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Abstract— P2P streaming has been popular and is expected to in live streaming has strict playback deadlines. Even tewnyo
attract even more users. The challenges for P2P streaming @ decrease in peer bandwidth utilization leads to peer plgyba
been on its scalability and video viewing quality. Both reqire quality degradation, such as video playback freezing qo-ski

efficient utilization of resources in P2P networks. This papr ina. To make thinas wor t anv given moment rs ar
proposes an adaptive queue-based chunk scheduling method.P'Ng- 10 Make gs worse, at any give oment, peers are

The proposed scheme can achieve high bandwidth utilizatioand ~ ONly interested in downloading a small set of chunks falling
optimal streaming rate possible in a P2P streaming system.fie  into the current playback window. This greatly increases th
prototype implementing the queue-based scheduling is de\ped  possibility of content bottleneck. One way to address this
and used to evaluate the scheme in the real network. The exper problem is to compromise user viewing quality. For examale,

iment results show the queue-based chunk scheduling methas - . .
capable of achieving the streaming rate close to the optimupand lower video playback rate would impose lower peer bandwidth

adapting to the peer churns and underlying network dynamics Utilization requirement. Allowing a longer playback dekigo
nicely. allows a larger set of chunks to be exchanged among peers.

The opposite solution lies in designing more efficient pegpri
|. INTRODUCTION strategies and chunk scheduling methods.

Video-over-IP applications have recently attracted adarg This paper deals with the second solution. Our focus is on
number of users on the Internet. 2606, the number of video the design of a chunk scheduling method that can achieve
streams served increasggl8% to 24.92 billion even without high peer bandwidth utilization. We assume collaborati2® P
counting the user generated videos [1]. Youtube [2] alogstems. Peers help each other and forward received video
hosted some5 terabytes of videos and attractéd’3 billion ~ chunks to other peers. Motivated by the effectiveness debuf
views by the end of Augus2006. With the fast deployment control on switches and Active Queue Management (AQM)
of high-speed residential access, such as Fiber-To-ThreHo On routers, we propose a novel queue-based chunk scheduling
video traffic is expected to dominate the Internet in ne&lgorithm to adaptively eliminate content bottlenecks PP
future. Traditionally, video content can be streamed to esyeaming. Using queue-based signaling between peersiand t
users either directly from video source servers or indiyectcontent source server, the amount of workload assigned to a
from servers in Content Delivery Networks (CDNs). Peer-t?€€r is proportional to its available upload capacity, Whic
Peer video streaming has emerged as an alternative with I&&ds to high bandwidth utilization. The queue-based $igga
server infrastructure cost. P2P video streaming systent, salso enables the proposed scheme to adapt to the changing
as ESM [3], CoolStreaming [4], PPLive [5], and SopCast [6]1€twork environment. Our contributions are three-fold:
have attracted millions of users to watch live or on-demandl) We propose a simple queue-based chunk scheduling
video programs on the Internet [7]. method achieving high bandwidth utilization in P2P

The P2P design philosophy seeks to utilize peers’ upload live streaming. We theoretically show that the proposed
bandwidth to reduce servers’ workload. However, the upload scheme can achieve full bandwidth utilization in ide-
bandwidth utilization might be throttled by the so called alized network environments. A practical algorithm is
content bottleneckvhere a peer may not have any content  designed to achieve a close-to-optimum performance in
that can be uploaded to its neighbors even if its link is idle. realistic network environment.

The mechanism adopted by P2P file sharing applications is2) For distributed implementation, various design consid-
to increase the content diversity among peers. For example, erations are explored to handle dynamics in realistic
the rarest-first policyof BitTorrent [8] encourages peers to network environments, including peer churns, peer band-
retrieve the chunks with the lowest availability among thei width variations, and inside network congestion. A full-
neighbors. Network coding has also been explored to méigat  feature prototype is developed to test the feasibility and
the content bottleneck problem [9]. The content bottleneck  efficiency of the proposed scheduling algorithm.
problem in live streaming is even more severe. Video content3) The performance of the prototype system is examined



through a series of carefully designed experiments over [l. ADAPTIVE QUEUE-BASED CHUNK SCHEDULING

PlanetLab [10]. Both the optimality and the adaptiveness The capability to achieve high streaming rate is desirable

of the proposed chunk scheduling method are demo@y p2p streaming. Higher streaming rate allows the system

strated. to broadcast video with better quality. It also provides enor
A. Related Work cusion to absorb the ban@width variations cau§ed by peer

