
Adaptive Queue-based Chunk Scheduling for P2P
Live Streaming

Yang Guo
2 Independence Way

Thomson Lab
Princeton, NJ 08540

Email:Yang.Guo@thomson.net

Chao Liang
ECE Dept.

Polytechnic University
Brooklyn, NY, 11201

Email: cliang@photon.poly.edu

Yong Liu
ECE Dept.

Polytechnic University
Brooklyn, NY, 11201

Email: yongliu@poly.edu

Abstract— P2P streaming has been popular and is expected to
attract even more users. The challenges for P2P streaming have
been on its scalability and video viewing quality. Both require
efficient utilization of resources in P2P networks. This paper
proposes an adaptive queue-based chunk scheduling method.
The proposed scheme can achieve high bandwidth utilizationand
optimal streaming rate possible in a P2P streaming system. The
prototype implementing the queue-based scheduling is developed
and used to evaluate the scheme in the real network. The exper-
iment results show the queue-based chunk scheduling methodis
capable of achieving the streaming rate close to the optimum, and
adapting to the peer churns and underlying network dynamics
nicely.

I. I NTRODUCTION

Video-over-IP applications have recently attracted a large
number of users on the Internet. In2006, the number of video
streams served increased38.8% to 24.92 billion even without
counting the user generated videos [1]. Youtube [2] alone
hosted some45 terabytes of videos and attracted1.73 billion
views by the end of August2006. With the fast deployment
of high-speed residential access, such as Fiber-To-The-Home,
video traffic is expected to dominate the Internet in near
future. Traditionally, video content can be streamed to end
users either directly from video source servers or indirectly
from servers in Content Delivery Networks (CDNs). Peer-to-
Peer video streaming has emerged as an alternative with low
server infrastructure cost. P2P video streaming systems, such
as ESM [3], CoolStreaming [4], PPLive [5], and SopCast [6],
have attracted millions of users to watch live or on-demand
video programs on the Internet [7].

The P2P design philosophy seeks to utilize peers’ upload
bandwidth to reduce servers’ workload. However, the upload
bandwidth utilization might be throttled by the so called
content bottleneckwhere a peer may not have any content
that can be uploaded to its neighbors even if its link is idle.
The mechanism adopted by P2P file sharing applications is
to increase the content diversity among peers. For example,
the rarest-first policyof BitTorrent [8] encourages peers to
retrieve the chunks with the lowest availability among their
neighbors. Network coding has also been explored to mitigate
the content bottleneck problem [9]. The content bottleneck
problem in live streaming is even more severe. Video content

in live streaming has strict playback deadlines. Even temporary
decrease in peer bandwidth utilization leads to peer playback
quality degradation, such as video playback freezing or skip-
ping. To make things worse, at any given moment, peers are
only interested in downloading a small set of chunks falling
into the current playback window. This greatly increases the
possibility of content bottleneck. One way to address this
problem is to compromise user viewing quality. For example,a
lower video playback rate would impose lower peer bandwidth
utilization requirement. Allowing a longer playback delayalso
allows a larger set of chunks to be exchanged among peers.
The opposite solution lies in designing more efficient peering
strategies and chunk scheduling methods.

This paper deals with the second solution. Our focus is on
the design of a chunk scheduling method that can achieve
high peer bandwidth utilization. We assume collaborative P2P
systems. Peers help each other and forward received video
chunks to other peers. Motivated by the effectiveness of buffer
control on switches and Active Queue Management (AQM)
on routers, we propose a novel queue-based chunk scheduling
algorithm to adaptively eliminate content bottlenecks in P2P
streaming. Using queue-based signaling between peers and the
content source server, the amount of workload assigned to a
peer is proportional to its available upload capacity, which
leads to high bandwidth utilization. The queue-based signaling
also enables the proposed scheme to adapt to the changing
network environment. Our contributions are three-fold:

1) We propose a simple queue-based chunk scheduling
method achieving high bandwidth utilization in P2P
live streaming. We theoretically show that the proposed
scheme can achieve full bandwidth utilization in ide-
alized network environments. A practical algorithm is
designed to achieve a close-to-optimum performance in
realistic network environment.

2) For distributed implementation, various design consid-
erations are explored to handle dynamics in realistic
network environments, including peer churns, peer band-
width variations, and inside network congestion. A full-
feature prototype is developed to test the feasibility and
efficiency of the proposed scheduling algorithm.

3) The performance of the prototype system is examined



through a series of carefully designed experiments over
PlanetLab [10]. Both the optimality and the adaptiveness
of the proposed chunk scheduling method are demon-
strated.

