
View-Upload Decoupling: A Redesign of
Multi-Channel P2P Video Systems

Di Wu†, Chao Liang‡, Yong Liu‡, and Keith Ross†
†Computer and Information Science ‡Electrical & Computer Engineering

Polytechnic Institute of NYU, Brooklyn, NY, USA 11201
Email: dwu@poly.edu,cliang@photon.poly.edu, yongliu@poly.edu, ross@poly.edu

Abstract—In current multi-channel live P2P video systems,
there are several fundamental performance problems including
exceedingly-large channel switching delays, long playback lags,
and poor performance for less popular channels. These perfor-
mance problems primarily stem from two intrinsic characteristics
of multi-channel P2P video systems: channel churn and channel-
resource imbalance. In this paper, we propose a radically different
cross-channel P2P streaming framework, called View-Upload
Decoupling (VUD). VUD strictly decouples peer downloading
from uploading, bringing stability to multichannel systems and
enabling cross-channel resource sharing. We propose a set of
peer assignment and bandwidth allocation algorithms to properly
provision bandwidth among channels, and introduce substream
swarming to reduce the bandwidth overhead. We evaluate the
performance of VUD via extensive simulations as well with a
PlanetLab implementation. Our simulation and PlanetLab results
show that VUD is resilient to channel churn, and achieves lower
switching delay and better streaming quality. In particular, the
streaming quality of small channels is greatly improved.

I. INTRODUCTION

In recent years there have been several large-scale industrial
deployments of P2P live video systems, including Coolstream-
ing [1], PPLive[2], and Sopcast [3], etc. Recent measurement
studies have verified that hundreds of thousands of users can be
simultaneously participating in these systems [4], [5]. Almost
all live P2P video systems offer multiple channels. PPLive
and its competitors each have over 100 channels; future user-
generate systems will likely have thousands if not millions of
live channels.

A. Isolated-Channel P2P Video Systems

A common practice in P2P video today is to organize peers
viewing the same channel into a swarm, with peers in the same
swarm redistributing video chunks exclusively to each other. We
refer to such a design as “isolated-channel” P2P video systems.
Recent studies of PPLive have identified several fundamental
performance problems for isolated-channel systems:

Channel switching delay and playback lag. Measurement
studies of PPLive and other live P2P streaming systems [4], [5]
indicate that current channel-switching delays are typically on
the order of 10-60 seconds. This is clearly undesirable, as users
are accustomed to delays of under 3 seconds in current cable
and satellite television systems and sub-second delays when
switching pages on the Web. Furthermore, these measurement

studies have shown that the playback lag, from when a live
video frame is emitted from the source until it is played at
the peer, wildly varies from one peer to another, with delays
ranging from 5 to 60 seconds. Unfortunately, the BitTorrent-
like mesh-pull architectures – currently used by most of the
P2P video deployments – are inherently delay and lag prone.

Poor small-channel performance. In the upcoming years, we
expect to see the emergence of user-generated live channels,
for which any user can create its own temporary live video
channel from a webcam or a hand-held wireless device. Similar
to YouTube, the live channel could be a professor’s lecture, a
little-league baseball game, a wedding, an artistic performance,
or a political demonstration. In the future, there will be, at any
one time, thousands of such small channels, each emanating
from a relatively low-speed connection (for example, wireless
PDA) and each with 10-1000 viewing peers. Measurement work
[4], [5] has revealed, however, that current P2P live streaming
systems generally provide inconsistent and poor performance
to channels with a small number of peers.

These performance problems primarily stem from two intrinsic
characteristics of multi-channel P2P video systems: channel
churn and channel-resource imbalance. In multi-channel P2P
video systems, churn occurs on two different time scales: peers
enter and leave the video application on long time scales; and
peers change channels on short time scales. A recent study
of a cable television system showed that users switch chan-
nels frequently [6]. Unfortunately, this channel churn brings
enormous instability to the system. For example, when a peer
switches from channel A to channel B, it stops uploading to
its neighbors in swarm A. Those neighbors have to find new
data feed to maintain steady video inflow. And in swarm B,
the newly joining peer has to find new neighbors with enough
bandwidth and content to download from, leading to excessive
channel switching delays.

To understand channel-resource imbalance, recall that a chan-
nel’s instantaneous resource index [7], [8] is defined as

ρ :=
us +

∑n
i=1 ui

nr
(1)

where r is the bit rate of the channel, n is the number of peers
viewing the channel, us is the server upload capacity, and ui is
the fraction of peer i’s upload capacity devoted to the channel.
A channel’s instantaneous resource index indicates to what

2degree the upload supply matches the download demand for the
channel. In particular, the streaming rate r is not sustainable
if ρ < 1 for extended periods. In our measurement study of
PPLive we observed that there is significant variation of the
average resource index across channels, with some channels
having ρ >> 1 and others in the vicinity of 1. Using PlanetLab
experiments, it has been shown that streaming swarms with
higher resource indexes have better streaming quality, lower
startup delays and less sensitive to scheduling designs [9]. Thus,
in an isolated-channel design, many channels may have poor
performance simply because they are resource-index poor.