, , churn and network congestions when constant-bit-rate (CBR

. The authors in [1_1] denved'the upper bound for the StréaMiyeo is broadcasted. The key to achieve high streaming rate
ing rate of a P2P live streaming system. They also developed patter utilize peers’ uploading bandwidth.
a centralized solution that can fully utilize peer uploadin In this section, we propose a queue-based chunk scheduling
bandwidth and a}chieve the streaming rate upper bqunq. Taﬂﬁorithm that can achieve close 100% peers’ uploading
cen'Frallzed solution collects all peers’ upload capaaifir- bandwidth utilization in practical P2P networking environ
mation, and ComP“tes thg sub-stream rates §ent fr'om Fmseﬁ‘{ent. In P2P system, the resource utilization is determined
to peers. In.p'ractlce, available upload capavaarlestwe. by the overlay topology and collective behavior of chunk
and peers join and leave the system. ’The central coordinalPheqyling at individual peers. At system level, queuestias
needs to continuously monitor peers’ upload capacity anfiantive chunk scheduling requires fully connected mesh
re-compute the sub-stream rate to individuals. The prai)os(%nong participating peers. At peer level, data chunks are

gueue-based chunk scheduling method is a decentralized ﬁﬂled/pushed from server to peers, cached at peers’ queue,

capacity information does not need to be collected, and tjge e size or if the queue is empty. Signals are passed betwee
scheme adapts to the changing peer membership and netWatk,s anq server to convey the information if a peer's upload
environment nicely. ) , i , capacity is available.

There have been ongoing efforts intending to improve giq 1 gepicts a P2P streaming system using queue-based
resource utilization in P2P live streaming. The study in][12,h,nk scheduling with one source server and three peerb. Eac
shows the mesh-based scheme can better utilize peersdiplgger mainstains several queues including a forward queue.
capacny than tree—based.scheme, thank; to the dynamic n@Qan peera as an example, the signal and data flow is
ping of content to the delivery paths. To improve the reseurgescrined next. Pull signals are sent from peets the server
utilization in mesh-based P2P streaming, [13] proposesa tWy henever the queues become empty (or have fallen below a
phase swarming scheme where the fresh content is quicllyeshold) (step 1 in Fig. 1). The server responds to the pull
diffused to thg entire system in the first phase, and pegfi§, by sending three data chunks back to peéstep 2).
exchange available content in the second phase. Netwgikoge chunks will be stored in the forward queue (step 3) and
coding is also applied to P2P live streaming. [14] performs|@, \o|aved to peer and peer: (step 4). When the server has
reality check.by using network coding fplr P2P live Stream'ngesponded to all pull’ signals on its 'pull’ signal queue, i
However, neither approach can fully utilize the resoura® agepes one duplicated data chunks to all peers (step 5)eThes

achieve the maximum streaming rate. The authors in [15] gi¥ga chunks will not be stored in forward queue and will not
a randomized distributed algorithm that can converge to thg relayed further.
maximum streaming rate. They also study the delay that useryexi we first describe in detail the queue-based scheduling

must endure in order to play the stream with a small amougchanism at the source server and peers. The optimality of
of missing data. The queue-based chunk scheduling methogis scheme is shown afterwards.

a deterministic distributed algorithm. No data chunk nezd t
be skipped to achieve a small playback startup delay. A. Peer side scheduling and its queuing model
One shortcoming with the queue-based chunk schedulingrig. 2 depicts the queuing model for peers in the queue-
method is it requires a fully connected topology among thmsed scheduling method. A peer maintains a playback buffer
server and all peers, and therefore is not practical. In,[18hat stores all received streaming content from the source
we proposed a clustered approach to achieve close to f&dirver and other peers. The received content from different
bandwidth utilization. Peers are organized into clusterseld nodes is assembled in the playback buffer in playback order.
on their capacities and locations. Within a cluster, theugde The peer's media player renders/displays the content fhisn t
based chunk scheduling method can be used. Thus the aftmgfer. Meanwhile, the peer maintains a forwarding queue
mentioned problem is mitigated. which is used to forward content to all other peers. The
The remaining part of this paper is organized as followseceived content is partitioned into two classes: F-madad
The queuing model and scheduling algorithm of queue-bagedt and NF-marked conterfi.(forwarding) represents content
chunk scheduling are described in Section Il. Implemenatithat should be relayed/forwarded to other pedtf. (non-
considerations are explored in Section Ill. The experimefdrwarding) indicates that content is intended for this peer
results are reported in Section IV. Finally, Section V endsnly and no forwarding is required. The content forwarded by
the paper with concluding remarks. neighbor peers is always markeddB. The content received
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Fig. 1. Queue-based P2P system with four nodes. 1.¢psends pull signal

to the Comenrt] SOULC; Sﬁ;‘l{eg irggnctﬁaa ;;::Zeczi[]\geé iffggdm fgu':]fuéh Next, we show that the queue-based scheduling method for