A. Related Work

The authors in [11] derived the upper bound for the stream-
ing rate of a P2P live streaming system. They also developed
a centralized solution that can fully utilize peer uploading
bandwidth and achieve the streaming rate upper bound. The
centralized solution collects all peers’ upload capacity infor-
mation, and computes the sub-stream rates sent from the server
to peers. In practice, available upload capacity varies over time
and peers join and leave the system. The central coordinator
needs to continuously monitor peers’ upload capacity and
re-compute the sub-stream rate to individuals. The proposed
queue-based chunk scheduling method is a decentralized ver-
sion of the above. Peers only exchange information with other
peers/server and make local decision. Global peer upload
capacity information does not need to be collected, and the
scheme adapts to the changing peer membership and network
environment nicely.

There have been ongoing efforts intending to improve
resource utilization in P2P live streaming. The study in [12]
shows the mesh-based scheme can better utilize peers’ upload
capacity than tree-based scheme, thanks to the dynamic map-
ping of content to the delivery paths. To improve the resource
utilization in mesh-based P2P streaming, [13] proposes a two-
phase swarming scheme where the fresh content is quickly
diffused to the entire system in the first phase, and peers
exchange available content in the second phase. Network
coding is also applied to P2P live streaming. [14] performs a
reality check by using network coding for P2P live streaming.
However, neither approach can fully utilize the resources and
achieve the maximum streaming rate. The authors in [15] give
a randomized distributed algorithm that can converge to the
maximum streaming rate. They also study the delay that users
must endure in order to play the stream with a small amount
of missing data. The queue-based chunk scheduling method is
a deterministic distributed algorithm. No data chunk need to
be skipped to achieve a small playback startup delay.

One shortcoming with the queue-based chunk scheduling
method is it requires a fully connected topology among the
server and all peers, and therefore is not practical. In [16],
we proposed a clustered approach to achieve close to full
bandwidth utilization. Peers are organized into clusters based
on their capacities and locations. Within a cluster, the queue-
based chunk scheduling method can be used. Thus the afore-
mentioned problem is mitigated.

The remaining part of this paper is organized as follows.
The queuing model and scheduling algorithm of queue-based
chunk scheduling are described in Section II. Implementation
considerations are explored in Section III. The experiment
results are reported in Section IV. Finally, Section V ends
the paper with concluding remarks.

II. A DAPTIVE QUEUE-BASED CHUNK SCHEDULING

The capability to achieve high streaming rate is desirable
for P2P streaming. Higher streaming rate allows the system
to broadcast video with better quality. It also provides more
cusion to absorb the bandwidth variations caused by peer
churn and network congestions when constant-bit-rate (CBR)
video is broadcasted. The key to achieve high streaming rate
is to better utilize peers’ uploading bandwidth.

In this section, we propose a queue-based chunk scheduling
algorithm that can achieve close to100% peers’ uploading
bandwidth utilization in practical P2P networking environ-
ment. In P2P system, the resource utilization is determined
by the overlay topology and collective behavior of chunk
scheduling at individual peers. At system level, queue-based
adaptive chunk scheduling requires fully connected mesh
among participating peers. At peer level, data chunks are
pulled/pushed from server to peers, cached at peers’ queue,
and relayed from peers to its neighbors. The availability of
upload capacity is inferred from the queue status such as the
queue size or if the queue is empty. Signals are passed between
peers and server to convey the information if a peer’s upload
capacity is available.

Fig. 1 depicts a P2P streaming system using queue-based
chunk scheduling with one source server and three peers. Each
peer mainstains several queues including a forward queue.
Using peera as an example, the signal and data flow is
described next. Pull signals are sent from peersa to the server
whenever the queues become empty (or have fallen below a
threshold) (step 1 in Fig. 1). The server responds to the pull
signal by sending three data chunks back to peera (step 2).
These chunks will be stored in the forward queue (step 3) and
be relayed to peerb and peerc (step 4). When the server has
responded to all ’pull’ signals on its ’pull’ signal queue, it
serves one duplicated data chunks to all peers (step 5). These
data chunks will not be stored in forward queue and will not
be relayed further.

Next we first describe in detail the queue-based scheduling
mechanism at the source server and peers. The optimality of
the scheme is shown afterwards.