Moreover, channel switching and resource-index imbalance can
conspire, leading to extremely poor performance for small
channels. To see this, consider a large channel L with thousands
of users and a small channel S with tens of users, and suppose
both channels have an average resource index of 1.2. Due to
the law of large numbers, the instantaneous resource index of
channel L will almost always be greater than 1 and the swarm
will provide acceptable performance. However, for channel S
the instantaneous resource index will frequently dip below 1,
causing highly degraded viewing quality.

In summary, the widely deployed isolated-channel designs,
currently have serious performance problems, which will only
become more severe as video rates increase and the number of
user-generated channels grows exponentially.

B. View-Upload Decoupling

In this paper, we propose a radically different cross-channel
P2P streaming framework, which we refer to as View-Upload
Decoupling (VUD). VUD strictly decouples what a peer up-
loads from what it views, bringing stability to multi-channel
systems and enabling cross-channel resource sharing.

In VUD, each peer is assigned to one or more channels, with the
assignments made independently of what the peer is viewing.
For each assigned channel, the peer distributes (that is, uploads)
the channel. This has the effect of creating a semi-permanent
distribution swarm for each channel, which is formed by peers
responsible for uploading that channel. This novel approach has
two major advantages over isolated-channel designs:

• Channel Churn Immunity. VUD is immune to channel
churn. To illustrate, suppose a peer is assigned to the
swarm of channel A and is watching channel B. When
the peer switches from channel B to channel C, it only
needs to release its video feeds in swarm B and find
new feeds in swarm C. At the same time, it continues
its uploading in swarm A. This channel churn introduces
no disruption to the distribution swarms of A, B and
C. With these more stable distribution swarms, a peer’s
viewing experience and channel-switching delay can be
dramatically improved.

• Cross-Channel Multiplexing. VUD enables cross-
channel resource sharing. In particular, distribution swarms
can be properly provisioned and adapted in response to the
evolving channel popularity and achieve a cross-channel

“multiplexing gain”.

However, decoupling viewing from uploading requires more
upload bandwidth overhead. To minimize this overhead, we also
propose a substream-swarming enhancement. With substream
swarming, a peer in a distribution swarm only downloads a
small portion of the video stream, called a substream, and
uploads the substream to multiple viewers. This way, peers in
distribution swarms act as bandwidth amplifiers. We will show
that VUD combined with substream-swarming dramatically
improves viewing and channel-switching performance without
requiring significant upload-bandwidth overhead.

We make the following contributions in this paper:

• To the best of our knowledge, this is the first P2P live
streaming design that strictly decouples peer viewing from
uploading. It addresses two fundamental problems that
exist in current P2P streaming system designs: channel
churn and channel-resource imbalance.

• We propose a set of peer assignment and bandwidth
allocation algorithms to realize the proper provision of
bandwidth among distribution groups. It eliminates the
problem of resource shortage in small channels. When
channel popularity changes, the algorithms can adjust
bandwidth allocation dynamically.

• We introduce a substream enhancement to reduce the
bandwidth overhead incurred by decoupling of viewing
and uploading. We provide an analytical analysis of band-
width overhead of VUD using substreams.

• We evaluate the performance of VUD via extensive sim-
ulations. The simulation results show that VUD signifi-
cantly reduces switching delay, chunk miss ratio and play-
back lags. Moreover, VUD greatly improves the streaming
quality of small channels. We also perform a preliminary
PlanetLab evaluation of VUD.

The remainder of this paper is structured as follows. Section
II summarizes related work. The detailed design of our cross-
channel streaming system is presented in Section III. In Section
III-A, we analyze the bandwidth overhead of our design. In
Section IV, we describe the simulation methodologies and
results related to the experiments conducted to verify the
performance. In Section V, we present the experimental results
obtained by PlanetLab evaluation. The paper is summarized in
Section VI.

II. RELATED WORK

P2P video streaming has attracted lots of research activities
in recent years [10], [11], [12], [13]. Existing P2P video
systems fall into two categories: tree-based [14], [15] and mesh-
based [1], [16], [17]. Most of previous research work focuses on
the design and improvement of isolated-channel P2P streaming
systems, paying little attention to the optimization of multi-
channel P2P streaming systems. In the multi-channel setting,
there are few related published papers. In [18], Wu et al.
proposed a server bandwidth provisioning algorithm to adjust

3the supply of server bandwidth to different channels dynami-
cally. Liao et al. [19] introduced inter-overlay cooperation in
their system called AnySee to balance the resources among
channels, and optimize streaming paths. In [20], Gan et al.
proposed a reputation-based incentive mechanism to stimulate
peers with spare bandwidth in resource-rich channels to help
peers in resource-poor channels. Although the above works
consider the balance of bandwidth resource among channels,
they cannot solve the fundamental performance degradation
incurred by channel churn. Our design differs in that, by strictly
decoupling peer viewing and uploading, we address both chan-
nel churn problem and channel-resource imbalance problem
simultaneously. With proper peer assignment and bandwidth
provision, our system is immune to channel churn and realize
cross-channel multiplexing. The idea of cross-swarm bandwidth
sharing has been proposed for P2P file sharing applications,
e.g [21]. In contrast, our VUD design addresses much more
stringent delay and bandwidth requirements of P2P streaming
applications.