Elt?scpe?cr;lse(ijtghturllakguare ?orwyard.ed to neighbor peers; 5. dtcpliltamk?s sen’t both t.he peer-s@e and the server-side aphleves the maximum

to all peers when the server has responded to all 'pull’ $&gna P2P live streaming rate of the system. Given a content source
server and a set of peers with known upload capacities, the
maximum streaming rate!™** , is governed by the following

from the source server can be marked eitheFas asNF.  formula [11]:

NF content is filtered out- content is stored into the forward

queue, marked as NF content, and forwarded to other peers. maz . Us+ D i U

In order to fully utilize a peer's upload capacity, the pser’ r™%® = min{us, " }- @

forwarding queue should be kept busy. A signal is sent to the

source server to request more content whenever the fomgardfVheréus is content source server's upload capaaityis peer

queue becomes empty. This is termed a 'pull’ signal. THe upload capacity, and there arepeers in the system. The

rules for marking the content at the content source serer @econd term on the right-hand side of equatie“«ﬁzz';l i
1 n 1

described next. is the average upload capacity per peer. More specifically, t
ol i . . . . us+Y "y
Fiter  Foaked maximum streaming rate 8" = u, if uy < %
content wus+> " u . us+> o ug -
andrmet = —&a=t— if oy > % The first case
—> is termed aserver resource poor scenarwhere the server’s
_ upload capacity is the bottleneck. The second case is teasied
Playback buffer Forwarding queue

server resource rich scenarishere the peers’ average upload
Fig. 2. Queue Model of Peers capacity is the bottleneck.
Theorem 2.1:Assume that the signal propagation delay
. . . . . between a peer and the server is negligible and the datantonte
B. Server side scheduling algorithm and its queuing mOdelcan be transmitted at an arbitrary small amount, then the
Fig. 3 illustrates the server-side queuing model of th§ueue-based decentralized scheduling algorithm as tescri
decentralized method. The source server has two queuegibdve achieves the maximum streaming rate possible in the
content queue and a signal queue. The content queue isygtem.
multi-server queue with two dispatchers: an F-marked ginte proof Suppose the video content is divided into small

dispatcher and a forward dispatcher. The dispatcher thatcifunks. The server sends artechunk each time it serves a
invoked depends on the control/status of the "pull’ signahy|r’ signal. A peer issues a pull signal to the server whame

queue. Specifically, if there is 'pull’ signal in the signaleye, the forwarding queue becomes empiydenotes the chunk
a small chunk of content is taken from the content buffegj,e.

This chunk of content is marked &and dispatched by the g4, peeri, i = 1,2,...,n, it takes time of(n — 1)§ /u; to
F-marked content dispatcher to the peer that issued th€ 'pyh\ward one data chunk to all peers. Ligtbe the maximum

signal. The "pull’ signal is then removed from the 'pull’ sigl (5te at which the 'pull’ signal is issued from peerHence
queue. If the signal queue is empty, the server takes a small wi/(n — 1)5.

chunk of content from the content buffer and puts that chunk
of content into the forwarding queue to be dispatched. The .
forwarding dispatcher marks the chunk B and sends it to Server,r, isr =371 r; = £2=. It takes servep /u, to

all peers in the system. serve a pull signal. Hence the maximum ’pull’ signal rate a

The maximum aggregated rate of 'pull’ signal received at



server can accommodateds/d. Now consider the following the same time is low. Assumption (ii) means that the data can
two scenarios/cases: be transmitted in arbitrary small amounts, i.e., the sizdaia
o Case lu, /6 < Z(:_le)z chunk,&,. can .be arbitrarily small. In practice, the size of d.ata
I chunks is limited in order to reduce the overhead associated

In th.ls scenario, the server cannot handle the pu]l S!@T&ﬂ with data transfers. Below we discuss the implementation
maximum rate. The signal queue at the server side is hence

never empty and the entire server bandwidth is used to tﬁansﬁ?nmderatlons in realizing the above scheme in practice.
F-marked content to peers. In contrast, a peer’s forwardegue [Il. | MPLEMENTATION CONSIDERATIONS
becomes idle while waiting for the new data content from the Implementation considerations in realizing the above
source server. Since each peer has sufficient upload bathdwistheme in practice are now discussed. The architecture of
to relay the F-marked content (received from the server)ito gontent source server and peers using the queue-based data
other peers, the peers receive content sent out by the serveshunk scheduling are now described with an eye toward
the maximum rate. practical implementation considerations including thepatt

The supportable streaming rate is equal to the servepBchunk size, network congestion, and peer churn.

upload capacity. The conditiomn /6 < Z(;l'ifll;;i is equivalent A. Impact of chunk size and propagation delay
towu, < ud%izlui' i.e., the server resource poor scenario in In the optimality proof, it was assumed that the chunk