A. Peer side scheduling and its queuing model

Fig. 2 depicts the queuing model for peers in the queue-
based scheduling method. A peer maintains a playback buffer
that stores all received streaming content from the source
server and other peers. The received content from different
nodes is assembled in the playback buffer in playback order.
The peer’s media player renders/displays the content from this
buffer. Meanwhile, the peer maintains a forwarding queue
which is used to forward content to all other peers. The
received content is partitioned into two classes: F-markedcon-
tent and NF-marked content.F (forwarding)represents content
that should be relayed/forwarded to other peers.NF (non-
forwarding) indicates that content is intended for this peer
only and no forwarding is required. The content forwarded by
neighbor peers is always marked asNF. The content received
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Fig. 1. Queue-based P2P system with four nodes. 1. peera sends pull signal
to the content source server; 2. content source server send three chunks in
response to the pull signal; 3. three chunks are cached in theforward queue;
4. cached chunks are forwarded to neighbor peers; 5. duplicate chunk is sent
to all peers when the server has responded to all ’pull’ signals.

from the source server can be marked either asF or asNF.
NF content is filtered out.F content is stored into the forward
queue, marked as NF content, and forwarded to other peers.
In order to fully utilize a peer’s upload capacity, the peer’s
forwarding queue should be kept busy. A signal is sent to the
source server to request more content whenever the forwarding
queue becomes empty. This is termed a ’pull’ signal. The
rules for marking the content at the content source server are
described next.
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Fig. 2. Queue Model of Peers

B. Server side scheduling algorithm and its queuing model

Fig. 3 illustrates the server-side queuing model of the
decentralized method. The source server has two queues: a
content queue and a signal queue. The content queue is a
multi-server queue with two dispatchers: an F-marked content
dispatcher and a forward dispatcher. The dispatcher that is
invoked depends on the control/status of the ’pull’ signal
queue. Specifically, if there is ’pull’ signal in the signal queue,
a small chunk of content is taken from the content buffer.
This chunk of content is marked asF and dispatched by the
F-marked content dispatcher to the peer that issued the ’pull’
signal. The ’pull’ signal is then removed from the ’pull’ signal
queue. If the signal queue is empty, the server takes a small
chunk of content from the content buffer and puts that chunk
of content into the forwarding queue to be dispatched. The
forwarding dispatcher marks the chunk asNF and sends it to
all peers in the system.

’pull’ signal queue

Content buffer

Forwarding server

F marked content server

Fig. 3. Queue Model of Source Server

C. Proof of optimality for queue-based chunk scheduling

Next, we show that the queue-based scheduling method for
both the peer-side and the server-side achieves the maximum
P2P live streaming rate of the system. Given a content source
server and a set of peers with known upload capacities, the
maximum streaming rate,rmax , is governed by the following
formula [11]:

rmax = min{us,
us +

∑n

i=1 ui

n
}. (1)

whereus is content source server’s upload capacity,ui is peer
i’s upload capacity, and there aren peers in the system. The

second term on the right-hand side of equation,
us+

∑

n

i=1
ui

n
,

is the average upload capacity per peer. More specifically, the

maximum streaming rate isrmax = us if us ≤
us+

∑

n

i=1
ui

n
,

and rmax =
us+

∑

n

i=1
ui

n
if us >

us+
∑

n

i=1
ui

n
. The first case

is termed asserver resource poor scenariowhere the server’s
upload capacity is the bottleneck. The second case is termedas
server resource rich scenariowhere the peers’ average upload
capacity is the bottleneck.

Theorem 2.1:Assume that the signal propagation delay
between a peer and the server is negligible and the data content
can be transmitted at an arbitrary small amount, then the
queue-based decentralized scheduling algorithm as described
above achieves the maximum streaming rate possible in the
system.

Proof: Suppose the video content is divided into small
chunks. The server sends outonechunk each time it serves a
’pull’ signal. A peer issues a pull signal to the server whenever
the forwarding queue becomes empty.δ denotes the chunk
size.

For peeri, i = 1, 2, . . . , n, it takes time of(n − 1)δ/ui to
forward one data chunk to all peers. Letri be the maximum
rate at which the ’pull’ signal is issued from peeri. Hence
ri = ui/(n − 1)δ.

The maximum aggregated rate of ’pull’ signal received at

server,r, is r =
∑n

i=1 ri =

∑

n

i=1
ui

(n−1)δ . It takes serverδ/us to

serve a pull signal. Hence the maximum ’pull’ signal rate a



server can accommodate isus/δ. Now consider the following
two scenarios/cases:

• Case 1:us/δ ≤

∑

n

i=1
ui

(n−1)δ

In this scenario, the server cannot handle the ’pull’ signalat
maximum rate. The signal queue at the server side is hence
never empty and the entire server bandwidth is used to transmit
F-marked content to peers. In contrast, a peer’s forward queue
becomes idle while waiting for the new data content from the
source server. Since each peer has sufficient upload bandwidth
to relay the F-marked content (received from the server) to all
other peers, the peers receive content sent out by the serverat
the maximum rate.