III. VIEW-UPLOAD DECOUPLING WITH SUBSTREAMS

We now describe more specifically VUD. Each video is divided
into substreams (for example, to create K substreams for a
video, the video source could assign every Kth constant-size
chunk to a substream). As illustrated in Figure 1, the server
divides the channel into K substreams. For each substream,
there is a subset of peers, called a substream distribution
group. Server only uploads each substream to one peer in
each distribution group. Peers in the same distribution group
upload and download the substream in P2P fashion. Finally,
each viewer downloads all substreams from all distribution
groups. Below we list some critical properties and observations

Server

n Distribution Peers

(K groups)

m Viewer s

r 1 r 2 r k

r 1 r 1 r 1r 1

Fig. 1. Substream distribution groups in one channel: the server distributes
one substream to each distribution group, which then distributes to the viewers.

about VUD:

1) The groups are semi-permanent, that is, the groups re-
main constant over medium time scales, and do not
change as peers channel surf. However, the groups do
evolve on a longer time scale to adapt to evolving channel
popularity and peer churn.

2) If a peer is assigned to a distribution group for a sub-
stream, then it seeks to receive the complete substream.
It redistributes the substream chunks to other peers in its

distribution group and to peers outside the group that are
currently viewing the corresponding channel.

3) A peer may belong to more than one distribution group,
in which case it distributes more than one substream. If
a peer is assigned to more than one subtream, it needs to
allocate its upload bandwidth to its assigned substreams.

4) Intuitively, the aggregate upload capacity of a substream
distribution group should reflect the demand for the
substream. The greater the average channel demand, the
larger the corresponding substream groups.

5) Intuitively, the peers in a distribution group should be
chosen in regions that match the geographical demand.
For example, if the majority of the demand for a channel
is in Korea and the USA, then most of peers for the
corresponding substream groups should be in Korea and
the USA (and not, say, in Europe and China). However,
in order to expose the intrinsic advantages of VUD, we
postpone locality considerations to subsequent work.

6) Within a distribution group, we do not require the de-
ployment of a specific distribution mechanism. We allow
for trees [14], mesh-pull [1] and meshes with push-pull
[17]. However, because the substream distribution groups
are relatively stable, we should be able to employ tree-
based mechanisms, which generally provide better delay
performance than mesh-based mechanisms.

A. Limiting VUD Overhead

One immediate concern for the VUD design is its bandwidth
overhead. The peers in a substream distribution group need to
first download video of their substream, either directly from
the server or from other distribution peers in the same group,
before they can upload the substream to viewers. Consequently,
the aggregate download demand for each substream increases
proportionally with the number of distribution peers in that
substream. We define the VUD overhead of a channel as
the ratio between the total bandwidth (from the server and
distribution peers) utilized to upload video to distribution peers
and the required upload bandwidth to serve the viewers of this
channel.

To study the VUD overhead, we focus on one VUD channel
with streaming rate r, m viewers and n distribution peers.
Distribution peer i has upload capacity of ui. Immediately we
have the following result:

Proposition 1: The VUD overhead of any channel with m
viewers has an achievable lower bound of 1

m .

Proof: For any distribution peer i, let di be the aggregate
rate at which it downloads video from the server and other
distribution peers, ci be its upload contribution to all viewers.
Peer i can maximize ci by uploading downloaded video to all
viewers in the channel. We have ci = min{ui,mdi}, and VUD
overhead can be calculated by

ξ ,
∑n

i=1 di∑n
i=1 ci

≥
∑n

i=1 di∑n
i=1 mdi

=
1
m

.

The equality holds only if mdi ≤ ui, ∀1 ≤ i ≤ n. One

4scheme to achieve the lower bound is that the server uploads
a substream of rate ui

m to distribution peer i, then distribution
peer i uploads the substream to all m viewers at its full upload
rate ui. This way, all distribution peers act as a “bandwidth
amplifiers” with a gain of m.

Essentially, to achieve the lowest VUD overhead, each channel
is divided into many very fine substreams, each of which is
distributed by a single distribution peer. However, for channels
with a large number of viewers, it is impractical to have so
many substreams. It is also unrealistic to have each distribution
peer upload to all viewers. In practice, a channel is divided into
a small number of substreams, each of which is distributed by
a distribution group. The VUD overhead is determined by how
substreams are divided and how distribution groups are formed.
Next, we study how to design VUD to achieve a reasonably low
overhead.

The VUD substream strategy will be characterized by the
following variables for each substream:

• rk: the substream rate for the kth substream group, with∑K
i=1 rk = r;

• Dk: the group of distribution peers for substream k;
• nk = |Dk|: the number of distribution peers in Dk, with∑K

i=1 nk = n;

Each distribution peer in Dk needs to download video at rate
rk. The total upload bandwidth consumed by all distribution
peers in Dk is nkrk. Since the server only uploads one copy
of substream k to one peer in Dk, distribution peers will
utilize (nk − 1)rk of their upload bandwidth to disseminate
the substream among themselves. To serve all viewers with
substream k, distribution peers in Dk should upload to all
viewers at an aggregate rate

mrk ≤
∑

i∈Dk

ui − (nk − 1)rk. (2)

The channel VUD overhead can be calculated as

ξ =
∑K

k=1 nkrk∑K
k=1 mrk

=
1

mr

K∑

k=1

nkrk

Proposition 2: When peers have homogeneous upload capac-
ity, the substreams need to be divided equally to achieve the
minimum VUD overhead.