Equation (1). Hence the streaming rate is consistent with e could be arbitrarily small and the propagation delag wa

. . : . negligible. In practice, the chunk size is on the order obkil
Equation (1) and the maximum streaming rate is reached. . . o
> bytes to avoid excessive transmission overhead caused by
e Case 2:u,/d > ﬁ protocol headers. The propagation delay is on the order of
In this scenario, the server has the upload capacity tocgerviens to hundreds of milliseconds. Hence, it is necessary to
the "pull’ signals at the maximum rate. During the time pdrio@djust the timing of issuing 'pull’ signals by the peers and
when the ’pu”’ signa| queue is empty, the server transmiiﬁcrease the number of F-marked chunks served at the content
duplicate NF-marked content to all peers. The amount 8@urce server to allow the decentralized scheduling metihod

upload capacity used to serve F-marked contentdis= achieve close to the optimal live streaming rate.
Zf_luid 3w At the server side K F-marked chunks are transmitted
= o1

(n—1)3 as a batch in response to a 'pull’ signal from a requesting
The server’'s upload bandwidth used to serve NF-markgder (via the F-marked content queue). A larger valugsof

. would reduce the 'pull’ signal frequency and thus reduce the

gnaling overhead. This, however, increases peers’hHbtés

content is therefore,, — <<=t"". For each individual peers, "
the rate of receiving NF-marked content from server R

noL to be shown in Equation (3). When the 'pull’ signal queue
(us — =4=1—)/n since there are peers in the system. Theis empty, the server's forwarding queue forwards one chunk
streaming rate at peers is: at a time to all peers in the system. The arrival of a new
" " n 'pull’ signal preempts the forwarding queue activity ane th
Dic1 Ui + (us — 2ic1 “i)/n _ Us Diz1 Ui ) F-marked content queue servicEschunks immediately.
n—1 n—1 n The peer sets a threshold @f for the forwarding queue.
n The 'pull’ signal is issued when the number of chunks of

u;
i=1 "

The condition u,/§ > (H)g is equivalent tous, > contentin the queue is less than or equaliolt takes at least
s o L. . . twice the propagation delay to retrieve the F-marked cdnten
@%1“ i.e., the scenario in which the server is resour propag Y

) , i , GFom the server. Issuing the ’pull’ signals before forwagli
rich described above. Again, the streaming rate reaches

oy ! - k ues become entirely empty avoids wasting the upload
upper bound as indicated in Equation (1). This concludes tggpacities.

proof. _ N B How to set the value off; properly is considered next.
Note that in case 2 where the aggregate 'pull’ signal arriv},e time to empty the forwarding queue with chunks is
rate is smaller than the server’s service rate, it is assuthedd pempty _ (n—1)T6 /u;. Meanwhile, it takegeceive — 2, +

the peers r'eceive F-marked content immgdiately aﬁe”.igSUifl(é/uertq for peeri to receiveK chunks after it issues a pull
the 'pull’ signal. The above assumption is true only if th%ignal. Heret,; is the propagation delay between the source

‘pull’ signal does not encounter any queuing delay and “@ver and peei, K§/us is the time required for server to

be serviced immediately by the content source server. ngnsmitK chunks, and, is queuing delay seen by the "pull’
means that (i) no two ’pull’ signals arrive at the exact samg ' H

i 4 (i) 2 "pull’ sianal b iced before the i qgnal at the server pull signal queue. In order to receiee th
IMe anc (i) a pu, 5'9”"." can be serviced belore the &V ., s pefore the forwarding queue becomes fully drained,
of next incoming ’'pull’ signal. Assumption (i) is commonly

t?mpty > receive H .
used in queuing theory and is reasonable since a P2P sysfem =1 - This leads to:
(Qtsi + Ké/us + tq)ui

is a distributed system with respect to peers generatinifj 'pu
(n—1)¢

signals. The probability that two 'pull’ signals arrive ataetly Tz )



All quantities are known excepy, the queuing delay incurred Osuet[‘éi:l Message Queue
at the server side signal queue. In server resource pooaiseen
where the source server is the bottleneck, the selectidfi of

F-marked Chunk Queue

would not affect the streaming rate as long as the server is T NF:marked Chunk Queue
always busy. In server resource rich scenario, since thcser Recovery Chunk Queue
rate of signal queue is faster than the pull signal ratés very T
small. So we let, be zero, i.e., Fig. 5. Server Out-unit Queues

(2ts; + K6 /us)u;
(n—1)0

T; > 4)