The supportable streaming rate is equal to the server’s

upload capacity. The conditionus/δ ≤

∑

n

i=1
ui

(n−1)δ is equivalent

to us ≤
us+

∑

n

i=1
ui

n
, i.e., the server resource poor scenario in

Equation (1). Hence the streaming rate is consistent with the
Equation (1) and the maximum streaming rate is reached.

• Case 2:us/δ >

∑

n

i=1
ui

(n−1)δ

In this scenario, the server has the upload capacity to service
the ’pull’ signals at the maximum rate. During the time period
when the ’pull’ signal queue is empty, the server transmits
duplicate NF-marked content to all peers. The amount of
upload capacity used to serve F-marked content isrδ =
∑

n

i=1
ui

(n−1)δ δ =

∑

n

i=1
ui

n−1 .

The server’s upload bandwidth used to serve NF-marked

content is thereforeus −

∑

n

i=1
ui

n−1 . For each individual peers,
the rate of receiving NF-marked content from server is

(us −

∑

n

i=1
ui

n−1 )/n since there aren peers in the system. The
streaming rate at peers is:

∑n

i=1 ui

n − 1
+ (us −

∑n

i=1 ui

n − 1
)/n =

us +
∑n

i=1 ui

n
. (2)

The condition us/δ >

∑

n

i=1
ui

(n−1)δ is equivalent tous >

us+
∑

n

i=1
ui

n
, i.e., the scenario in which the server is resource

rich described above. Again, the streaming rate reaches the
upper bound as indicated in Equation (1). This concludes the
proof.

Note that in case 2 where the aggregate ’pull’ signal arrival
rate is smaller than the server’s service rate, it is assumedthat
the peers receive F-marked content immediately after issuing
the ’pull’ signal. The above assumption is true only if the
’pull’ signal does not encounter any queuing delay and can
be serviced immediately by the content source server. This
means that (i) no two ’pull’ signals arrive at the exact same
time and (ii) a ’pull’ signal can be serviced before the arrival
of next incoming ’pull’ signal. Assumption (i) is commonly
used in queuing theory and is reasonable since a P2P system
is a distributed system with respect to peers generating ’pull’
signals. The probability that two ’pull’ signals arrive at exactly

the same time is low. Assumption (ii) means that the data can
be transmitted in arbitrary small amounts, i.e., the size ofdata
chunk,δ, can be arbitrarily small. In practice, the size of data
chunks is limited in order to reduce the overhead associated
with data transfers. Below we discuss the implementation
considerations in realizing the above scheme in practice.

III. I MPLEMENTATION CONSIDERATIONS

Implementation considerations in realizing the above
scheme in practice are now discussed. The architecture of
content source server and peers using the queue-based data
chunk scheduling are now described with an eye toward
practical implementation considerations including the impact
of chunk size, network congestion, and peer churn.

A. Impact of chunk size and propagation delay

In the optimality proof, it was assumed that the chunk
size could be arbitrarily small and the propagation delay was
negligible. In practice, the chunk size is on the order of kilo-
bytes to avoid excessive transmission overhead caused by
protocol headers. The propagation delay is on the order of
tens to hundreds of milliseconds. Hence, it is necessary to
adjust the timing of issuing ’pull’ signals by the peers and
increase the number of F-marked chunks served at the content
source server to allow the decentralized scheduling methodto
achieve close to the optimal live streaming rate.

At the server side,K F-marked chunks are transmitted
as a batch in response to a ’pull’ signal from a requesting
peer (via the F-marked content queue). A larger value ofK
would reduce the ’pull’ signal frequency and thus reduce the
signaling overhead. This, however, increases peers’ threshold
to be shown in Equation (3). When the ’pull’ signal queue
is empty, the server’s forwarding queue forwards one chunk
at a time to all peers in the system. The arrival of a new
’pull’ signal preempts the forwarding queue activity and the
F-marked content queue servicesK chunks immediately.

The peer sets a threshold ofTi for the forwarding queue.
The ’pull’ signal is issued when the number of chunks of
content in the queue is less than or equal toTi. It takes at least
twice the propagation delay to retrieve the F-marked content
from the server. Issuing the ’pull’ signals before forwarding
queues become entirely empty avoids wasting the upload
capacities.