Proof: When distribution peers have the same upload
capacity ui = u, the optimal VUD substream strategy to
minimize the overhead can be obtained by solving:

argmin
{rk,nk}

K∑

k=1

nkrk, (3)

subject to:

mrk ≤ nku− (nk − 1)rk (4)
K∑

k=1

rk = r (5)

From (4), nk ≥ (m−1)rk

u−rk
. Then we have

K∑

k=1

nkrk ≥
K∑

k=1

(m− 1)r2
k

u− rk
,

subject to (5). Since f(x) , x2

u−x is a convex function over
x ∈ [0, u), through Jensen’s inequality, we have

K∑

k=1

r2
k

u− rk
≥ K ∗ (1

K

∑K
k=1 rk)2

u− 1
K

∑K
k=1 rk

=
r2

uK − r
,

with equality holds when rk = r
K , ∀k. It can be easily verified

that the minimum VUD overhead is

ξ∗ =
(m− 1)r

m(uK − r)
,

which can be achieved when all substreams have the same rate
and all distribution groups have the same number of peers nk =
(m−1)r
uK−r .

The minimum VUD overhead ξ∗ decreases almost proportion-
ally to peer uploading bandwidth and the number of substreams.
For heterogeneous peers, the channel can also be divided into
K equal-rate substreams. Distribution peers can be assigned
to distribution groups to keep the average upload bandwidth
within each group balanced, i.e., ūk ≈ ū, ∀k, where ūk is the
average upload bandwidth in group k. Following the similar
procedure as in the homogeneous case, it can be shown that
the achieved VUD overhead is approximately (m−1)r

m(ūK−r) . If the
system resource index is ρ = 1.2, the average distribution
peer upload bandwidth is 1.2 times the streaming rate. It is
sufficient to divide the channel into ten sub-streams to bring the
VUD overhead down to 9%. VUD overhead will be implicitly
bounded when we assign peers to achieve high resource index
for all channels, we will discuss this in the following section.

B. Adaptive Peer Assignment

In this section, we present an adaptive algorithm that (i)
assigns peers to substream groups; and (ii) for each peer,
determines the fraction of upload capacity the peer assigns to
each substream it is handling. Ideally, we would like such an
assignment to balance the resource index across substreams and
adapt to variations in channel demand. To this end, we introduce
the following notation:

• K: the total number of substreams among all the channels;
• n: the total number of peers;
• rk: the video rate of substream k;
• us: the upload capacity of servers;
• uk

s : the server bandwidth allocated to substream k;
• ui: the upload capacity of peer i;
• dk

i : dk
i = 1 iff peer i is in distribution group k;

• uk
i : the allocated upload bandwidth of peer i for distribut-

ing substream k;
• uk

min: the minimum upload bandwidth required to join
distribution group k. (If uk

i ≤ rk, peer i downloads more
than uploads in group k. We require uk

i ≥ 2rk);

5• nk is the number of peers in substream distribution group
k, nk =

∑n
i=1 dk

i ;
• mk is the average number of peers viewing substream k

over a short time scale (say, 5 minutes).

In assigning peers to groups, and allocating upload bandwidth
to substreams, our primary goal is to balance the resource index
across substreams. For a substream demand profile {mk, k =
1, . . . , K}, one can search for an optimal peer assignment {dk

i }
and peer bandwidth allocation {uk

i } to balance the resource
indexes {ρk} across all substreams:

max
({dk

i },{uk
i })

min
k

ρk =
uk

s +
∑

i uk
i

rk(mk + nk)
, (6)

subject to

dk
i uk

min ≤ uk
i ≤ dk

i ui,

K∑

k=1

uk
i ≤ ui, (7)

which reflects that a distribution peer’s upload bandwidth con-
straints. The problem is a NP-hard mixed fractional problem.
We will instead resort heuristic algorithm to solve it. As the
average demands {mk} evolve, and as peers churn (on a much
larger time scale than channel churn), we will need to adapt
the assignments and allocations accordingly. A secondary goal
is that, when adapting to peer churn and long-term channel
popularity evolution, we more often adapt by modifying the
allocations rather than re-assigning peers to groups.

To this end, order the substream groups in ascending order
according to their resource indexes ρk. Let G be the maximum
number of groups that a peer can initially be assigned to. (In our
simulations, we use G = 5.) When a new peer i with upload
capacity ui joins the system, we need to assign it to substream
distribution groups, and then allocate its upload bandwidth to
the assigned substreams. We consider assigning i to the first G
substreams in the ordered list (that is, to the G most resource-
poor substreams). To this end, we use a water-filling policy
and distribute ui among the G groups to balance the resource
indexes of the G groups. In doing the water leveling, we always
make sure that the allocated bandwidth uk

i to any group is never
less than uk

min.

Because peers can leave the system and the average demand for
viewing channels can change, we may also need to adapt as-
signments and allocations inbetween peer arrivals. In particular,
if the resource index of a substream drops below a threshold
ρmin, we adjust the peer bandwidth allocations without (if
possible) modifying the peer assignments to distribution groups.
With fixed peer assignment, the optimization problem defined
in (6) ∼ (7) is simplified into a linear max-min programming
problem. Using the Lagrangian relaxation method [22], it can
be solved by distributed algorithms implemented on individual
peers. In our current experiments, all peering connections
are TCP connections. The bandwidth allocation among all
neighbors of a peer is regulated by the TCP congestion control
scheme. We will investigate the optimal distributed bandwidth
allocation algorithm in future work.