_ joined the P2P system and requests the peer list. The server
The peers’ startup delay is computed nextdenotes the would respond by returning the peer list. The F/NF marked

startup delay. Given a peer has a full queue vithnumber content queue stores the F/NF marked content intendedifor th

of marked chunks, it take®;6(n — 1) /u; to empty the queue. peer. Finally, chunk recovery queue stores the missinglchun

Hence the startup delay is: requested by the peer.
7 =max{T;6(n — 1)/u;}. (5) Different_ql_u_aues are uged for differerjt- types of traffic in
¢ order to prioritize the traffic types. Specifically, managein
B. Source server/peer architecture messages have the highest priority, followed by F-marked

o content, and NF-marked content. The priority of recovery
The content source server responds to the 'pull’ signats fro : . :
chunks can be adjusted based on the design requirement.

peers and pushes NF-marked content proactively to peers. : s o
; anagement messages have the highest priority because it is
The content source server is also the bootstrap node. As 4
important for the system to run smoothly. For instance, by

the bootstrap node, the content source server manages peer

information (such as peer id, IP address, port number, et?!xmg managemer?t.messages thg highest priority the delay
. ) ; . of a new peer to join the system is shortened. When a new
and replies to the request for peer list from incoming new

peer issues a request to the content source server to join the

peers. P2P system, the peer list can be sent to the new/joining peer
quickly. Also, management messages are typically small in
Seloct Call size compared to content messages. Giving higher priority
o l -~ to management message reduces overall average delay. The
] Packet Handler -—mW content source server replies to each 'pull’ signal withF-
D - o marked chunks. F-marked chunks are further relayed to other
sem :> MSG :> -_D b s
: peers by the receiving peer. The content source server sends
N :_ . out a NF-marked chunk to all peers when the ’'pull’ signal
. m - queue is empty. NF-marked chunks are used by the destination
~ o= g S peer only and will not be relayed further. Therefore, segvin
Fig. 4. Server Architecture F-marked chunk promptly improves the utilization of peers’

upload capacity and increases the overall P2P system live

Figure 4 illustrates the architecture of the source seiwer. Streaming rate. Locating and serving recovery chunks shoul
the queue-based adaptive P2P live streaming, the servallan®€ a higher priority than NF-marked chunk delivery since
peers are fully connected with full-duplex TCP connection8lissing chunk affects the viewing quality significantly.tife
Using the 'select call’ mechanism to monitor the connedtiopriority of forwarding recovery chunks is set to be highearth
with peers, the server maintains a set of input buffers teestdhat of F-marked chunks, viewing quality gets preferential
received data. There are three types of incoming messagé@atment over system efficiency. In contrast, if F-marked
management message, 'pull’ signal, and missing chunk @unks receive higher priority, the system efficiency isegiv
covery request. Correspondingly three independent queneeshigher priority. The priority scheme selected depends @n th
formed for the messages respectively. If the output of Hagdl System design goal.
these messages needs to be transmitted to remote peers, tA@other reason for using separate queues is to deal with
output is put on the per-peer out-unit to be sent. bandwidth fluctuation and congestion inside the network.

There is one out-unit for each destination peer to handiéany P2P researchers assume that server/peer’s uploact capa
the data transmission process. Figure 5 depicts an exempldy is the bottleneck. In our experiments over PlanetLabag
out-unit that has four queues for a given peer: manageméren observed that some peers may slow down significantly
message queue, F-marked content queue, NF-marked contlert to congestion. If all the peers share the same queue,
gueue, and missing chunk recovery queue. The managentéet uploading to the slowest peer will block the uploading
message queue stores responses to management requestto Aemaining peers. The server's upload bandwidth will be
example of a management request is when a new peer has\yuessted. This is similar to the head-of-line blocking prable



in input-queued switch design: an input queue will be blackeC. Missing chunk recovery

by a packet destined for a congested output port. The swiichi  peer churn and network congestion may cause chunk losses.
problem was solved by placing packets destined to differegfiggen peer departure, such as node or connection failure,
output ports in different virtual output queues. A similafaayes the system no time to reschedule the chunks still
solution is adopted by using separate queues for differgjiffered in the peer’s out-unit. In case the network routes
peers. Separate queues avoid inefficient blocking caused ¥ congested to some destinations, the chunks waiting to be
slow peers. Separate queues allow more accurate estimati@psmitted may overflow the queue in the out-unit, which
of the amount of queued content, too. This is important fg&54s to chunk losses at the receiving end. The missing chunk
peers to determine when to issue "pull’ signals. recovery scheme enables the peers to recover the missing

Fig. 6 depicts the architecture of a peer. The architectutgnks to avoid viewing quality degradation.
of a peer in the P2P system described herein is similar to

that of the content source server. The server and all peers
are fully connected with full duplex TCP connections. A
peer stores the received chunks into the playback buffex. Th
management messages from server (e.g., the peer list) or
other peers (missing chunk recovery message) are stored in <
management message queue. The chunk process module filters

out NF-marked chunks. F-marked chunks are duplicated into
the out-units of all other peers.

