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Abstract
The emerging edge networks are cloud-native. Flows with com-
putation needs are processed in-flight by compute nodes inside
the network. Routing with In-Network Processing (RINP) not only
has to maintain network-wide load balance on communication and
computation elements, but also has to quickly restore flows upon
various types of failures. In this paper, we propose a novel path-
based two-stage traffic engineering scheme to trade-off between
routing model complexity, network performance in the normal
stage, and restoration efficiency upon failures. For the normal stage,
our model jointly optimizes computation demand allocation and
traffic flow routing. We further speed-up RINP calculation by con-
trolling the path budget and decoupling computation allocation and
traffic routing. For the restoration stage, we develop a fast restora-
tion scheme that only re-routes the flows traversing the failed
elements to achieve close-to-optimal network delay performance
while minimizing the fraction of unrestored flows. Evaluation re-
sults on real network instances demonstrate that in the normal
stage, our scheme achieves near-optimal performance with up to
50-100x speedup compared to link-based routing models. In the
restoration stage, our scheme can restore most of the affected traf-
fic with up to 10x speedup compared to globally rerouting all the
flows.

CCS Concepts: • Networks → Traffic engineering algorithms;
Network resources allocation; Network control algorithms.

Keywords: Edge Computing, In-network Processing, Routing, Traf-
fic Engineering, Restoration
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1 Introduction
The emerging edge networks are cloud-native, with computational
capabilities and services embedded at different levels of the device-
edge-cloud continuum. Leveraging on the fast-developing virtual-
ization technologies, such as container, virtual machine, and Net-
work Function Virtualization [1], generic compute servers at the
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Figure 1. An example of RINP in an edge network. R4 and R5
are routers with compute nodes attached. The live video stream
sent from PC1 to PC2 needs to be transcoded, and the transcoding
(super-resolution) VM is spawned on R4. The surveillance camera’s
video feeds are processed by an object detection model before being
sent to the human monitor on PC3. The Object Detection VM is
placed on R5.

network edge can be flexibly configured to conduct various in-
network processing [2], ranging from software-based 5G core net-
work functions, virtual middle-boxes for intrusion detection and
prevention, to application performance enhancement and mobile
device offloading. Routing in such computing-minded networks
is no longer just establishing an end-to-end pipe to transmit user
data. It also needs to find sufficient computation resources along
the route for the required in-flight processing of each data flow. For
example, AR/VR are expected to be the killer applications for future
edge networks. To facilitate such applications, lots of computation
and data-intensive tasks, e.g., object detection [3], 3D video coding,
super-resolution [4] and rendering [5], and user behavior data ana-
lytics, have to be offloaded to servers embedded at different levels
of the device-edge-cloud continuum [6]. How to route AR/VR appli-
cation flows in edge networks to satisfy their communication and
computation demands, while maintaining good balance on edge
links and servers is a central problem for such applications.

In general, Routing with In-Network Processing (RINP)
has to simultaneously satisfy the communication and computa-
tion demands generated by users using the communication and
computation resources available on links, routers, and compute
nodes. A small such routing example is illustrated in Fig. 1. An
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important design objective of RINP is to maintain network-wide load
balance on all communication and computation elements. Towards
this goal, different variations of the RINP problem have been stud-
ied recently [7–9]. It was shown that a feasible RINP route may
have to contain loops, and the unsplittable RINP problem in general
is NP-Hard. In [8, 9], the optimal splittable RINP was studied using
link-based routing formulation, where the traffic of a flow can be
allocated to any link and the computation demand of a flow can
be processed by any reachable compute node. On one hand, their
models can reach the theoretical optimum for different design ob-
jectives under the given communication and computation resource
constraints. On the other hand, the solving time for the link-based
routing models may increase dramatically as the network size and
number of demands grow, and it is cumbersome to implement and
update link-based routing configuration. Another equally important
design objective of RINP is to be resilient against the possible failures
on communication links, routers, and compute nodes. The resilience
of RINP at network edge is critical, given the volatile nature of
wireless access links, the limited degree of user traffic multiplexing,
and the reduced over-provisioning that is economically viable on
distributed edge compute nodes. To minimize the interruptions to
user applications, after a failure occurs, RINP has to quickly restore
the affected application flows by finding sufficient communication
and computation resources for them in the surviving network.