Algorithm 1: Peer Reassignment Algorithm
Initialize H={distribution groups with ρ ≤ ρmin } ;
Initialize P = ∅ ;
while H 6= ∅ do

Select the distribution group k with the highest ρ;
while ρk ≥ ρavg do

Remove the peer with the lowest utilization of
upload bandwidth from group k, and add the peer
into P ;

end
Sort the peers ∈ P in descending order according to
their available upload bandwidth;
for each peer v ∈ P do

From the first to the last, assign v to a distribution
group j in H that minimizes ρ′j = uj

s+
∑

uj
i+uv

mjrj
;

If ρ′j > ρmin, remove group j from H;
end

end

After bandwidth allocation adjustment, if some distribution
groups still have resource indexes below ρmin, we will have to
adjust peer assignments. The basic idea is to shift nodes from
resource rich groups to the groups whose resource indexes are
below the threshold. First, we select the distribution group k
with the highest resource index, and continuously move the
distribution peers with the lowest upload bandwidth utilization
from that group to a set P until the resource index of group
k falls below ρavg . Then, we sort all the peers in P into a
descending-ordered list based on their available upload band-
width. After sorting, for each peer v in P , from the first to the
last, we assign v to a distribution group j with the minimum
updated resource index ρ′j = uj

s+
∑

uj
i+uv

mjrj
. Let H be the set

of distribution groups with ρ ≤ ρmin. If the updated resource
index ρ′j > ρmin, remove distribution group j from the set H .
If there are still some resource-index poor distribution groups
in H after all the peers in P have been assigned, we will choose
the distribution group with the second highest resource index
and continue the same process as above. The process will be
executed until all the resource-index poor distribution groups
have been removed from H . The details of peer reassignment
algorithm is given in Algorithm 1.

IV. SIMULATION EXPERIMENTS

A. Methodology

To evaluate the performance of VUD-based P2P streaming sys-
tem, we implemented an event-driven P2P streaming simulator
based on the source code provided by [23]. The simulator
can simulate packet-level transmission and end-to-end latency
among end nodes. It was further enhanced to support multiple
channels and channel switching behaviors of peers.

In our simulation, as commonly assumed in P2P system study,
we simulated an environment where the peer access links are
the only bandwidth bottlenecks. In addition, we assume all

6peers have enough bandwidth to download the channel they are
watching and the substream they are distributing. To simulate
the bandwidth heterogeneity among peers, we configure the
upload capacity of peers according to Table I. The fraction of
peers in different categories is calculated based on the measure-
ment results in [24]. We only consider residential broadband
connections, and Modem/ISDN connections are removed as
they don’t have enough download bandwidth. In the default

Type Upload Capacity Fraction of peers
1 768 Kbps 0.60
2 384 Kbps 0.25
3 128 Kbps 0.15

TABLE I
UPLOAD CAPACITY CONFIGURATION

simulation settings, there are totally 50 streaming channels and
2, 000 peers in the system. For each channel, there is only one
server whose upload capacity is configured as 1 Mbps. For
simplicity, all the channels have the same streaming rate of 400
Kbps. The video stream is further divided into 5 substreams for
substream swarming.

Within each distribution group, the distribution peers are or-
ganized into a mesh and use Push-Pull method for chunk
scheduling. Viewers of a channel also use Push-Pull method
to fetch chunks from all substream distribution groups of the
channel. By using push-pull method, the peers first use pull
requests to get chunks from its neighbors. When it receives
several continuous chunks from one neighbor, the peer can
subscribe one or more substreams from that neighbor. In the
following, the neighbor will relay the subscribed substreams
directly to this peer without requiring any explicit request.

In our simulation, channel popularity follows Zipf-like distri-
bution, as Zipf-like popularity distribution is reported in both
P2P-based [4] and Telco-managed IPTV services [6]. Peers
arrive at the system according to a Poisson process. In the
default setting, the average time that peers stay in the multi-
channel system is 4000 seconds. After joining in a channel
for a period, the viewer starts to switch to another channel.
The probability that one channel is chosen as the destination
channel is proportional to its popularity. The peer continues to
switch its viewing channel until it leaves the system. The time
between two channel switchings is defined be Channel Session.
In our simulation, the distribution of channel session follows a
similar distribution as shown in [6].

For comparison, we also implemented a Push-Pull isolated-
channel P2P streaming system similar to GridMedia [17], in
which multiple channels are isolated from each other. Viewers
of each channel form a separate mesh and use Push-Pull
scheduling to exchange chunks. It serves as a baseline to eval-
uate the performance of VUD-based system. In the following,
the baseline system is referred as ISO, and our VUD-based
system is referred as VUD.

B. Performance Metrics

The following metrics are used for the comparison:

1) Switching Delay: Switching delay refers to the interval
from one channel is selected until the initial buffer has
been filled. In P2P video systems, the initial buffer is used
to guarantee continuous playback and handle the rate
variations of streaming sessions. It is always desirable
to achieve shorter switching delay.