Recovery Window
Neighbor Server

Playback
Window

W, W W W T W w,

Download Window

T

Fig. 8. Missing Chunk Recovery

Each peer maintains a playback buffer to store the video
chunks received from the server and other peers. The playbac

Select Call

- | | Jp— buffer maintains three windows: playback window, recovery
J— : Sacket Handier : - window, and download windowd/,, W, and W, denote the

- é: | I - o size (in terms of number of chunks) of playback window,

. :>l ::> :': i recovery window, and download window, respectively. The
. | | - media player renders/displays the content from the pldybac

e : - window. Missing chunks in the recovery window are recovered
- ! - using the method described below. Finally, the chunks in the
" PlaybackBufter | downloading window are pulled and pushed among the server

and the other peers. The size of download windby, can

Fig. 6. Peer Architecture .
be estimated as follows:

Fig. 7 depicts the structure of peer side out-unit. It has n T+
three queues: management message queue, forward queue, and Wy = ZTi + (us - ﬁ) 7/6. (6)
recovery chunk queue. Chunks in the forward queue will be i=1

marked as NF and will not be relayed further at receivin\ghereT is the startup delay, an@)* is the non-negative
peers. 'Pull’ signal issuer monitors the out-units. It €ays! ,nction that takes value of zero if the input is negativee Th
the queue threshold as defined in Equation (3) to decide Whggy torm in Equation (6) is the sum of all F-marked chunks
to issue ‘pull’ signals to the content source server. Whelucheq at all peers. The second term is the number of NF-
calculating the 'pull’ signal threshold in Equation (3),eth marked chunks sent out by the server.

underlying assumption is that remote peers are served in §4¢ristics are employed to recover the missing chunks. If

round-robin fashion using a single queue. Here a one-quegas jeave gracefully, the server is notified and the F-ethrk
per-peer design is used to avoid head-of-line blockinglerob - oy s waiting in the out-unit will be assigned to other geer

The average of the forward queue size is used in Equation (fje missing chunks falling into the recovery window are
If & peer always experiences a slow connection, some chupk§,ered as follows. First, the recovery window is further
may be forced to be dropped. Peers have to use missing Chyifyed into four sub-windows. Peers send the chunk regover
recovery mechanism to recover from the loss. messages to the source server directly if the missing chaneks

in the window closest in time to the playback window. These
chunks are urgently needed otherwise the content quality wi
be impaired. An attempt is made to recover the missing chunks
in the other three sub-windows from other peers. A peer
randomly selects three recovery peers from the peer list, an
associates one with each sub-window. The peer needs rgcover
chunks sends chunk recovery messages to the corresponding
recovery peers. By randomly selecting a recovery peer, the
recovery workload is evenly distributed among all peers.

Peer

. Message Queue
out-unit

Forward Chunk Queue

- O

Recovery Chunk Queue

Fig. 7. Peer Out-unit Queues



IV. EXPERIMENT RESULTS 1.1 Mbps. According to Equation (1), the server bandwidth

In this section, we examine the performance of queue-badgdhe bottleneck when it is smaller than 1.1 Mbps (server
chunk scheduling method via experiments. Experiments 4RSOUTCe poor scenario). The streaming rate is equal to the
conducted over PlanetLab [1a])+ nodes (one content source>U"ce rate. As the ,server bandwidth becomes greater than
server, one public sink and 40 users/peers) are used with mbd Mbps, the peers average upload capacity becomes the
of them located in North America. All connections betweeh(_)m,eneCk (ser\{er resource rich scgnarlo). The stream@
nodes are TCP connections. TCP connections avoid netwSH increases linearly, however, with a smaller slopeisTh

layer data losses, and allow us to use software packdgefVidentin Fig. 10. We plot in Fig. 10 the numbers of F-
marked and NF-marked chunks sent out by the source server.