How to set the value ofTi properly is considered next.
The time to empty the forwarding queue withTi chunks is
tempty
i = (n−1)Tiδ/ui. Meanwhile, it takestreceive

i = 2tsi +

Kδ/us+tq for peeri to receiveK chunks after it issues a pull
signal. Heretsi is the propagation delay between the source
server and peeri, Kδ/us is the time required for server to
transmitK chunks, andtq is queuing delay seen by the ’pull’
signal at the server pull signal queue. In order to receive the
chunks before the forwarding queue becomes fully drained,
tempty
i ≥ treceive

i . This leads to:

Ti ≥
(2tsi + Kδ/us + tq)ui

(n − 1)δ
. (3)



All quantities are known excepttq, the queuing delay incurred
at the server side signal queue. In server resource poor scenario
where the source server is the bottleneck, the selection ofTi

would not affect the streaming rate as long as the server is
always busy. In server resource rich scenario, since the service
rate of signal queue is faster than the pull signal rate,tq is very
small. So we lettq be zero, i.e.,

Ti ≥
(2tsi + Kδ/us)ui

(n − 1)δ
. (4)

The peers’ startup delay is computed next.τ denotes the
startup delay. Given a peer has a full queue withTi number
of marked chunks, it takesTiδ(n−1)/ui to empty the queue.
Hence the startup delay is:

τ = max
i

{Tiδ(n − 1)/ui}. (5)

B. Source server/peer architecture

The content source server responds to the ’pull’ signals from
peers and pushes NF-marked content proactively to peers.
The content source server is also the bootstrap node. As
the bootstrap node, the content source server manages peer
information (such as peer id, IP address, port number, etc.)
and replies to the request for peer list from incoming new
peers.
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Fig. 4. Server Architecture

Figure 4 illustrates the architecture of the source server.In
the queue-based adaptive P2P live streaming, the server andall
peers are fully connected with full-duplex TCP connections.
Using the ’select call’ mechanism to monitor the connections
with peers, the server maintains a set of input buffers to store
received data. There are three types of incoming messages:
management message, ’pull’ signal, and missing chunk re-
covery request. Correspondingly three independent queuesare
formed for the messages respectively. If the output of handling
these messages needs to be transmitted to remote peers, the
output is put on the per-peer out-unit to be sent.

There is one out-unit for each destination peer to handle
the data transmission process. Figure 5 depicts an exemplary
out-unit that has four queues for a given peer: management
message queue, F-marked content queue, NF-marked content
queue, and missing chunk recovery queue. The management
message queue stores responses to management requests. An
example of a management request is when a new peer has just

Message Queue


F-marked Chunk Queue


NF-marked Chunk Queue


Server

out-unit


Recovery Chunk Queue


Fig. 5. Server Out-unit Queues

joined the P2P system and requests the peer list. The server
would respond by returning the peer list. The F/NF marked
content queue stores the F/NF marked content intended for this
peer. Finally, chunk recovery queue stores the missing chunks
requested by the peer.

Different queues are used for different types of traffic in
order to prioritize the traffic types. Specifically, management
messages have the highest priority, followed by F-marked
content, and NF-marked content. The priority of recovery
chunks can be adjusted based on the design requirement.
Management messages have the highest priority because it is
important for the system to run smoothly. For instance, by
giving management messages the highest priority the delay
for a new peer to join the system is shortened. When a new
peer issues a request to the content source server to join the
P2P system, the peer list can be sent to the new/joining peer
quickly. Also, management messages are typically small in
size compared to content messages. Giving higher priority
to management message reduces overall average delay. The
content source server replies to each ’pull’ signal withK F-
marked chunks. F-marked chunks are further relayed to other
peers by the receiving peer. The content source server sends
out a NF-marked chunk to all peers when the ’pull’ signal
queue is empty. NF-marked chunks are used by the destination
peer only and will not be relayed further. Therefore, serving
F-marked chunk promptly improves the utilization of peers’
upload capacity and increases the overall P2P system live
streaming rate. Locating and serving recovery chunks should
be a higher priority than NF-marked chunk delivery since
missing chunk affects the viewing quality significantly. Ifthe
priority of forwarding recovery chunks is set to be higher than
that of F-marked chunks, viewing quality gets preferential
treatment over system efficiency. In contrast, if F-marked
chunks receive higher priority, the system efficiency is given
higher priority. The priority scheme selected depends on the
system design goal.

Another reason for using separate queues is to deal with
bandwidth fluctuation and congestion inside the network.
Many P2P researchers assume that server/peer’s upload capac-
ity is the bottleneck. In our experiments over PlanetLab, ithas
been observed that some peers may slow down significantly
due to congestion. If all the peers share the same queue,
the uploading to the slowest peer will block the uploading
to remaining peers. The server’s upload bandwidth will be
wasted. This is similar to the head-of-line blocking problem



in input-queued switch design: an input queue will be blocked
by a packet destined for a congested output port. The switching
problem was solved by placing packets destined to different
output ports in different virtual output queues. A similar
solution is adopted by using separate queues for different
peers. Separate queues avoid inefficient blocking caused by
slow peers. Separate queues allow more accurate estimation
of the amount of queued content, too. This is important for
peers to determine when to issue ’pull’ signals.