2) Chunk Miss Ratio: To enable smooth playback, chunks
should arrive before its playback deadline. The miss
chunks will cause video playback freezes for viewers
and impact the viewing quality. Here, chunk miss ratio is
defined as the number of chunks that miss the playback
deadline over the total number of chunks that peer should
receive. It is expected to minimize chunk miss ratio as
much as possible.

3) Playback Delay: Playback delay refers to the interval
from a chunk is generated at the source node to the
moment it is played at the peer. In case that playback
delay is large, the peer has to watch frames long behind
the source.

4) Control Message Overhead: Peers exchange with their
neighbors control information about their peer lists,
chunk and substream availability, etc. Control message
overhead is defined as ratio between the control traffic
volume over the video traffic volume.

5) VUD Bandwidth Overhead: In VUD-based approach,
the bandwidth allocated to distribution peers is extra
overhead. In our experiment,VUD bandwidth overhead is
defined as the ratio between the total upload bandwidth
utilized to upload video to distribution peers and the total
upload bandwidth used to upload video to viewing peers.

C. Simulation Results

In the experiment, peers start to switch their channels after the
system enters steady state, and channel churn happens more
frequently than peer churn. Each node maintains a streaming
buffer of 35 seconds in terms of playback time, and starts
playback only after it has filled the initial buffer (i.e., 100
continuous chunks). In the following part, we present the
experimental results obtained from our simulation.

In Figure 2(a), we plot the distribution of switching delay under
VUD and ISO design. We use “popular” (or “unpopular”)
to indicate the delay when switching to a popular (or an
unpopular) channel 1. From the figure, we observe that, for both
popular and unpopular cases, VUD design spends much less
time in accumulating enough continuous chunks and have much
shorter channel switching delay (mostly less than 10 seconds)
than ISO design. With ISO design, there exists significant
difference in switching delays to popular channel and unpopular
channel. The switching delay to a unpopular channel is much
longer than to a popular channel. In contrast, the switching

1in the following, we use popular (or unpopular) similarly to indicate the
performance in a popular (or unpopular) channel.

7

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Switching delay (second)

C
D

F

VUD popular
VUD unpopular
ISO popular
ISO unpopular

(a) CDF of Switching Delay

0 0.04 0.08 0.12 0.16 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk Miss Ratio

C
D

F

VUD popular
VUD unpopular
ISO popular
ISO unpopular

(b) CDF of Chunk Miss Ratio

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Playback delay

C
D

F

VUD popular
VUD unpopular
ISO popular
ISO unpopular

(c) CDF of Playback Delay

Fig. 2. Performance comparison between ISO and VUD design through simulations: a) the switching delays to both popular and unpopular channels under
VUD design are much smaller than those under ISO design. b) VUD design achieves much lower chunk miss ratio than ISO design for both popular and
unpopular channels. c) VUD design has smaller playback delay compared with ISO design.

delay under VUD design is insensitive to channel popularity.
The switching delays are comparably small for popular channel
and unpopular channel. This is because the distribution peers
in VUD design are quite stable, and the new joining peers can
quickly find distribution peers that they can download chunks
from. By decoupling viewing and distributing, VUD design
efficiently solves the long startup delay problem under high
channel churn.

Figure 2(b) compares the CDF of chunk miss ratio under two
designs. Chunk miss ratio directly determines the playback
continuity on peers. It is observed that, channel churn causes
very high chunk miss ratio under ISO design. The situation
becomes even worse for unpopular channels. In the ISO design,
when a peer switches its viewing channel, it causes the same
disturbance to its neighbors as if it leaves the system. Its
neighbors have to spend time to find new peers to download
data from and miss lots of chunks in the transient periods. One
possible approach to reduce chunk miss ratio in ISO design is
to adopt a larger buffer to mitigate “absorb” fluctuations from
peer and channel churn. However, long buffers will prolong
the switching and playback delays. Different from ISO design,
VUD is designed to be immune to channel churn, as the viewers
receive substreams directly from distribution peers. When a
viewer switches its channel, it doesn’t impact other viewing
peers. From the figure, we can see that, around 80% peers
in VUD design has a chunk miss ratio less than 0.02. As
VUD design provisions bandwidth resource for each channel
according to their demands, we also observe that there is not
much difference for peers in different channels in terms of
chunk miss ratio. For both popular and unpopular channels,
the viewing peers have comparably low chunk miss ratios.

In Figure 2(c), we present the CDF of playback delay for
both VUD and ISO designs. Under VUD design, the playback
delays of about 30% viewers are less than 5 seconds, and
that of 70% viewers are less than 15 seconds. In our current
experiment, push-pull method is used for chunk scheduling
among distribution peers. After the initial transient period,
semi-static push relationship will be formed among distribution
peers, and video chunks can be pushed quickly from the source

to distribution peers, and finally relayed to viewing peers.
Under ISO design, the playback delays are much longer for
both popular and unpopular channels. The playback delays for
about 90% of peers is longer than 15 seconds. As we use a
small initial buffer (i.e., 100 chunks) in our simulation, most
of playback delays under ISO design are less than 25 seconds.
In case that peers use a large streaming buffer to accommodate
channel/peer churn, the playback will be further increased. For
VUD design, as the distribution peers are stable in medium
time scales, the viewing peers can use a much smaller buffer,
and achieve shorter playback delay.