Trickle [17] to set a node’s upload capacity. In our experl- R
ments, we observe the obtained upload bandwidth is slightfyen the server bandwidth is 560 kbps, very few NF-marked
unks are transmitted (Note: in theory, no NF-marked cbunk

larger < 8%) than the value we set using Trickle. To accourft S '
for this error, we measure the actual upload bandwidth, aed $10uUld be sent in this scenario. We do see several NF-marked

the measured rate for plotting the graphes. The upload -ﬁapa'ghunks. We believe thig i; caused py the bandwidth variation
of peers are assigned randomly according to the distributil? the network. The variation occasionally causes the ssrve

obtained from the measurement study conducted in [18], R4l signal queue becomes empty). In contrast, more and

listed in Table I. The largest uplink speed is reduced frofforé NF-marked chunks are sent by the server as its uplink
capacity increases beyond 1.1 Mbps. Another observation is

TABLE | that the queue based chunk scheduling performs better in

BANDWIDTH DISTRIBUTION the server resource poor scenario than in the server resourc
rich scenario. In the server resource poor scenario, theiser

Up””lkz('gbps) Fra‘:tiog ;f nodes sends out F-marked chunks exclusively. As long as the pull

384 04 signal queue is not empty, the optimal streaming rate can

1000 0.25 be achieved. In the server resource rich scenario, therserve

4000 0.15 sends out both F-marked and NF-marked chunks. If F-marked

chunks are delayed at server or along the route from therserve

5000 kbps to 4000 kbps. This ensures that PlanetLab nO(ﬂ@Speers, peers can not receive F-marked chunks promptly.

have sufficient bandwidth to support the targeted rate. Peers’ forward queues become idle and upload bandwidth
cannot be fully utilized. Furthermore, in the server reseur

rich scenario, F-marked chunk queues and NF-marked chunk

The optimality of the queue-based scheduling method dgieues compete for the server bandwidth. Although higher
evaluated first. All 40 peers join the system at the beginniRgiority is given to F-marked chunks at the application leve

of the experiment, and stay for the entire duration of th@r-marked chunks sometimes have already been stored into

experiment. The content source server's upload capacitytfig kernel level TCP buffer. This also slows down the F-
varied from 320 kbps to 5.6 Mbps. For each server uploafarked chunk delivery.
capacity setting, we run an experiment for 5 mins. The

A. Optimality Evaluation

achieved streaming rate is collected every 10 seconds and 610"
. . Il F-marked Chunk
the average value is reported at the end of each experiment. m
Fig. 9 shows the achieved streaming rate vs. the optimal il - w
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Fig. 10. Distribution of Chunks from Server

| .
<+— Server resource poor region
|

%00 ‘} ‘ ‘ | Lo Perfect Rate .
T T I T B. Adaptiveness to Peer Churn
Fig. 9. Achieved Rate vs. Optimal Rate Peer churn has been identified as one of the major disrup-

tions to the performance of p2p system. Fig. 11 depicts how
rate with different server bandwidths. The difference mevgueue based chunk scheduling method performs in face of peer
exceeds 10% of the optimal rate possible in the system. Teteurns. In this 10 minutes experiment, the server bandwidth
curves exhibit two segments with turning point at arounid set to be 2.4 Mbps. Three peers with the bandwidth of



4 Mbps are selected to leave the system at time of 286heduling method adapts quickly to the changing available
seconds, 250 seconds, and 300 seconds, respectively. Baadwidth by reducing its pull signal rate. Consequentlg, t
peers rejoin the system at time of 400 seconds, and the thietver reduces the rate of F-marked chunks sent to the eglect
one rejoins the system at time of 450 seconds. Fig. 11 depipter. When the noise traffic is turned off, the server sends
more F-marked chunks to the selected peer to fully utilize
its available uploading bandwidth. The self-adaptiveness

L100r ] the queue-based chunk scheduling method makes the overall
1000} ] achieved streaming rate close to the optimal rate.

900

1200

D. Supporting constant bit-rate (CBR) video

The performance of supporting CBR video is examined
next. CBR video is widely used in online streaming. CBR

800-

Rate(kbps)

700-

600 1 video with the rate of 400 kbps offers reasonable video guali

500 e ] and is used by many p2p streaming systems. Hence we choose

00 ‘ ‘ ‘ the video data rate of 400 kbps in the following experiments.
S Although the queue-based chunk scheduling method aims
Fig. 11. Streaming Rate under Peer Churn to achieve high streaming rate, the system still benefitsnwhe

supporting CBR video. The queue-based chunk scheduling
the achieved rate vs. optimal rate every 10 seconds. Aliougethod can tap into the redundant bandwidth resources when-
the departure and the join of a peer does introduce dism®tiyer necessary, which enhances the system robustnesstagain
to the achieved streaming rate, overall the achieved streaMpeer churns and network congestion. It also offers user$ sma
rate tracks the optimal rate closely. The difference betwesgtartup delays.
them never exceed% of the optimal rate. ePerformance with peer churns.A peer’s contribution is

In addition to peer churn, the network bandwidth varies ngghedulmg method. When Peers join and depart the system,
. . ) . ueue-based chunk scheduling is able to adapt to the change
time due to cross traffic. To test the system’s adaptlveneass

i - : ..~ and adjust individual peer’s contribution so that the canst
to network bandwidth variations, the following experimént streaming rate is maintained without disruptions. Figa)3(
conducted. We set up a sink on a separate PlanetLab n 9 P '