Fig. 6 depicts the architecture of a peer. The architecture
of a peer in the P2P system described herein is similar to
that of the content source server. The server and all peers
are fully connected with full duplex TCP connections. A
peer stores the received chunks into the playback buffer. The
management messages from server (e.g., the peer list) or
other peers (missing chunk recovery message) are stored in
management message queue. The chunk process module filters
out NF-marked chunks. F-marked chunks are duplicated into
the out-units of all other peers.
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Fig. 6. Peer Architecture

Fig. 7 depicts the structure of peer side out-unit. It has
three queues: management message queue, forward queue, and
recovery chunk queue. Chunks in the forward queue will be
marked as NF and will not be relayed further at receiving
peers. ’Pull’ signal issuer monitors the out-units. It employs
the queue threshold as defined in Equation (3) to decide when
to issue ’pull’ signals to the content source server. When
calculating the ’pull’ signal threshold in Equation (3), the
underlying assumption is that remote peers are served in a
round-robin fashion using a single queue. Here a one-queue-
per-peer design is used to avoid head-of-line blocking problem.
The average of the forward queue size is used in Equation (3).
If a peer always experiences a slow connection, some chunks
may be forced to be dropped. Peers have to use missing chunk
recovery mechanism to recover from the loss.
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Fig. 7. Peer Out-unit Queues

C. Missing chunk recovery

Peer churn and network congestion may cause chunk losses.
Sudden peer departure, such as node or connection failure,
leaves the system no time to reschedule the chunks still
buffered in the peer’s out-unit. In case the network routes
are congested to some destinations, the chunks waiting to be
transmitted may overflow the queue in the out-unit, which
leads to chunk losses at the receiving end. The missing chunk
recovery scheme enables the peers to recover the missing
chunks to avoid viewing quality degradation.
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Fig. 8. Missing Chunk Recovery

Each peer maintains a playback buffer to store the video
chunks received from the server and other peers. The playback
buffer maintains three windows: playback window, recovery
window, and download window.Wp, Wr and Wd denote the
size (in terms of number of chunks) of playback window,
recovery window, and download window, respectively. The
media player renders/displays the content from the playback
window. Missing chunks in the recovery window are recovered
using the method described below. Finally, the chunks in the
downloading window are pulled and pushed among the server
and the other peers. The size of download window,Wd, can
be estimated as follows:

Wd =
n

∑

i=1

Ti +
(

us −

∑n

i=1

n − 1

)+

τ/δ. (6)

where τ is the startup delay, and(·)+ is the non-negative
function that takes value of zero if the input is negative. The
first term in Equation (6) is the sum of all F-marked chunks
cached at all peers. The second term is the number of NF-
marked chunks sent out by the server.

Heuristics are employed to recover the missing chunks. If
peers leave gracefully, the server is notified and the F-marked
chunks waiting in the out-unit will be assigned to other peers.
The missing chunks falling into the recovery window are
recovered as follows. First, the recovery window is further
divided into four sub-windows. Peers send the chunk recovery
messages to the source server directly if the missing chunksare
in the window closest in time to the playback window. These
chunks are urgently needed otherwise the content quality will
be impaired. An attempt is made to recover the missing chunks
in the other three sub-windows from other peers. A peer
randomly selects three recovery peers from the peer list, and
associates one with each sub-window. The peer needs recovery
chunks sends chunk recovery messages to the corresponding
recovery peers. By randomly selecting a recovery peer, the
recovery workload is evenly distributed among all peers.



IV. EXPERIMENT RESULTS

In this section, we examine the performance of queue-based
chunk scheduling method via experiments. Experiments are
conducted over PlanetLab [10].40+ nodes (one content source
server, one public sink and 40 users/peers) are used with most
of them located in North America. All connections between
nodes are TCP connections. TCP connections avoid network
layer data losses, and allow us to use software package
Trickle [17] to set a node’s upload capacity. In our experi-
ments, we observe the obtained upload bandwidth is slightly
larger (< 8%) than the value we set using Trickle. To account
for this error, we measure the actual upload bandwidth, and use
the measured rate for plotting the graphes. The upload capacity
of peers are assigned randomly according to the distribution
obtained from the measurement study conducted in [18], as
listed in Table I. The largest uplink speed is reduced from

TABLE I

BANDWIDTH DISTRIBUTION

Uplink(kbps) Fraction of nodes
128 0.2
384 0.4
1000 0.25
4000 0.15

5000 kbps to 4000 kbps. This ensures that PlanetLab nodes
have sufficient bandwidth to support the targeted rate.