To address the scalability and resilience issues of link-based
routing models, a lot of modern centralized traffic engineer (TE)
systems use path-based routing models to reduce the operational
overheads [7, 10–13]. A set of candidate paths are pre-configured for
each flow. The traffic splitting ratios among candidate paths can be
adapted to network and traffic dynamics in real time. Compared to
link-based models, path-based models have fewer routing variables,
and thus take much shorter time to solve. Deploying new routing
solutions is also easier, since paths are predetermined and only the
traffic splitting ratios at ingress nodes need to be adjusted, whereas
link-based systems may require re-configuring the forwarding rules
on many switches. The advantages of the path-based routing model
over the link-based routing model make it a better fit for the RINP
problem, especially for fast restoration after failures.

For path-based TE, the quality of the pre-configured candidate
paths plays a key role in the trade-off between model solving speed,
routing performance in normal operation, and restoration efficiency
after failures. Both the number of candidate paths and the diversity
among them need to be carefully engineered. On one hand, larger
candidate path sets lead to a larger routing design space to achieve
better network performance in the normal stage. Additionally, if
a flow has more pre-configured candidate paths, it is more likely
that some of the paths will survive the failures, and can be used
to restore the flow. On the other hand, the routing optimization
complexity and the implementation overhead increase significantly
with the path budget of each flow. The ideal solution is to construct
a minimal number of paths for each flow that provide sufficient
routing diversity in both normal operation and restoration so that
a desirable trade-off can be achieved.

In this paper, we propose a novel path-based two-stage Traffic Engi-
neering (TE) scheme to quickly restore flows with computation needs
after failures on communication links, routers and compute nodes. In
the normal stage, we use the segment routing idea to formulate
a path-based routing model (called PRINP) to jointly optimize the

Figure 2. Comparison of the solving time on a network with 39
nodes, 172 edges, and 1,471 directed demands. Link-based refers to
the link-based RINP model proposed in [9].

computation demand allocation and traffic flow routing to mini-
mize the network delay while maintaining bounded utilization on
all compute nodes. Path-based routing calculation is significantly
faster than link-based routing calculation. To speed-up further,
we propose two variants, namely the PRINP-Red model, which
reduces the number of candidate paths on each routing segment,
and the PRINP-Sep model, which first solves for a target compu-
tation demand allocation using a simplified network traffic model,
then optimizes traffic routing to realizes the target computation
demand allocation. A preview of the solving time of each model is
presented in Fig. 2. After unexpected failures on communication
and/or computation elements, we maximally restore the affected
flows using the survived resources. To minimize the disruption to
users and achieve fast restoration, only flows traversing the failed
elements will be re-routed, and the computation demand allocation
and traffic routing of the other flows remain unchanged. Our partial
re-routing scheme is much faster than global re-routing which re-
calculates routing for all the flows. We develop a partial restoration
routing model to achieve close-to-optimal network delay perfor-
mance while minimizing the fraction of flows that cannot be fully
restored.

Contributions. Our contributions are as follows,

1. We develop a novel path-based two-stage TE scheme for the
RINP problem to trade-off between routing model complex-
ity, network performance in the normal stage, and resilience
against unexpected failures on communication and compu-
tation elements.

2. In the normal stage, our PRINP model jointly optimizes the
computation demand allocation and traffic flow routing to
minimize the network delay, while maintaining bounded
utilization on all compute nodes. By controlling path budget
and decoupling computation allocation and traffic routing,
our scheme achieves near-optimal performance, with about
50-100x speedup compared to the link-based routing models.

3. In the restoration stage, we develop a fast restoration scheme
that reroutes only the flows traversing the failed elements,
and can restore a great part of them in a very short time.
Through an extensive evaluation, we demonstrate that our
restoration scheme can achieve close-to-optimal network de-
lay performance while minimizing the fraction of unrestored
flows.

4. We employ different path selection strategies for different
types of flows to achieve the desirable trade-off between
solving speed, performance, and resilience of RINP.
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Table 1. The comparison between link-based and path-based rout-
ing models for standard MCF problem

Model Type Number of variables Number of constraints
Link-based 𝐷 × 𝐸 𝐸 + 𝐷 ×𝑉

Path-based 𝐷 × 𝑘 𝐸 + 𝐷

(a) Traffic/Computation Splitting in Nor-
mal Scenario

(b) Flow Restoration after Failure on Link
(R5, R6)

Figure 3.An illustration of the RINP problem. R1 and R5 are routers
with compute nodes attached. There is 1 unit of computation re-
source on R1 and 2 units on R5. The link capacity is 1 unit for all
links. PC1 wants to send 1 unit of traffic to PC2, with 1 unit of
computation resource required.

