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Abstract—User Generated Content (UGC) video applications,
such as YouTube, are enormously popular. UGC systems can
potentially reduce their distribution costs by allowing peers
to store and redistribute the videos that they have seen in
the past. We study peer-assisted UGC from three perspectives.
First, we undertake a measurement study of the peer-assisted
distribution system of Tudou (a popular UGC network in China),
revealing several fundamental characteristics that models need
to take into account. Second, we develop analytical models for
peer-assisted distribution of UGC. Our models capture essential
aspects of peer-assisted UGC systems, including system size,
peer bandwidth heterogeneity, limited peer storage, and video
characteristics. We apply these models to numerically study
YouTube-like UGC services. And third, we develop analytical
models to understand the rate at which users would install
P2P client applications to make peer-assisted UGC a success.
Our results provide a comprehensive study of peer-assisted
UGC distribution, exposing its fundamental characteristics and
limitations.

I. INTRODUCTION

Over the past several years, we witnessed the emergence
of User Generated Content (UGC) video systems such as
Youtube, which is hugely popular throughout much of the
world, and Tudou [1] and Youku [2], which are enormously
popular in China. A recent study estimates nearly a half billion
videos have been uploaded to YouTube, and that these videos
have attracted more than 1.5 trillion views [12]. Tudou states
it is one of the world’s largest bandwidth users, moving more
than 1 Petabyte per day to 7 million users. According to
Tudou, YouTube serves a larger number of videos per day,
but since the average Tudou video is longer in duration, the
total amount of minutes of video being streamed daily from
Tudou is significantly larger - about 15 billion minutes per
month vs. 3 billion for YouTube [1].

Youtube currently distributes its videos from Google data
centers and caches, located in more than 45 cities in 25
countries [7]. By some estimates, YouTube spends more than
1 million dollars a day on bandwidth [9]. The question that we
explore in this paper is to what extent can UGC video sites,
such as YouTube, exploit peer-assisted video distribution to
reduce bandwidth and server costs without degrading the user
experience. The answer to this question is not obvious given
that much of user-generated content is long-tail content, and
that users will in general only allocate a limited amount of
their disk and upload bandwidth to P2P distribution.

With peer-assisted distribution of UGC, rather than pro-
viding VoD services purely with P2P, the peers assist the
server/CDN in delivering video. Peer-assisted UGC deploy-
ments can use a P2P plug-in, which users optionally install.
By installing the plug-in, a peer can redistribute to other

peers the video content it has seen in the past. It is not
mandatory for users to install the P2P plug-in, since users
can always stream videos directly from the servers. However,
installing and using the P2P plug-in potentially reduces the
server cost for the service provider and improves the received
video quality for the users. Examples of peer-assisted systems
using a P2P plug-in include the Tudou accelerator [1] and fast
Ku6 [3]. The Tudou accelerator and fast Ku6 are specifically
designed and developed for Tudou.com and Ku6.com, the top
two UGC video sharing websites for user generated videos in
China. Tudou claims more than 50 million Internet users have
installed the Tudou accelerator [1].

There is a lack of tractable performance models for peer-
assisted UGC systems. Tractable performance models are
needed to help understand overall system design. In particular,
for a given peer-assisted UGC system, many design parameters
may affect its overall system performance. The parameters in-
clude peer characteristics (e.g., number of peers, peer storage,
peer upload bandwidth, and willingness of peers to contribute)
and video characteristics (e.g., number of videos, video length,
video rate, and video popularity). Incentives and video popu-
larity shaping need also to be considered. Furthermore, it is
important to investigate whether and how a P2P plug-in can
become popular, and what are the major factors that affect
its rate of adoption. It is critical to understand which design
issues are of the greatest importance.

The contributions of this paper are as follows:
• We first undertake a measurement and analysis study of

Tudou’s peer-assisted distribution system. We determine
the basic principles underlying Tudou’s system. We also
compare Tudou’s performance with and without peer
assistance, from the perspectives of both user experience
and bandwidth usage.

• We then develop analytical models for peer-assisted UGC
distribution. Our models capture essential aspects of peer-
assisted UGC systems, including system size, peer band-
width heterogeneity, limited peer storage, and video char-
acteristics. Using linear programming and Monte Carlo
averaging, we develop a methodology for evaluating
the maximum possible peer contribution. We develop a
bounding methodology, enabling us to circumvent solving
the linear program at each Monte Carlo iteration. For
an important special case, we show how the bound can
be calculated analytically without using Monte Carlo
averaging. We develop a scheduling heuristic which com-
bines rarest video selection and water-filling bandwidth
allocation, and show that this heuristic nearly achieves
the upper bound.



2

• We apply these models to numerically study YouTube-
like UGC services, and find that without tailored incentive
and caching designs, peer-assisted UGC is less effective
in terms of server bandwidth cost. Under a representative
system setup, peer assistance reduces server bandwidth
by at most 60%.

• We investigate the impact of the parameters and design
choices. We observe that: (i) the number of shared videos
plays a critical role in system performance; (ii) video
scheduling between peers is less critical and does not
need to be highly optimized; (iii) incentives to encourage
idle peers to contribute are essential; (iv) system perfor-
mance is very sensitive to video popularity. Reshaping
video popularity (e.g., by using a video recommendation
system) can significantly improve performance.

• We model how the popularity of a P2P plug-in evolves.
We highlight two critical factors, namely, P2P plug-in
performance and server bandwidth allocation policy, that
highly affect the popularity evolution.

A. Related Work

Over the past few years, there has been a number of
proposals for P2P VoD [21], [11], [14], [15], [20], [4], [9], [5].
Most of these proposals focus on P2P VoD system design and
optimization. Recently, a measurement study on peer-assisted
music-on-demand streaming system is presented in [13].

