y(t) denotes
the new On-Off source.

Sincex(t) andy(t) are independent, we have

E[xy] = E[x]E[y]. (12)

From (10), we have

dE[v2
1 ]

dt
= −2c1E[v1] + 2hxE[xyv1], (13)

dE[xyv1]

dt
=(hx − c1)E[x]E[y] + λyE[xv1] + λxE[yv1]

− E[xyv1](λx + µx + λy + µy). (14)

In steady state, Equation (13) and (14) lead to

c1E[v1] = hxE[xyv1]

= hx
(hx − c1)E[x]E[y] + λyE[xv1] + λxE[yv1]

λx + µx + λy + µy
. (15)

To solveE[v1] we have to get bothE[xv1] andE[yv1].
1) Solve E[xv1]: From (10), we have

dxv1 = − c1xI(v1)dt + hxxydt + v1(1 − x)dN1x − xv1dN2x.

(16)

By taking expectation on both sides ofdxv1, we haveE[xv1]

in steady state:

E[xv1] =
λxE[v1] − c1E[xI(v1)] + hxE[x]E[y]

λx + µx
(17)

whereE[xI(v1)] is:

E[xI(v1)] = Pr[x = 1, v1 > 0]

= Pr[x = 1, y = 1, v1 > 0] + Pr[x = 1, y = 0, v1 > 0]

= Pr[x = 1, y = 1] + Pr[x = 1, y = 0, v1 > 0]

= E[x]E[y] + Pr[x = 1, y = 0, v1 > 0]. (18)

Define P1 = Pr[x = 1, y = 0, v1 > 0], Equation (17) can be
rewritten as

E[xv1] = E[x]E[v1] +
(hx − c1)E[x]E[y] − c1P1

λx + µx
. (19)

2) Solve E[yv1]: By symmetry ofx(t) andy(t), we have

dyv1 = − c1yI(v1)dt + hxxydt + v1(1 − y)dN1y − yv1dN2y,

(20)



and in steady state, we have

E[yv1] = E[y]E[v1] +
hxE[x]E[y] − c1E[yI(v1)]

λy + µy

= E[y]E[v1] +
hxE[x]E[y] − c1 Pr[v1 > 0, y = 1]

λy + µy

= E[y]E[v1] +
hxE[x]E[y] − c1 Pr[v1 > 0|y = 1]E[y]

λy + µy
. (21)

Now we need to solvePr[v1 > 0|y = 1]. Wheny(t) = 1,
if the average incoming ratehxE[x] ≥ c1, the average queue
keeps increasing and the queue length is non zero during
almost all the time. In this scenario,Pr[v1 > 0|y = 1] is
close to 1.

If hxE[x] < c1, taking conditional expectation overy(t) =

1 on Equation (20) leads to

dE[v1|y = 1]

dt
= − c1E[I(v1)|y = 1] + hxE[x|y = 1]−

E[v1|y = 1]µy (22)

where E[I(v1)|y = 1] = Pr[v1 > 0|y = 1], E[v1, y = 1] =

E[v1|y = 1]Pr[y = 1] = E[v1|y = 1]E[y]. Also sincex(t) and
y(t) are independent, we have

E[x|y = 1] = E[x]. (23)

Therefore, after solving Equation (22) in steady state, we
have

Pr[v1 > 0|y = 1] =
hxE[x]

c1
−

µyE[yv1]

c1E[y]
. (24)

Finally, by solving Equation (21) and (24) and also con-
sideringPr[v1 > 0|y = 1] ≈ 1 whenhxE[x] < c1, we have

E[yv1] ≈

{

E[v1], if hxE[x] < c1,

E[y]
(

hxE[x]−c1
λy+µy

+ E[v1]
)

, otherwise.

(25)

3) Solve E[v1]: After substituting Equation (19) and (25)
into (15), we can solveE[v1].

• If hxE[x] ≥ c1: Consider thatλx and µx are much
larger thanλy andµy, E[v1] can be approximated as

E[v1] ≈
hxE[x]E[y]

c1 − hxE[x]E[y]
·
(

hx − c1
λx + µx

+
hxE[x] − c1

λy + µy

)

(26)

where1/(λx + µx) and1/(λy + µy) are autocorrelation
time constants ofx(t) andy(t), respectively. Therefore,
Equation (26) shows thatE[v1] depends on the bursti-
ness of bothx(t) andy(t).