To further understand the reduction of playback delay in VUD
design, we also compare the hop counts of packets received by
one viewing peer in a given channel in Figure 3(a). Packet hop
count represents the number of hops that a packet traversed
starting from the source node. It is observed that, most packets
arrive at the viewing peer in less than 6 hops under VUD
design, while the hop count under ISO design is much larger,
and the hop count of about 20% packets is larger than 7.
Figure 3(b) illustrates the control message overhead under
different network sizes for VUD and ISO design. As VUD
and ISO use similar push-pull method in chunk scheduling,
their control message traffic is comparable and less than 5% of
the total video volume. The control message overhead under
VUD design is slightly lower than that under ISO design. The
possible reason may be that, after stabilization, semi-static push
relationship has been constructed among distribution peers, and
fewer chunk request messages will be sent out.

In Figure 3(c), we measure the bandwidth overhead of VUD
design. It is important for the feasibility and efficiency of VUD
design in real systems. By varying the number of substreams,
we can reduce the bandwidth overhead to a rather low level. For
example, with 10 substreams, the bandwidth is even lower than
10%. Since VUD design can achieve much better performance
than ISO design, such as quicker switch delay, smaller chunk
miss ratio and smaller playback delay, the small bandwidth
overhead can be well justified. To study the performance of
VUD-based design under peer churn, we simulate the system
by varying the average time that peers stay in the multi-channel

8

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Hop count

C
D

F
VUD
ISO

(a) CDF of Hop Count

1000 1200 1400 1600 1800 2000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of peers

C
on

tr
ol

 m
es

sa
ge

 o
ve

rh
ea

d

VUD
ISO

(b) Control Message Overhead

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Number of substreams

B
an

dw
id

th
 o

ve
rh

ea
d

(c) VUD Bandwidth Overhead

Fig. 3. Performance comparison between ISO and VUD design through simulations: a) chunks traverse fewer hops to reach peers, leading to shorter streaming
delays. b) VUD design experience slightly lower control message overhead. c) the bandwidth overhead of VUD design decreases as the number of substreams
increases.

system. When the average lifetime is shorter, the level of
churn is higher. Figure 4 presents the average chunk miss ratio
in both popular and unpopular channel under different peer
churn levels. It is observed that, even when churn rate is high
(e.g., expected lifetime = 0.2 hours), VUD-based design still
can achieve low chunk miss ratio (less than 5%) by proper
bandwidth adaptation and peer assignment.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Expected Lifetime (hours)

A
ve

ra
ge

 C
hu

nk
 M

is
s

R
at

io

VUD popular
VUD unpopular

Fig. 4. Impact of Peer Churn on VUD: the average chunk miss ratio is still
quite low when the level of churn increases.

V. PLANETLAB EXPERIMENTS

To further demonstrate the advantage of VUD in real net-
work environment, we also developed a prototype of VUD
P2P streaming system and conducted an experiments on
PlanetLab[25]. We set up two channels at video streaming
rate of 512 kbps. Each channel has 24 viewers. The video
source server also functions as tracker to provide peer list for
new peers. Each viewer has homogeneous upload bandwidth
of 600 kbps and source server of each channel has 1.28 Mbps
bandwidth. For the isolated design, each channel is distributed
in a mesh of 24 viewers and each peer is set to have 4 neighbors
connected to exchange data. With VUD, each channel is divided
into 8 substreams, and each substream is distributed by a swarm
of 3 distribution peers, each of which can upload one substream
to 8 peers. In both cases, peers have 10 second playback buffer
window. To compare the performance of isolated design and

VUD, we introduce a batch channel churn by swapping 6 peers
between the two channels after all peers join the system and
enter into stable state. We compare the chunk loss ratio and
delay performance of two designs in the transient period of the
first 100 seconds after the swapping.

Figure 5(a) shows the distribution of chunk missing ratio for
peers switching channels (DynPeer) and peers staying in the
same channel (ResPeer). In the isolated design, all the peers
suffer high chunk miss ratio in the transient period. Peers in
VUD experience very few chunk misses. Most of them have
less than 5% chunk miss ratio. The chunk generation time at
the source side and the arrival time at peer side have been
recorded during the experiment to calculate the delay for each
chunk. The distribution of playback delays of selected channel
switching peer are compared in Figure 5(b). The average chunk
delay in VUD is less than 4 seconds, while the average delay
for peers in ISO design is 7 seconds. Peers in VUD experience
shorter chunk delays, which implies that the VUD distribution
is more effective and users experience less chunk loss given
playback deadline. Chunks are disposed if they are received
after their playback deadline. The ratio of chunks delivered
within 6 seconds is plotted in Figure 5(c). VUD delivers most
chunks in time, while the isolated design will miss the majority
of chunks if the playback delay is set to 6 seconds. In more
realistic systems, for which channel churn is more frequent, we
expect VUD to have even larger performance improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented VUD, a novel streaming framework
for multi-channel P2P video systems. By radically decoupling
peer video uploading from viewing, VUD solves two funda-
mental performance problems of the traditional isolated channel
P2P streaming, namely, excessively long channel switching
delays and poor quality for small channels. We demonstrated
through simulations and experiments on PlanetLab that VUD is
immune to high channel churn and can efficiently achieve the
multiplexing gain between channels with diverse popularity. In
addition, we showed analytically and experimentally that VUD
overhead can be well managed through balanced substreaming
and peer assignment.