There are only a few theoretical performance studies of P2P
streaming. Most of the studies focus on P2P live streaming
[23], [19], [17], [8], [16]. Some recent work [18], [14], [20]
study P2P VoD systems. Parvez et al. [18] developed models
to study BitTorrent-like on-demand video systems. Their study
focuses on P2P-dominated systems for which a peer can only
serve other peers with the video it is currently watching. They
analyzed the performance of different video chunk scheduling
algorithms for a single video torrent. Our study addresses peer-
assisted VoD with multiple videos. Suh. et al. [20] proposed
and analyzed the Push-to-Peer system, mainly for set-top box
networks. In Push-to-Peer, the server first pushes the videos
to peers; after the push phase, the peers serve each other in a
peer-dominated fashion. The authors proposed optimal active
caching and scheduling schemes, and applied queueing models
to study the system performance. We consider peer-assisted
systems with passive caching, which has been adopted by
most P2P VoD deployments. Huang et al. [14] analyze a peer-
assisted system for which a peer can only serve other peers
with the video it is currently watching. We model peer-assisted
system with the multiple-video design, that is, where a peer
can serve other peers with its previously watched videos. To
our knowledge, this is the first paper to model a peer-assisted
VoD system with a multiple-video design.

B. Organization

The rest of the paper is organized as follows. Section II
measures and analyzes an existing peer-assisted UGC system,
namely, Tudou, and provides a brief overview of the peer-
assisted UGC design. Section III derives the performance
models for the peer-assisted UGC systems. In Section VI, we
apply the models to investigate a peer-assisted YouTube-like
UGC system. Section V derives the models for the popularity
evolution of P2P plug-ins. Section VII concludes the paper.

II. TUDOU: A CASE STUDY FOR PEER-ASSISTED UGC
VIDEO SYSTEM

In this section, we study Tudou’s peer-assisted UGC system.
Users optionally download and install the Tudou P2P plug-in.
After installing the P2P plug-in, when a user is watching a
video through a web browser, the browser can download data
from other peers who are also running the plug-in. Tudou’s
P2P plug-in must run with a Web-based video application,
and alone it cannot stream, decode, and play video. Although
the Tudou plug-in is closed source and proprietary, we have
done a protocol analysis of the Tudou traffic to gain insight
into its basic operation.

Using Wireshark and packet analysis, we have determined
that Tudou has the following properties:
• Multiple-video design: A Tudou peer can serve other

peers any Tudou video it has previously viewed and
cached. A peer not only contributes its upload bandwidth,
but also contributes its storage for caching the videos. The
Tudou plug-in exploits a large amount of peer storage (1
GB as default), which can typically cache a large number
of UGC videos. For a peer to upload a video, only the
plugin needs to be running; it is not necessary that a
browser process be active at the time of uploading.

• Passive caching: A peer passively caches the videos it
has previously viewed. Videos are not pushed to the peers.

• Caching in FIFO: A Tudou peer replaces its previ-
ously cached videos in a first-in-first-out (FIFO) fashion.
Specifically, when the peer reaches its storage limitation,
it replaces the earliest cached video by the most recently
watched video. It has been reported in [22] that a sim-
ple passive caching scheme can achieve a performance
comparable with the optimal passive caching scheme.

• Peer-assistance: When a peer requests a particular video
from the Tudou web site, a Tudou server begins to upload
the video to the peer over HTTP. At the same time, the
peer contacts the Tudou tracker, which returns a list of
peers that also have a copy of the video. The peer can
then request video chunks from other peers on this list.
Our experiments have shown that Tudou only caches and
tracks Tudou videos; it does not cache and track videos
from other sites (such as YouTube).

• Partial video caching: Videos are broken up into chunks
of size 2 MBytes. If a peer only watches a portion of a
video, it caches the corresponding chunks. After a down-
loading peer learns from the tracker which other peers
have the video, the downloading peer immediately con-
tacts those peers (over TCP connections), who respond
by indicating which chunks they have. The downloading
peer then requests specific chunks from the various peers.

We now turn our attention to the performance of peer-
assisted Tudou. Table 1 shows the results of an experiment of
a user in USA downloading five different videos from Tudou.
For each video, the user first downloaded the file without
the plugin and then with the plugin. For each video, Table 1
provides the download time without the plugin, the download
time with the plugin, the number of peers that participated
with the plugin, and the percentage of data obtained from the
peers with the plugin. We see that the plugin significantly
shortened the download time, the speed-up factor is as large
as 10.89. This was accomplished with a relatively small
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TABLE I
TUDOU PEER-ASSISTANCE PERFORMANCE: USA USER

video download time download time speed-up number percentage of number of
no plugin with plugin factor of peers data from peers views

1 94 sec 25 sec 3.76 3 36% 5332
2 943 sec 159 sec 5.93 5 77% 39280
3 285 sec 52 sec 5.48 9 92% 208294
4 501 sec 46 sec 10.89 4 59% 13724
5 2292 sec 262 sec 8.75 5 83% 115149

TABLE II
TUDOU PEER-ASSISTANCE PERFORMANCE: CHINA USER

video download time download time speed-up number percentage of number of
no plugin with plugin factor of peers data from peers views

1 27 sec 24 sec 1.13 6 82% 5080
2 366 sec 45 sec 8.13 17 89% 10551
3 533 sec 227 sec 2.34 45 94% 77534
4 693 sec 179 sec 3.87 2 91% 15531
5 1288 sec 215 sec 5.99 20 96% 343490

number of assist peers (between 3 and 9) for each of the
videos. Most of the peers providing the peer assistance were
also located in the USA. Moreover, the plugin significantly
reduced the bandwidth usage at the server, with the peers
contributing between 36% and 92% of the bandwidth. We
also observed that there is a strong correlation between server
bandwidth saving and video popularity: videos with more
views tend to benefit more from P2P sharing. This suggests
that video popularity has significant impact on the efficiency
of P2P sharing. We will formally investigate this issue through
modeling and numerical study in the following two sections.