• If hxE[x] < c1:

E[v1] ≈
hxE[x]E[y]

c1 − hxE[x]
·
(

hx − c1
λx + µx

)

. (27)

In this scenarioE[v1] only depends on the burstiness
of x(t). For fixedE[x] andE[y], E[v1] linearly changes
with 1

λx+µx
.

Special casesWhen E[x] = 1, sincehx > c1, the result
fits into the case thathxE[x] > c1.

E[v1] ≈
hxE[y]

c1 − hxE[y]

(

hx − c1
λy + µy

)

, (28)

which is exactly the result when there is only high level
On-Off source.

WhenE[y] = 1, to make the system stable we require that
hxE[x] < c1. Then according to Equation (27),

E[v1] ≈
hxE[x]

c1 − hxE[x]

(

hx − c1
λx + µx

)

(29)

which matches the result when there is only one level Markov
On-Off source ofx(t).

In summary, Equation(26) and (27) show that the average
queue lengthE[v1] depends on burst ofx(t) and y(t). The
importance of their impacts varies according to the difference
betweenhxE[x] andc1.

If hxE[x] ≥ c1, E[v1] depends on the burstiness of both
x(t) and y(t). Because the average incoming rate is larger
than the capacity, queue length is not zero wheny(t) = 0. In
this scenario, the off period ofy(t) plays an essential role in
dequeuing. Since the timescale ofy(t) is much larger than
that of x(t), E[v1] is mainly dominated by the burstiness of
y(t) in this scenario.

If hxE[x] < c1, E[v1] is only dominated by the burstiness
of x(t). When y(t) is on, the average input traffic is less
than the system capacity. Since the timescale ofy(t) is much
larger than that ofx(t), the queue can be absorbed mostly
wheny(t) = 1. In other words, wheny(t) = 0, the queue is
empty most of time. Therefore, the burstiness ofy(t) affects
E[v1] very little.

C. Average Queue Length E[vn]

In the previous part, we derived theE[v1]. Now we can
continue to calculate theE[vn], wheren > 1.

First we solveE[v2]. An easy way to do it is to view
the first two queues as a single queue. Now, the new queue
has inputhxxy and capacityc2. We define theE[v′2] as the
average queue length of this new queue. From the analysis
of previous section, we know

E[v′2] ≈

{

If hxE[x] ≥ c2: hxE[x]E[y]
c2−hxE[x]E[y]

(

hx−c2
λx+µx

+
hxE[x]−c2

λy+µy

)

,

If hxE[x] < c2: hxE[x]E[y]
c2−hxE[x]

· hx−c2
λx+µx

.

(30)

Since the packets in the new queue are actually either in
the first queue or in the second queue, we haveE[v′2] =

E[v1] + E[v2]. Thus,E[v2] is

E[v2] ≈



































If hxE[x] < c2: hxE[x]E[y]hx(1−E[x])(c1−c2)
(λx+µx)(c2−hxE[x])(c1−hxE[x]) ,

If c2 ≤ hxE[x] < c1: hxE[x]E[y]
c2−hxE[x]E[y]

·
(

hx−c2
λx+µx

+
hxE[x]−c2

λy+µy

)

−
hxE[x]E[y](hx−c1)

(c1−hxE[x])(λx+µx) ,

If c1 ≤ hxE[x]: hxE[x]E[y]hx(c1−c2)
(c2−hxE[x]E[y])(c1−hxE[x]E[y])

·
(

1−E[x]E[y]
λx+µx

+
E[x](1−E[y])

λy+µy

)

.

(31)

More generally, we have

E[vn] = E[v′n] − E[v′n−1]. (32)

So, for n > 1, the steady state average queue length is



E[vn] ≈























































If hxE[x] < cn:
hxE[x]E[y]hx(1−E[x])(cn−1−cn)

(λx+µx)(cn−hxE[x])(cn−1−hxE[x])
,

If cn ≤ hxE[x] < cn−1: hxE[x]E[y]
cn−hxE[x]E[y]

·
(

hx−cn
λx+µx

+
hxE[x]−cn

λy+µy

)

−
hxE[x]E[y](hx−cn−1)

(cn−1−hxE[x])(λx+µx)
,

If cn−1 ≤ hxE[x]:
hxE[x]E[y]hx(cn−1−cn)

(cn−hxE[x]E[y])(cn−1−hxE[x]E[y])
·

(

1−E[x]E[y]
λx+µx

+
E[x](1−E[y])

λy+µy

)

.