9

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Chunk Miss Ratio

C
D

F

ResPeer VUD
DynPeer VUD
ResPeer ISO
DynPeer ISO

(a)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Playback Delay(s)

C
D

F

VUD
ISO

(b)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time(s)

In
−

tim
e

de
liv

er
y

ra
tio

VUD

ISO

(c)

Fig. 5. Performance comparison between ISO and VUD design in PlanetLab experiments: a) chunk miss ratios on channel-switching peers and stable peers.
b) chunk delay distribution on a selected channel switching peer. c) ratio of chunks delivered within 6 seconds.

Our study opens up a new design space for the future multi-
channel P2P video systems. While our initial results are en-
couraging, lots of immediate future work needs to be done to
fully explore the advantages of the VUD design. In Section
III, we proposed simple heuristics for peer assignment and
bandwidth allocation. We will enhance the algorithms to better
adapt to dynamic channel popularity and, more challengingly,
flash crowds. We will also consider heuristics that take into
account ISP locality to largely reduce the traffic imposed on ISP
networks. Although distribution swarms can be managed by a
centralized tracker, to address the scalability of systems with
many channels, we will study DHT-based distributed solutions
for cross-channel resource allocation. In addition, we will also
consider provisioning peers to distribution groups to match the
geographical demand.

The VUD framework is open to any P2P streaming design. In
the experiments, distribution swarms inherit a generic mesh-
based design for isolated streaming systems. By exploiting
the largely improved stability of distribution swarms in VUD,
we will develop new substream-based swarm structures and
scheduling algorithms that balance the needs of performance,
adaptivity and robustness. In our simulation, the substreams
are simply obtained by partitioning each video with time-
division multiplexing. A peer needs to receive all substreams
in the channel to achieve acceptable viewing quality. We
will investigate using layered video [26], [27] to create the
substreams. With layered video, a peer with even only one
substream can start video playback. Peers receiving different
subsets of substreams perceive different video quality. New
VUD substream swarming will be designed to achieve video
quality differentiations among heterogeneous peers.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A
Data-driven Overlay Network for Peer-to-Peer Live Media Streaming,”
in Proc. of IEEE INFOCOM, Mar. 2005.

[2] “PPLive Homepage,” http://www.pplive.com.
[3] “Sopcast Homepage,” http://www.sopcast.com/.
[4] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement

Study of a Large-Scale P2P IPTV System,” IEEE Transactions on
Multimedia, December 2007.

[5] X. Hei, Y. Liu, and K. Ross, “Inferring Network-Wide Quality in P2P Live
Streaming Systems,” IEEE Journal on Selected Areas in Communications,
December 2007.

[6] M. Cha, P. Rodriguez, S. Moon, and J. Crowcroft, “On Next-Generation
Telco-Managed P2P TV Architectures,” in Proc. of IPTPS, 2008.

[7] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the internet using an overlay multicast architecture,” in
Proc. of ACM SIGCOMM, 2001.

[8] R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems,” in Proc. of IEEE INFOCOM, 2007.

[9] C. Liang, Y. Guo, and Y. Liu, “Is Random Scheduling Sufficient in P2P
Video Streaming?” in Proc. of ICDCS, June 2008.

[10] P. Francis, “Yoid: Extending the Internet Multicast Architecture,” Cornell
University, Tech. Rep., April 2000.

[11] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” in Proc. of ACM SIGCOMM, October 2002.

[12] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. of ACM SIGMETRICS, 2000.

[13] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2cast: Peer-to-peer patching
scheme for vod service,” in Proc. of WWW, May 2003.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” in Proc. of ACM SOSP, 2003.

[15] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Proc. of ACM
SOSP, 2003.

[16] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in Proc. of IPTPS,
2005.

[17] M. Zhang, L. Zhao, Y. Tang, J.-G. Luo, and S. Yang, “A peer-to-peer
network for streaming multicast through the internet,” in Proc. of ACM
Multimedia, 2005.

[18] C. Wu, B. Li, and S. Zhao, “Multi-channel Live P2P Streaming: Refo-
cusing on Servers,” in IEEE INFOCOM 2008, Apr. 2008.

[19] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer
Live Streaming,” in IEEE INFOCOM 06, 2006.

[20] G. Tan and S. Jarvis, “Inter-Overlay Cooperation in High-Bandwidth
Overlay Multicast,” in ICPP-06, Aug. 2006.

[21] L. Guo, S. Chen, Z. Xiao, E. Tan, and X. D. X. Zhang, “Measurements,
analysis, and modeling of bittorrent-like systems,” in Internet Measure-
ment Conference (IMC 05), Berkeley, California, USA, Oct. 2005.

[22] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[23] M. Zhang, “Peer-to-Peer Streaming Simulator,” http://media.cs.tsinghua.

edu.cn/∼zhangm/download/.
[24] C. Huang, J. Li, and K. Ross, “Can Internet VoD be Profitable?” in Proc.

of ACM SIGCOMM, 2007.
[25] “PlanetLab Homepage,” http://www.planet-lab.org.
[26] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of SVC,”

in IEEE TCSVT, vol. 17, no. 9, September 2007.
[27] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon, “Real-time

system for adaptive video streaming based on SVC,” in IEEE TCSVT,
vol. 17, no. 9, September 2007.