Table 2 shows the results of the same experiment, but with
the downloading peer now located in China. (Also the set of
five videos is not the same.) For this experiment, we observed
more variations in the number of assisting peers, ranging from
6 to . Also, the peers contribute even a larger fraction of the
bandwidth, ranging from 76% to 96%. Since the bandwidth
savings are generally high, there is no obvious correlation
between video popularity and P2P bandwidth saving. We also
observed that most of the peers providing peer assistance were
located in China. Thus, it appears that Tudou attempts to
localize the P2P traffic.

In conclusion, we see from our experiments on Tudou that
peer-assistance has the potential to not only improve user-
perceived performance but also reduce bandwidth expenditures
for UGC video systems. In the next section, using a novel
analytic model, we investigate the extent to which bandwidth
can be reduced in a UGC with heavy-tail content.

III. PERFORMANCE MODELING OF PEER-ASSISTED UGC

In a peer-assisted UGC system, each peer may act as a
receiver, as a supplier, or as both. As a receiver, it requests
video data from the other peers and/or the server; as a supplier,
it uses its stored videos and upload bandwidth to serve other
peers. In peer-assisted UGC, if a receiver cannot find enough
suppliers for the video it is watching (due to the lack of upload

bandwidth or missing video content from the peers), it can be
served by the server.

For the clarity of presentation, we use full video as the
basic unit for P2P video caching and sharing. If caching and
sharing operate at the video chunk level, one can simply treat
each video chunk as a short video. An online peer, whether
it is idle or watching a video, can distribute a video that it
has in its cache. The server has sufficient capacity and stores
all videos, so that when a peer cannot receive the full video
rate from other peers, it can always receive the remaining rate
from the video server.

In general, the performance of peer-assisted UGC system
is determined by four factors: (i) video content demand, (ii)
peer upload bandwidth, (iii) video placement, and (iv) peer
upload scheduling. Figure 1 gives an example on how these
factors affect the system performance. In this example, there
are three suppliers and two receivers. The upload bandwidth
of suppliers A, B, and C are 300 kbps, 500 kbps, and 200
kbps, respectively. Assume the video rate is 400 kbps. We
also indicate the stored videos in each supplier. Receivers D
and E request videos 3 and 2, respectively. Based on current
scheduling, E receives 200 kbps from B and 200 kbps from C
for video 2. Since only B stores video 3, D needs to receive
100 kbps from the server in addition to receiving 300 kbps
from B. A better scheduling policy would let E receive 200
kbps from A. In this case, D can receive the full video rate
from B, and does not need to consume any server bandwidth.

To evaluate the performance of a peer-assisted UGC system,
we will use the server cost ratio, i.e., the ratio of the average
server rate (denoted by S) over the average content consump-
tion rate (denoted by R). R is equivalent to the average server
rate without peer-assistance.

Discrete-event simulation can be used to analyze the server
cost ratio in peer-assisted UGC. But simulation is slow and
does not allow us to easily investigate how performance varies
on the numerous design parameters involved. Instead, we
develop a Monte Carlo sampling and averaging procedure to
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Fig. 1. Illustration on scheduling in peer-assisted UGC.

study performance. At the heart of our procedure is a bounding
methodology, which we describe next.

A. Optimal Scheduling and Bounds
Evaluating the maximal peer contribution across all schedul-

ing policies is a fundamental but difficult problem. Our ap-
proach in this paper is to find a tight upper bound on the
peer contribution, and then construct a scheduling heuristic
that provides performance close to the upper bound. To this
end, we first formulate the optimal scheduling problem for
peer-assisted UGC.

We first introduce some notation. Let M denote the total
number of videos in the system and let rm denote the rate
of video m. Let N denote the total number of users that
subscribe to the peer-assisted UGC service, e.g., by installing
the P2P software. Because the number of subscribers is
relatively stable compared with the peer dynamics, we assume
N is fixed. Our model permits heterogeneous peer upload
bandwidth. Let ui be the upload bandwidth of the ith peer,
i = 1, . . . , N . For simplicity, we assume all videos are of
the same size and use the number of videos to measure peer
storage size. We assume each peer can store v videos.

A given peer i can be in one of M + 2 states: offline,
online but not watching a video, or watching video m, m =
1, . . . ,M . Let nm be the number of peers watching video m,
nh be the number of online peers that are not watching any
video, no be the number of offline peers. Then n = nh+n1 +
· · ·+nM is the total number of online peers. Let N be the set
of online peers. The demand for video m is given by rmnm.
Denote n = (no, nh, n1, . . . , nM ). We refer to N and n as the
availability state and demand state, respectively.

Having specified the availability and demand states, let
us now consider the current video supply. Let Mi be the
set of videos that peer i currently stores. Also let M =
(M1, . . . ,MN ) denote the storage sets across all peers. We
refer to M as the storage state. We refer to the state of the
system as (N,n,M).

Given the current storage state M, current availability state
N, and the current demand state n, we now consider the
scheduling problem. Each online peer allocates its upload
bandwidth among the videos that it currently stores. Let xim,
m ∈Mi, be the amount of upload bandwidth peer i allocates
to video m. We refer to the allocations {xim, i ∈ N, m ∈Mi}
taken together as the scheduling policy, which is denoted by
F . A scheduling policy is said to be feasible if the supply
does not exceed the video content demand, that is,∑

i∈N
xim ≤ rmnm, ∀m = 1, . . . ,M

and the supply does not exceed the upload bandwidth limits,
that is, ∑

m∈Mi

xim ≤ ui, ∀i ∈ N.