A. Optimality Evaluation

The optimality of the queue-based scheduling method is
evaluated first. All 40 peers join the system at the beginning
of the experiment, and stay for the entire duration of the
experiment. The content source server’s upload capacity is
varied from 320 kbps to 5.6 Mbps. For each server upload
capacity setting, we run an experiment for 5 mins. The
achieved streaming rate is collected every 10 seconds and
the average value is reported at the end of each experiment.
Fig. 9 shows the achieved streaming rate vs. the optimal
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Fig. 9. Achieved Rate vs. Optimal Rate

rate with different server bandwidths. The difference never
exceeds 10% of the optimal rate possible in the system. The
curves exhibit two segments with turning point at around

1.1 Mbps. According to Equation (1), the server bandwidth
is the bottleneck when it is smaller than 1.1 Mbps (server
resource poor scenario). The streaming rate is equal to the
source rate. As the server bandwidth becomes greater than
1.1 Mbps, the peers’ average upload capacity becomes the
bottleneck (server resource rich scenario). The streamingrate
still increases linearly, however, with a smaller slope. This
is evident in Fig. 10. We plot in Fig. 10 the numbers of F-
marked and NF-marked chunks sent out by the source server.
When the server bandwidth is 560 kbps, very few NF-marked
chunks are transmitted (Note: in theory, no NF-marked chunks
should be sent in this scenario. We do see several NF-marked
chunks. We believe this is caused by the bandwidth variation
in the network. The variation occasionally causes the server’s
pull signal queue becomes empty). In contrast, more and
more NF-marked chunks are sent by the server as its uplink
capacity increases beyond 1.1 Mbps. Another observation is
that the queue based chunk scheduling performs better in
the server resource poor scenario than in the server resource
rich scenario. In the server resource poor scenario, the server
sends out F-marked chunks exclusively. As long as the pull
signal queue is not empty, the optimal streaming rate can
be achieved. In the server resource rich scenario, the server
sends out both F-marked and NF-marked chunks. If F-marked
chunks are delayed at server or along the route from the server
to peers, peers can not receive F-marked chunks promptly.
Peers’ forward queues become idle and upload bandwidth
cannot be fully utilized. Furthermore, in the server resource
rich scenario, F-marked chunk queues and NF-marked chunk
queues compete for the server bandwidth. Although higher
priority is given to F-marked chunks at the application level,
NF-marked chunks sometimes have already been stored into
the kernel level TCP buffer. This also slows down the F-
marked chunk delivery.
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B. Adaptiveness to Peer Churn

Peer churn has been identified as one of the major disrup-
tions to the performance of p2p system. Fig. 11 depicts how
queue based chunk scheduling method performs in face of peer
churns. In this 10 minutes experiment, the server bandwidth
is set to be 2.4 Mbps. Three peers with the bandwidth of



4 Mbps are selected to leave the system at time of 200
seconds, 250 seconds, and 300 seconds, respectively. Two
peers rejoin the system at time of 400 seconds, and the third
one rejoins the system at time of 450 seconds. Fig. 11 depicts
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Fig. 11. Streaming Rate under Peer Churn

the achieved rate vs. optimal rate every 10 seconds. Although
the departure and the join of a peer does introduce disruptions
to the achieved streaming rate, overall the achieved streaming
rate tracks the optimal rate closely. The difference between
them never exceeds12% of the optimal rate.

C. Adaptiveness to Network Bandwidth Variations

In addition to peer churn, the network bandwidth varies over
time due to cross traffic. To test the system’s adaptiveness
to network bandwidth variations, the following experimentis
conducted. We set up a sink on a separate PlanetLab node
not participating in P2P streaming. One peer in the streaming
system with upload capacity of 4 Mbps is selected to establish
multiple parallel TCP connections to the sink. Each TCP
connection sends out garbage data to the sink. The noise traffic
generated by those TCP connections causes variations in the
bandwidth available for the P2P video threads on the selected
peer. We control the timing of the noise traffic generation.
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Fig. 12. Marked Chunk Receiving Rate with Background Traffic

Fig. 12 depicts the rate at which the F-marked chunks
are received at the selected peer together with the sending
rate of noise traffic. During time periods of (120 sec, 280
sec) and (380 sec, 450 sec), the noise traffic threads are
on. Whenever the noise traffic is on, the queue-based chunk

scheduling method adapts quickly to the changing available
bandwidth by reducing its pull signal rate. Consequently, the
server reduces the rate of F-marked chunks sent to the selected
peer. When the noise traffic is turned off, the server sends
more F-marked chunks to the selected peer to fully utilize
its available uploading bandwidth. The self-adaptivenessof
the queue-based chunk scheduling method makes the overall
achieved streaming rate close to the optimal rate.