€. -
not participating in P2P streaming. One peer in the stregmi%ergsgsome Srgr:&/ér;g Z-erpa-midcﬁzfnnkar;l;em(zg?; i?se':;l/gr)saor;e
system with upload capacity of 4 Mbps is selected to establis y peer. b

multiple parallel TCP connections to the sink. Each TCPS that in Section IV-B: three peers leave the system at time

. . o f 200 seconds, 250 seconds, and 300 seconds, respectively.
connection sends out garbage data to the sink. The noige tr - .
) - . 0 peers rejoin the system at time of 400 seconds, and
generated by those TCP connections causes variations in the

bandwidth available for the P2P video threads on the sedec%ee third one rejons the system at time of 450 seconds. The
o . . . selected peer receives around 32 kbps of F-marked chunk from
peer. We control the timing of the noise traffic generation.

server and relays them to all other peers. During the peer
120 ‘ ‘ ‘ ‘ 1500 churn period, it boosts its receiving rate to 43 kbps, which
compensates the resource loss due to the peer churn. When
three peers rejoin the system, the receiving comes backzhe 3
kbps.

e Missing chunk recovery. The queue-based chunk
scheduling is able to fully utilize all resources. For CBR
videos, the system uses redundant resources to recover lost
packets. To demonstrate the effectiveness of the missimgkch
recovery mechanism, we intentionally inject packet lossts
‘ the system. Specifically, we select eight nodes according to
80 N L 0 the percentage in Table I. Whenever these nodes forward F-

0 100 200 300 400 500 600 . .
Time(s) marked chunk to other peers, the chunk is dropped with a
Fig. 12. Marked Chunk Receiving Rate with Background Traffic ~ Pre-defined dropping probability. Let missed chunk denloge t
chunk that is actually lost. Fig. 13(b) depicts the dropped

Fig. 12 depicts the rate at which the F-marked chunkhiunk percentage and missed chunk percentage vs. dropping
are received at the selected peer together with the sendprgbability. Note that Y-axis is in log scale. Almost all ctks
rate of noise traffic. During time periods of (120 sec, 288re recovered even as much as 7% of chunks are dropped.
sec) and (380 sec, 450 sec), the noise traffic threads are Playback startup delay. Finally we examine the startup
on. Whenever the noise traffic is on, the queue-based chutéay, another important performance metric in p2p live
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streaming. Fig. 13(c) plots the chunk arrival time at a raniyo other P2P content distribution applications such as fileisba
selected node. Two linear lines sandwich chunk arrival $imeand video-on-demand.

The vertical time difference of these two lines are the spart
delay. The startup delay for our experiment with 40 nodes
and 50 kbps CBR video is 3 seconds. The slowest peer withl
upload bandwidth of 128 kbps is slowest in emptying thegy
gueue. With the server bandwidth of 2.4 Mbps, the forwargs]
gueue threshold is less than one chunk according to Equation
(3). Hence threshold is set to be one chunk. The chunk size [fg
1 KByte. Therefore the startup delay (according to Equation
(5)) is 1 % 8 x 39/128 = 2.4seconds (128 kbps is the uplink [5]
bandwidth, 39 is the number of peers a peer needs to forwa
F-marked chunk to). The actually startup delay is little bit
longer due to the network bandwidth variations and parallel
gueues in the out-units. {g}
[10]
In this paper, we propose a simple queue-based chuglﬁ
scheduling method that can achieve full bandwidth utiiorat
in P2P live streaming. To study the effectiveness of the
proposed scheme in practice, a prototype is developed and
is used to conduct experiments over the real network. TB%]
results demonstrate the optimality and the adaptivenetseof
proposed queue-based chunk scheduling method. [14]
Future work can develop along several avenues. As the ﬁ}:
attempt of applying queue management to P2P streaming,
we used simple queue control schemes. We will explore
queue control design space to further improve its perfomaan (16!
Secondly, we did not compare the performance of queue-ba
chunk scheduling with other existing methods. Although we
feel confident that the queue-based chunk scheduling can difll
perform existing approaches due to its optimality, sinmplic
and flexibility, it will be an interesting exercise to do thedul-
to-head comparisons. The third direction is to apply theugue
based chunk scheduling to hierarchically clustered P2ZRustr
ing framework [16]. The combination solves the scalability

V. CONCLUSIONS

issue faced by the queue-based chunk scheduling method and

will be a truly scalable and efficient P2P streaming solution
Our work demonstrated the effectiveness of applicatioerday
gueue management in eliminating content bottlenecks in P2P
live streaming. We are interested in applying this apprdach
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