Given a feasible scheduling policy F , the bandwidth con-
tributed by the peers is

c(F |N,n,M) =
∑
i∈N

∑
m∈Mi

xim (1)

An optimal scheduling policy for the current state of the
system (N,n,M) is given by the solution of the following
linear program:

max
∑
i∈N
∑
m∈Mi xim

st.
∑
i∈N xim ≤ rmnm, m = 1, . . . ,M∑
m∈Mi xim ≤ ui, i ∈ N

(2)

It is not hard to see that this linear program is a max-flow
problem, and can be solved in O(n3) time for a given state
(N, n, M). Let F ∗ denote an optimal scheduling policy.

B. Probabilistic Models
Let βm denote the popularity of video m, that is, βm is the

probability that a user requests to view video m. Each peer is
either offline, idle, or watching one of the M videos. Thus, a
peer can be in one of the M +2 states. After a peer watches a
video m, it may go on to watch another video, become idle, or
go offline. The probabilities of switching to offline, idle, and
watching video 1, . . . ,M are denoted as λo, λh, λ1, . . . , λM ,
respectively. Clearly, λm is related to video m’s popularity
βm, and can be expressed as λm = βm(1− λo − λh).

Denote the average offline time, average idle time, and
average viewing times for the videos m = 1, . . . ,M as 1/µo,
1/µh, 1/µ1, . . . , 1/µM , respectively. Let ρo = λo/µo, ρh =
λh/µh, and ρm = λm/µm for m = 1, . . . ,M . Normalize all
the ρo, ρh, and ρm’s, so that ρo + ρh +

∑M
m=1 ρm = 1. It is

easy to see that the probabilities that a peer is offline, online
but not viewing, and viewing video m are given by ρo, ρh,
and ρm, respectively.

Having provided probabilistic models for peer availability
and demand, we now model peer storage. First we make
the natural assumption that users choose videos to view
independently of each other. We also assume that each of the v
videos in a user’s cache is selected independently, with video
m selected with probability βm. We notice that our model
incorrectly allows a peer to cache duplicated copies of a single
video, which is not the case in real world systems. But when
the video catalog size is much larger than the per-peer storage
size, M � c, the probability of caching duplicated copies at
a single peer should be very low.

C. Monte Carlo Averaging Procedure
Given this natural probabilistic model, we can now evaluate

the performance of a scheduling policy using Monte Carlo
methods. Specifically, for each peer, we randomly generate
its state, and for each online peer we randomly generate the
v videos that it caches. We then use (1) to determine the
peer contribution for the policy and the given state. We repeat
this procedure many times, generating a new random state at
each iteration, and finally take the average. In this way, we
can obtain the average peer contribution (denoted by C(F ))
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for a given F . We can also calculate confidence intervals,
allowing us to determine the number of iterations for any
desired accuracy. Similarly, we can determine the maximal
contribution from the peers by solving the max-flow problem
(2) at each Monte Carlo iteration.

D. Bounding Performance

Although the solution of the optimal scheduling problem (2)
can in principle be used to construct a tight upper bound on the
performance of peer-assisted UGC, due to the complexity of
the max-flow problem, we instead seek a simpler performance
bound. We will show in Section VI via simulations that this
upper bound is nearly tight.

We claim that under any feasible scheduling policy, the peer
contribution c(F |N,n,M) is bounded by:

c(F |N,n,M) ≤ min

∑
i∈N

ui,

M∑
m=1

min(nmrm,
∑

i∈N(m)

ui)

 ,

(3)
where N(m) is the set of online peers that store video m.
This bound is obtained as follows. The peer contribution rate
is limited by two constraints: (i) the peers cannot upload more
than their aggregate upload rate, namely,

∑
i∈N ui; and (ii) for

each video m, the peers cannot upload more than the video
demand for video m, namely, rmnm, and also cannot upload
more than

∑
i∈N(m) ui. When no peer caches video m, i.e.,

N(m) = ∅, the peer contribution for video m is zero, and all
demands have to be served by the server. With limited peer
storage, the caching probability for long-tail videos is small.
Even though the requesting probability for individual long-tail
video is small, the aggregate bandwidth requirement is still
significant. As will be shown in our numerical study, with
limited peer caching size, peer contribution levels off quickly
as their upload bandwidth increases.

By using (3) in the Monte Carlo procedure, we no longer
have to solve a max-flow problem at each iteration. Instead at
each iteration, we simply evaluate the bound in (3).

Now we explore developing yet a more efficient procedure
for bounding the peer contribution. Let lm be the number of
available copies of video m in the system and define l =
(l1, . . . , lM ). The idea here is to generate at each iteration
only n, n, and l and not N and M. To this end, we replace
(3) with an approximate bound given by

c(F |n,n, l) ≤ min

(
nw,

M∑
m=1

min(nmrm, lmumax)

)
, (4)

where umax is the maximum upload rate among all peers and
w is the average upload rate across all peers.

We now derive the distribution of n and l, which will be
used to generate the Monte Carlo samples of n and l. With
the probabilistic models shown in Section III-B, because the
states of the peers are independent, it is easy to see that n
follows a multinomial distribution:

P (n) = N !
ρnoo
no!

ρnhh
nh!

M∏
m=1

ρnmm
nm!

. (5)

Also, since each peer caches a video from M videos at
each storage slot independently, for a given n, l also follows

a multinomial distribution:

P (l | n) = (nc)!

M∏
m=1

βlmm
lm!

. (6)

E. Closed-form expression
In the previous section, we have developed an efficient

Monte Carlo methodology for bounding the maximal peer
contribution in the system. We now develop an analytical
procedure for an important special case.