(33)

Formula (33) summarizes our major result of average
queue length of a tandem queue network. Depending on
different traffic conditions, the average queue length at every
stage in a tandem queue network may be dominated by the
burstiness of either level or both.

When the network is light loaded (in the case ofhxE[x] <

cn), the average queue length only depends on the packet
level burst. For fixedE[x] and E[y], queue length at every
stage of the network linearly changes with1

λx+µx
.

When the network is heavy loaded (in the case ofhxE[x] ≥

c1), the high level burstiness plays a major role.
When the network traffic condition is in the middle of

them, the average queue length depends on the burstiness of
both levels.

In either case, for fixedE[x] andE[y], when we simulta-
neously increase both theλx + µx andλy + µy linearly, the
average queue length at every stage of the tandem queue
network will linearly decrease. Therefore, packet spacing
at both levels helps the entire tandem queues performance
gracefully.

IV. SIMULATION VALIDATION

In this section, we use simulation to validate our main
results Equation (26), (27) and (33).

A. Validation of E[v1]

Fig. 3 shows the simulation results whenhxE[x] ≥ c1.
Fig. 3(a) and Fig. 3(b) depictE[v1] with differentE[x]’s and
E[y]’s. They demonstrate that theE[v1] linearly changes with
1/(λy + µy), which is consistent with our model (26). Fig.
3(c) presents the relationship betweenE[v1] and1/(λx +µx).
It validates that1/(λx +µx) has little impact onE[v1] in this
scenario.

Fig. 4 validates the result whenhxE[x] < c1. Fig. 4(a)
and 4(b) show theE[v1] with differentE[x]’s andhx’s. They
validate thatE[v1] linearly increases with1/(λx +µx) in this
scenario. However, whenλx +µx becomes small, the model
over estimates the impact of1/(λx + µx). The reason is that
asλx+µx decreases, the assumption thatλx, µx >> λy, µy is
getting weak. Fig. 4(c) illustrates that the burstiness ofy(t)

doesn’t affectE[v1] in this scenario.

B. Validation of E[vn]

Fig. 5 validates Formula (33) whenhxE[x] > c1. Fig.
5(a), 5(b) and 5(c) illustrate thatE[v1], E[v2] andE[v3] are
all linearly changing with1/(λy + µy). In this scenario, the

average incoming rate is bigger than capacities of all queues.
Thus, the burstiness ofy(t) dominates the average queue
behavior.

Fig. 6 illustratesE[vn] when c2 < hxE[x] < c1. Fig. 6(a)
shows that whenhxE[x] < c1, E[v1] increases as 1

(λx+µx)
increases. The simulation result is close to the model output.
However, Fig. 6(b) shows big errors onE[v2]. The reason
is that model output ofE[v1] over estimates the impact
of λx + µx as shown in the right end of Fig. 4(a) and
6(a). After removing the impact ofE[v1], we get a close
match to the simulation result. This indicates that when the
average incoming ratehxE[x] is betweencj and cj−1, we
should carefully evaluate the impact ofE[vj−1] whenλx+µx

is small. Fig. 6(c) shows thatE[v3] doesn’t change with
1/(λx +µx). This is consistent with our model becauseE[v3]

is dominated by burst ofy(t) only whenhxE[x] > c2 > c3.

V. CONCLUSION

In this paper, we propose a novel two-level Markov On-Off
source model to model the burstiness of a packet stream at
different time scales. Analytical results are obtained to reveal
the impact of traffic burstiness at two levels on the queue
lengths in a tandem queue system. Both our analytical and
simulation results demonstrate that the burst of both levels
have linear impact on the average queue size throughout
the entire tandem queue network. Depending on the traffic
load conditions, the importance of the two level burst may
vary. Our proposed new model bridges the classical queueing
theory, which focuses on the packet level burstiness, and
the fluid queueing model, which is dedicated to deal with
the correlation structure in network traffic. Our results for
the tandem queuing network could be used to further justify
the packet spacing scheme in helping deploying small buffer
routers.
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Fig. 4. Validation ofE[v1] WhenhxE[x] < c1: E[v1] linearly increases with 1
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(c) Average Queue Length ofv3

Fig. 5. Validation ofE[vn] When hxE[x] > c1: E[vn] at any stage linearly increases with 1

λy+µy

. hx = 150, c1 = 70, c2 = 60, c3 = 50.
λx = 1000, µx = 1000, λy : 1 − 10, µy : 1 − 10.
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