D. Supporting constant bit-rate (CBR) video

The performance of supporting CBR video is examined
next. CBR video is widely used in online streaming. CBR
video with the rate of 400 kbps offers reasonable video quality
and is used by many p2p streaming systems. Hence we choose
the video data rate of 400 kbps in the following experiments.

Although the queue-based chunk scheduling method aims
to achieve high streaming rate, the system still benefits when
supporting CBR video. The queue-based chunk scheduling
method can tap into the redundant bandwidth resources when-
ever necessary, which enhances the system robustness against
peer churns and network congestion. It also offers users small
startup delays.
•Performance with peer churns.A peer’s contribution is

proportional to its upload bandwidth in queue-based chunk
scheduling method. When peers join and depart the system,
queue-based chunk scheduling is able to adapt to the change
and adjust individual peer’s contribution so that the constant
streaming rate is maintained without disruptions. Fig.13(a)
depicts the receiving F-marked chunk rate (from server) of
a randomly selected peer. The churn pattern here is the same
as that in Section IV-B: three peers leave the system at time
of 200 seconds, 250 seconds, and 300 seconds, respectively.
Two peers rejoin the system at time of 400 seconds, and
the third one rejoins the system at time of 450 seconds. The
selected peer receives around 32 kbps of F-marked chunk from
server and relays them to all other peers. During the peer
churn period, it boosts its receiving rate to 43 kbps, which
compensates the resource loss due to the peer churn. When
three peers rejoin the system, the receiving comes back the 32
kbps.
• Missing chunk recovery. The queue-based chunk

scheduling is able to fully utilize all resources. For CBR
videos, the system uses redundant resources to recover lost
packets. To demonstrate the effectiveness of the missing chunk
recovery mechanism, we intentionally inject packet lossesinto
the system. Specifically, we select eight nodes according to
the percentage in Table I. Whenever these nodes forward F-
marked chunk to other peers, the chunk is dropped with a
pre-defined dropping probability. Let missed chunk denote the
chunk that is actually lost. Fig. 13(b) depicts the dropped
chunk percentage and missed chunk percentage vs. dropping
probability. Note that Y-axis is in log scale. Almost all chunks
are recovered even as much as 7% of chunks are dropped.
• Playback startup delay. Finally we examine the startup

delay, another important performance metric in p2p live
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Fig. 13. Experiment Results with the Constant Bit-rate Video Source

streaming. Fig. 13(c) plots the chunk arrival time at a randomly
selected node. Two linear lines sandwich chunk arrival times.
The vertical time difference of these two lines are the startup
delay. The startup delay for our experiment with 40 nodes
and 50 kbps CBR video is 3 seconds. The slowest peer with
upload bandwidth of 128 kbps is slowest in emptying the
queue. With the server bandwidth of 2.4 Mbps, the forward
queue threshold is less than one chunk according to Equation
(3). Hence threshold is set to be one chunk. The chunk size is
1 KByte. Therefore the startup delay (according to Equation
(5)) is 1 ∗ 8 ∗ 39/128 = 2.4seconds (128 kbps is the uplink
bandwidth, 39 is the number of peers a peer needs to forward
F-marked chunk to). The actually startup delay is little bit
longer due to the network bandwidth variations and parallel
queues in the out-units.

V. CONCLUSIONS

In this paper, we propose a simple queue-based chunk
scheduling method that can achieve full bandwidth utilization
in P2P live streaming. To study the effectiveness of the
proposed scheme in practice, a prototype is developed and
is used to conduct experiments over the real network. The
results demonstrate the optimality and the adaptiveness ofthe
proposed queue-based chunk scheduling method.

Future work can develop along several avenues. As the first
attempt of applying queue management to P2P streaming,
we used simple queue control schemes. We will explore
queue control design space to further improve its performance.
Secondly, we did not compare the performance of queue-based
chunk scheduling with other existing methods. Although we
feel confident that the queue-based chunk scheduling can out-
perform existing approaches due to its optimality, simplicity,
and flexibility, it will be an interesting exercise to do the head-
to-head comparisons. The third direction is to apply the queue-
based chunk scheduling to hierarchically clustered P2P stream-
ing framework [16]. The combination solves the scalability
issue faced by the queue-based chunk scheduling method and
will be a truly scalable and efficient P2P streaming solution.
Our work demonstrated the effectiveness of application layer
queue management in eliminating content bottlenecks in P2P
live streaming. We are interested in applying this approachto

other P2P content distribution applications such as file sharing
and video-on-demand.
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