We first note that the video rate for YouTube is approxi-
mately 300 kbps, which is lower than the average upload rate
of the peers in the Internet [14]. Furthermore, after the idle
peers behave as helpers and serve other peers, it is possible
that the aggregate supply exceeds the aggregate demand even
when high rate videos are streamed. Making this observation,
we now consider the special case of the aggregate bandwidth
supply always exceeding the aggregate bandwidth demand,
specifically,

M∑
m=1

rmnm ≤
∑
i∈N

ui. (7)

A special case when this occurs is that the maximum video
rate among all M videos is smaller than the minimum upload
bandwidth among all N peers.

With the assumption (7), the upper bound (3) becomes:

c(F |n,n, l) ≤
M∑
m=1

min(rmnm, lmumax). (8)

Therefore, the average peer contribution C(F ) satisfies:

C(F )

≤
∑M
m=1

∑
n

∑
l[min(nmrm, lmumax)P (l|n)P (n)]

=
∑M
m=1

∑N
n=0

∑n
km=0

∑nc
lm=0[min(kmrm, lmumax)

P (lm|n)P (km|n)P (n)],
(9)

where P (lm|n) is the probability that given n active peers, lm
peers cache video m; P (km|n) is the probability that given
n active peers, km peers watch video m; and P (n) is the
probability that n peers are active. They all follow binomial
distributions:

P (lm|n) = (nc)!
lm!(nc−lm)!β

lm
m (1− βm)nc−lm ,

P (km|n) = n!
km!(n−km)!ρ

lm
m (1− ρm)n−km ,

P (n) = N !
n!(N−n)! (1− ρo)

nρN−no .

IV. NUMERICAL RESULTS OF PERFORMANCE MODEL

Using our models of the previous sections, we now numer-
ically investigate the behavior of a Youtube-like peer-assisted
UGC service. We focus on how tight is the derived peer
contribution upper bound and how the different parameters
impact system performance.

Given a set of model parameters, we first calculate the
content rateR. We then calculate the lower bound of the server
rate based on the upper bound of the peer rate in Equation (4).
Additionally, we calculate the server rate S for a specific
scheduling algorithm F with Monte Carlo averaging, which
provides an achievable upper bound on server rate.
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Fig. 2. Illustration of rarest-first with water filling. The height of a rectangle
indicates the amount of bandwidth. Dark gray, gray, and white indicate the
bandwidth allocated to receiver D for video 3, the bandwidth allocated to
receiver E for video 2, and the leftover bandwidth, respectively.

1) Video Scheduling Heuristic: First, we need to specify
a scheduling policy. As discussed in Section 3, for a given
system state (N,n,M), the optimal scheduling algorithm can
be formulated as a classical max-flow problem. Instead of
computing the max-flow for each instance of the system,
we consider a heuristic policy, which we call rarest-first
video scheduling with water-filling, to approximate the optimal
solution. This policy is in the same spirit as the rarest-first
scheduling algorithms that have been widely used in P2P file
sharing and P2P live video streaming. The basic idea is that
the system will first serve the demand for the video with the
rarest supply (i.e., the video with the smallest number of cache
copies), and then the video with the next rarest supply, and
so on, until either all video demands have been satisfied or
all user bandwidth has been used up. For a given video, if
multiple peers have a copy, then bandwidth is allocated among
the peers so as to equalize the residual bandwidth in the peers
holding the copies.

We re-use the example shown in Figure 1 to illustrate the
rarest-first algorithm. Since between video 2 and video 3,
video 3 has fewer copies available, the system will serve video
3 first. As shown in Figure 2, B serves D with video 3 at a full
video rate 400 kbps. The available bandwidth at B reduces to
100 kbps. Next, video 2 can be served by A, B, and C. To
maintain the workload balance, the system then serves video
2 by allocating bandwidth on A, B and C in a water-filling
fashion – after serving video 2, A, B and C have the same
leftover upload bandwidth.

2) Model parameters: We now present the default model
parameters. In our default model, there are totally N =
100, 000 users subscribed in a UGC service with all of them
installing a P2P plug-in. On average there are 10,000 active
online peers, so that

∑
m ρm = 0.1. There are two types

of peers: p1 = 40% of high bandwidth peers with upload
bandwidth u1 = 1 Mbps, and p2 = 60% of low bandwidth
peers with upload bandwidth u2 = 400 kbps. By default, we
assume all idle peers are selfish and are not willing to serve
other peers.

In [6], it was shown that the number of videos in YouTube
is much larger than the number of active online users. It is
reasonable to assume that the number of videos is two orders
of magnitude larger than the number of active peers. Thus,
we use totally M = 1, 000, 000 videos. We set the video rate
to 400 kbps and the video length is 6 minutes. Each peer
caches v = 50 videos in this case, so that the storage used at

each peer is about 1 GB. We assume that the video popularity
βm follows a Zipf distribution with the parameter α = 0.54
[9]. In the following sections, we will investigate the impact
of system parameters by varying a particular parameter and
fixing other default parameters.

A. Results and Analysis
We now investigate the impact of five parameters on the

performance of a peer-assisted systems.
Peer Upload Bandwidth

Peer upload bandwidth is one of the most important param-
eters in P2P applications. We vary the upload bandwidth of
each peer by scaling the default upload bandwidth. The scaling
factor ranges from 0.2 to 2.0. Figure 3 relates the peer upload
bandwidth to the server cost ratio. We use “bound” to indicate
the lower bound of server cost ratio, and “heuristic” to indicate
the server cost ratio obtained by using the rarest-first water-
filling policy. We plot the server cost ratios as a function of
the average upload bandwidth in the figure. First, we observe
that the lower bound of server cost ratio is quite close to that
obtained by using the rarest-first water-leveling policy. This
indicates that the lower bound is relatively tight and the rarest-
first algorithm can achieve near optimal performance. It also
indicates that video scheduling is less critical in peer-assisted
UGC, and elaborate scheduling designs are not necessary.
Second, increasing peer upload bandwidth beyond a certain
point does not significantly improve the system performance.
The server cost ratio seems converge to a relatively high value
(always higher than 40%) as peer upload bandwidth increases.
Intuitively, this can be explained as the “storage bottleneck”
problem. In the example of YouTube, with tens of millions of
user-generated videos, the chance of peers to watch the same
video is much lower than in other VoD systems, e.g., Hulu,
that share a much smaller number of professionally generated
videos. Given the limited peer storage size, the possibility for
a peer to download a long-tail video from other peers is small.

To gain quantitative understanding, let’s re-examine equa-
tion (8). When umax is really large, we can assume that
lmumax > rmnm, ∀lm ≥ 1. In other words, as long as one
peer caches video m, it can serve all peers watching video m.
Then the upper bound becomes

c(F |n,n, l) ≤
M∑
m=1

rmnm1(lm), (10)

where 1(·) is the indicator function that takes value 1 if lm ≥
1, and value 0 if lm = 0. Given n active peers, the average
peer contribution C(F |n) satisfies:

C(F |n)

≤
∑M
m=1

∑
n nmrmP (lm ≥ 1|n)P (n|n)]

=
∑M
m=1 rmE[nm|n]P (lm ≥ 1|n)

= n
∑M
m=1 rmρm (1− (1− βm)nc) .

(11)

From the server point of view, it must serve peers watching
videos that are not cached by any peer. Given there are n
active peers, the server rate satisfies:

Sn ≥
M∑
m=1

rmE[nm|n]P (lm = 0|n) = n

M∑
m=1

rmρm(1−βm)nc.

(12)
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Fig. 3. Peer upload bandwidth.
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Fig. 4. Peer storage.
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Fig. 5. System size on server cost ratio.

It is suggested in (12) that, when peer upload bandwidth is
abundant, the server cost ratio will converge to a constant de-
termined by peer storage c, system size n, and video popularity
distribution {ρm, 1 ≤ m ≤ M} and {βm, 1 ≤ m ≤ M}. In
the following, we will numerically study the impact of each
of those parameters.
Peer Storage

Figure 4 relates the server cost ratio to peer storage. It
shows that the server cost ratio decreases as peer storage size
increases. This can also be explained from the server cost for
missed video in (12), where Sn is a decreasing function of c.
The decreasing speed is determined by both the system size
n and video popularity distributions. In Figure 4, initially, the
server cost ratio drops dramatically as peer storage increases.
The decrease becomes slower as peer storage increases further.
This indicates that the system needs to use a large amount
of peer storage to reach a low server cost ratio. Instead of
a “bandwidth bottleneck,” we see that YouTube-like UGC
systems encounter a severe “storage bottleneck” problem,
due to the huge number of videos and limited peer storage.
Although storage is cheap these days, it is still challenging to
provide appropriate incentives to encourage peers to contribute
their storage to cache watched UGC videos.
System Size

We investigate how the system size, i.e., the number of
active peers, affects system performance in peer-assisted UGC.
Figure 5 relates the server cost ratio to the number of active
peers. The server cost ratio decreases dramatically from a
small system to a large system. This is because the system
size directly determines the aggregate system storage and the
content availability. Based on (12), the server cost for missed
video normalized by the system size can be calculated as

Sn
n

=

M∑
m=1

rmρm(1− βm)nc,

which is a decreasing function of n. Since n and c show up
in the equation as a product, they have similar impact on the
server rate and content rate ratio. This explains why Figure 4
and 5 have very similar shapes.

As the number of receivers increases, the content rate also
increases. Even though the server cost ratio decreases, it
does not necessarily mean that the server is running with a
lower rate. We investigate the server rate under different peer
populations when the system resource index, defined as the
ratio between average peer upload bandwidth and average peer
video download rate, is larger than 1. We plot in Figure 6

the server rate when the system size varies from 2,000 active
peers to 70,000 active peers. We observe that after reaching a
maximum server rate, as the number of active peers increases,
the server rate decreases. When more peers become active,
P2P sharing becomes more efficient, not only covering the
additional content rate introduced by the new active peers,
but also reducing the server bandwidth for the original active
peers. Importantly, it indicates that peer-assisted UGC system
is scalable – after the system reaches a certain size, P2P
dominates the uploading so that the server rate is bounded.
Video Popularity

We now investigate the impact of video popularity on server
bandwidth cost. Let’s assume video popularity follows a Zipf
distribution. After videos are ranked based on popularity,
the popularity for video m is βm = k

m1+α , where k is
the normalization constant, and α is the Zipf parameter, the
smaller the α, the more long-tail the distribution. We vary the
Zipf parameter α from 0 to 1.2. In Figure 7, we can observe
that the video popularity has a big impact on the server cost
ratio. The system is more sensitive to video popularity than
other system parameters that have been investigated.

In (12), since ρm is proportional to βm, the monotonicity
of the server cost ratio with α is not immediately clear. Let’s
elaborate on this by plugging in the Zipf popularity function.
The probability that video m is not cached by any peer can
be calculated as:

P (lm = 0) =

(
1− k

m1+α

)nc
.

P (lm = 0) is an increasing function of m, for any 0 < η < 1,
we can find Mη such that P (lm = 0) ≥ η if m ≥Mη:

Mη =

(
k

1− η 1
nc

) 1
1+α

. (13)

Meanwhile, P (lm = 0) is also an increasing function of α,
and a decreasing function of n and c. The expected download
workload for video m is

rmnρm = rmnβm(1− λ0 − λh)/µm =
nwm
m1+α

,

where wm = rmk(1 − λ0 − λh)/µm. Following (12), the
expected server workload for serving the missed videos is

Sn =

M∑
m=1

P (lm = 0)
nwm
m1+α

. (14)

According to (13), we can choose some 0 < η < 1 so that
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Fig. 6. System size on server rate.
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Fig. 7. Video popularity.
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Fig. 8. Helpers.

Mη < M , and P (lm = 0) ≥ η if m > Mη . Then we have

Sn ≥
M∑

m=dMηe

P (lm = 0)
nwm
m1+α

≥ ηnw0

M∑
m=dMηe

1

m1+α
,

where w0 , min1≤i≤M wm. When M is large, we will have

Sn ≥
ηnw0

Mα
η

∝ n
(

1− η 1
nc

) α
1+α

. (15)

Given n and c, Sn is a decreasing function of α. Notice that,
(15) only takes into account the server bandwidth used to serve
videos with popularity rank lower than Mη . Even though the
probability for a peer to watch each of those less popular
videos is small, also due to their low popularity, the probability
that they miss in all peers’ caches is high (≥ η by definition).
Due to the long-tailed popularity distribution function, there
are a large number of them. In aggregate, they consume a
significant portion of server bandwidth.

To reduce server cost ratio, a service provider can “shape”
the video popularity. For example, YouTube has functions to
suggest related videos to the users. In this way, YouTube can
guide the users to watch more popular videos, thereby reduce
the number of long-tail videos watched by users.

Number of Helpers

There are normally a large number of idle peers in a
UGC system. With appropriate incentives, an idle peer can
be motivated to contribute their resources. These helpers can
potentially form a huge resource pool that can be used to
reduce the server rate. We now investigate how idle peers can
help. We assume that the helpers have the same characteristics
as the active peers. We vary the number of helpers from 0 to
90,000. Figure 8 relates the server cost ratio to the number of
helpers. We observe that the storage bottleneck problem is not
easily resolved even with a large number of helpers. The server
cost ratio reduces slowly as the number of helpers increases.
However, we also note that when the number of helpers
increases, the load on each active peer reduces. Therefore,
with the help of idle peers, both server load and peer load can
drop to a very low level. With proper incentives (and helpers),
it is possible to distribute on-demand videos to a large number
of users with very low server cost.

V. POPULARITY EVOLUTION MODELS

We now present the results on the popularity evolution of
the P2P plug-in and its impact on the system performance. In
Sections III, we assumed that all users install the P2P plug-
in. We also assumed that the server is capable of serving all
video sessions without any peer assistance. In this section, we
discuss a different scenario without such assumptions.

We now suppose the server can at most serve a fraction γ
of the total video demand. We further suppose the server can
distribute its bandwidth to the video sessions so that a user
viewing video m receives the fraction γ of the video rate rm.
A partial received video rate γ < 1 indicates a lower received
video quality, e.g, a less clear image or a frequently frozen
video session. This motivates users to install a P2P plug-in to
improve their received video quality.

As discussed in Section III, the effectiveness of a P2P plug-
in is highly dependent on the number of peers that use it. If
there are only a small number of users using the P2P plug-
in, it is ineffective and there is little motivation for users to
use it. Critical questions include (i) whether a P2P plug-in can
become popular, (ii) how a P2P plug-in becomes popular, (iii)
how to increase the popularity of a P2P plug-in. To answer
these questions, we model popularity evolution in this section.

Assume time advances in time slots. Assume at time t, there
is a fraction Θ(t) of users use the P2P plug-in. We investigate
the popularity evolution of the P2P plug-in, i.e., how Θ(t)
evolves in time. To simplify our discussion, we assume that all
videos have the same video rate r. We denote the video rates
received by users without the P2P plug-in and with the P2P
plug-in as ωs(t)r and ωp(t)r, respectively. Since P2P always
increases the received video rate, 0 ≤ ωs(t) ≤ ωp(t) ≤ 1 for
any time slot t.

We model Θ(t) as follows:

Θ(t) = Θ(t−1)+(1−Θ(t−1))Q(ωp(t−1)−ωs(t−1)), (16)

where Q(x) is a non-decreasing function of x and less than
or equal to 1. The rationale behind this is: the bigger the
difference between using the P2P plug-in and not using the
plug-in, the more likely it is for a user to adopt it. For
simplicity, we use Q(x) = min(1, ax) in our discussion.

The above model shares some similarities with the popular-
ity evolution model for Web page proposed in [10]. However,
there are two key differences: (i) in the Web model, the quality
of a Web page is constant, independent of its popularity; while
in the P2P plug-in model, the quality (i.e., effectiveness of
the plug-in) is highly dependent on its popularity; (ii) in the
Web model, the main contributor to popularity evolution is the
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users’ awareness of the Website. Differently, for the P2P plug-
in, the video site (like Tudou) keeps advertising the plug-in to
its users; therefore the users are highly aware of it.

Different server bandwidth allocation strategies result in
different ωs(t) and ωp(t). We consider two such strategies
in our discussion. We say that the (1−Θ(t))N users who do
not use the P2P plug-in are in the server group, and the Θ(t)N
users who use the P2P plug-in are in the P2P group. Assume
that the demand is independent of the popularity of the plug-
in, and that the average consumption rate R is not a function
of time t. Further assume the users in both groups have the
same viewing behavior. Therefore, the demands of the server
and P2P groups are (1−Θ(t))R and Θ(t)R, respectively. Let
Ss(t) denote the server rate allocated to the server group. We
have:

ωs(t) =
Ss(t)

(1−Θ(t))R
. (17)

Let Sp(t) denote the server rate allocated to the P2P group.
Similarly, we have

ωp(t) =
Sp(t) + C(t)

Θ(t)R
. (18)

where C(t) is the peer contribution, which has been discussed
in Section III. Note that C(t) and accordingly ωp(t) are
functions of Θ(t).
Fixed server bandwidth allocation

With the fixed server bandwidth allocation, the maximum
server bandwidth allocated to the server group and the P2P
group are fixed to γ(1 − Θ(t))R and γΘ(t))R, respectively.
Therefore, we can have

ωs(t) = γ, ωp(t) = min(1, γ +
C(t)

Θ(t)R
). (19)

Flexible server bandwidth allocation
With the flexible server bandwidth allocation, the surplus

server bandwidth originally allocated to the P2P group can
be re-allocated to the server group, if and only if all peers in
the P2P group receive the full video rate. If peers in the P2P
group do not receive the full video rate, the server allocates
its bandwidth to the groups proportional to the numbers of
users. Compared with the fixed bandwidth allocation strategy,
the strategy does not affect bandwidth allocation in the P2P
group, thus resulting in the exactly same expression of ωp(t)
as shown in (19). However, since the server bandwidth saved
by the P2P group is re-allocated to the server group, there is
a correction term for ωs(t):

ωs(t) = min(1, γ+
Θ(t)

1−Θ(t)
(max(1, γ+

C(t)

Θ(t)R
)−1)). (20)

With a given initial Θ(0), we can iteratively obtain Θ(t),
and the corresponding ωs(t), ωp(t), Ss(t), and Sp(t) for all
time slots.

VI. NUMERICAL RESULTS OF POPULARITY MODEL

A. Popularity Evolution

We now present the results on the popularity evolution of the
P2P plug-in and its impact on the system performance. We use
the default system configuration shown in Section IV-2. We

assume that the server cannot fully serve the users, and set γ =
0.8 by default. Parameter a in Q(x) = min(1, ax) is set to 1.
We investigate popularity evolution with different parameters
for both fixed server bandwidth allocation and flexible server
bandwidth allocation strategies. Accordingly, we investigate
the received video quality and server rate ratio.

1) Fixed server bandwidth allocation: First suppose the
fixed server bandwidth allocation is in use. Figure 9(a) shows
the popularity Θ(t) in a different time slot t with different
system configurations, specifically storage v and total server
rate ratio γ. We consider three systems and indicate the
corresponding (v,γ) in the figure. For all three setups, it takes
some time for the P2P plug-in to get popular. First consider
systems with γ = 0.8 but with different v values. The figure
shows that the system with v = 50 gets popular much faster
than the system with v = 5. It also shows that popularity
evolution is sensitive to the performance of the P2P plug-in.
Similarly, tuning the video popularity and incentivizing more
helpers should also affect the popularity evolution.

Now consider the systems with v = 50 but with different γ
values. Both of these systems have the same P2P configuration.
We see that the server policy plays an important role in the
popularity evolution. When γ = 0.95, the users can almost
receive the full video rate, so that they are less motived to
install and use the P2P plug-in.

Figure 9(b) plots the received ratio, i.e., the ratio of the
received video rate over the full video rate, for peers in both
the server and peer groups. It also shows the average received
ratio across both groups. The received ratio in the server
group is constant at 0.8, since the server does not re-allocate
the saved bandwidth. As the number of peers increases, the
performance of the P2P plug-in increases dramatically, as does
the received ratio of the peers. The average received ratio
increases since more users adopt the P2P plug-in. Eventually,
all users use the P2P plug-in, and the received ratio becomes
1. Figure 9(c) shows the server rate ratio. As the P2P plug-in
gets more popular and more effective, more server bandwidth
is saved.

2) Fixed server bandwidth allocation: Now suppose the
flexible server bandwidth allocation is in use. Similar to
Figure 9(a), Figure 10(a) shows the popularity evolution of
a P2P plug-in with different parameters. Unlike the fixed
allocation system, Θ(t) in the flexible allocation system may
not ever approach 1. This is because the saved bandwidth of
the P2P group is re-allocated to the server group, and it is
possible for the users in the server group to receive the full
video rate, discouraging them to install the plug-in. Again,
both of the performance of the P2P system (controlled by v)
and the server policy (controlled by γ) affect the popularity
evolution.

Figure 10(b) plots the received ratios. On one hand, unlike
the fixed allocation system, the users in the server group in
the flexible allocation system can also quickly receive the full
video rate. On the other hand, Figure 10(c) shows that the
server ratio is much higher in the flexible allocation system
than that in the fixed allocation system. This is a clear trade-
off. Importantly, as shown in Figure 10(b) and Figure 9(b),
both of the average receive ratios approaches to 1, indicating
that all users in both systems eventually can receive the full
video rate.
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Fig. 9. Evolution of P2P plug-in with the fixed server bandwidth allocation. (a) Popularity; (b) Received video ratio; (c) Server rate ratio.
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Fig. 10. Evolution of P2P plug-in with the flexible server bandwidth allocation. (a) Popularity; (b) Received video ratio; (c) Server rate ratio.

VII. CONCLUSION

In this paper we studied peer-assisted distribution of UGC
from three perspectives. First, we undertake a measurement
study of Tudou’s peer-assisted distribution system, which
revealed several fundamental characteristics that should be
taken into account by modeling efforts. Second, we developed
analytical models for peer-assisted UGC distribution, and
applied these models to a numerical study of YouTube-like
UGC services. And third, we developed analytical models to
understand the rate at which users would install P2P client
applications to make peer-assisted UGC a success. Our results
provide a comprehensive study of peer-assisted UGC distribu-
tion, exposing its fundamental characteristics and limitations.

Some of the more important lessons learned include (i)
peer-assistance is less effective for UGC systems than for
movie systems, due to the large number of long-tail videos;
(ii) the performance of peer-assisted UGC can be improved
by providing incentives to helpers and/or re-shaping the video
quality; (iii) video scheduling between peers is less critical
and does not need to be highly optimized.
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