The rest of the paper is organized as follows. In Section 2, the
background and related work are discussed. We introduce the path-
based two-stage TE scheme in Section 3, followed by evaluations
using real network instances in Section 4. The paper is concluded
in Section 5.

2 Background and Related Work
2.1 Optimal Routing
Routing is an essential problem in communication networks and is
also well-studied. The traditional routing problem seeks to optimize
some network performance objective function, e.g. Maximum Link
Utilization (MLU), network-wide delay, total routed traffic flows,
etc., under the link/router bandwidth constraints. The optimal rout-
ing can be obtained by solving a Multi-Commodity Flow (MCF)
problem [14].

There aremainly two types of linear programming (LP)models to
solve the MCF problem, one is the path-based model, and the other
is the link-based model1. In the path-based model, there is a set of
candidate paths for each demand. The demand must be realized on
paths in the set, thus limiting the search space. In the link-based
model, the traffic of a demand can be allocated on any link, as
long as the flow conservation holds. The link-based model can
implicitly explore all the possible paths, thus promising optimality
[14]. The optimality guarantee in the path-based model is weaker,
but with a limited size of the path set, the number of variables and
constraints can be greatly reduced, leading to a shorter solving
time. A comparison of the two types of models is shown in Table 1,
where the number of demands is 𝐷 , the number of nodes is 𝑉 , the
number of edges is 𝐸, and the average number of paths for each
demand is 𝑘 .

2.2 Routing with In-Network Processing
RINP is different from the traditional routing. In addition to the
potential loops in the routes [8] and the complicated routing models
[9], the objective of load balance on compute nodes and on links
may conflict with each other. A toy RINP example is illustrated in
Fig. 3a. On one hand, if we want to achieve load balance on links,
we should distribute the traffic evenly between the green and the
red sub-flows. On the other hand, if we pay more attention to load
balancing on compute nodes, the split ratio should be 1:2. To address
this issue, we limit the maximum utilization of the compute nodes
and optimize for the load balance on links. Limiting utilization
on compute nodes can help bound the queuing delay that a flow
experiences in the computation job queue.

There has been a number of studies on the RINP problem, with
different assumptions on the ability to split flows and the homo-
geneity of processing resources (e.g. [7–9, 15–18] and reference
therein). The authors in [7] assume each flow has to go through a
service chain of middle-boxes in a fixed order, and they formulate
the problem as a mixed integer programming (MIP) using graph
layering. Their model is path-based, but they mainly focus on bud-
get and latency requirements as well as online routing, without
resilience considerations. In [8], a router can split a flow arbitrar-
ily into fractions to be forwarded to different next-hops. Instead
of traversing a predefined set of middle-boxes, they consider the
allocation of processing resources along the routes of each flow,
so that the required network functions are set up, and establish
a link-based LP model. In [9], the authors study combinations of
different assumptions. For the same scenario as in [8], [9] also uses
a link-based LP, and the complexity is reduced by taking advantage
of segment routing and destination-based aggregation. The RINP
problem has also been studied as service chaining, e.g. [15, 16], and
virtual network embedding, e.g., [17, 18].

The above-mentioned schemes have a large computation over-
head, and they do not consider failures or only consider link failures.
In contrast, not only do we formulate the problem in a path-based
LP model, but also we focus on the resilience upon failures, in-
cluding link and router failures, as well as computation resource
failures. Fig. 3b is an example of computation flow restoration after
failure. A restoration route with loop has to be employed to utilize
computation resources on R5. We want to make sure the restora-
tion can be done in a short time to minimize the disruption to user
applications.

2.3 Resilient Routing
Failures in the networks are rare events, but may cause severe
performance degradation. To protect the networks from the long-
lasting impacts of failures due to slow reaction, many schemes, e.g.
[19–21], were proposed to provide fault tolerance and/or reduce
the disruptions to user applications.

The authors of [19] built an LP model so that as long as the num-
ber of failures is within the configurable thresholds, the admitted
traffic volume will not be impacted after ingress routers naively
re-split traffic to surviving tunnels. Their routing decision guaran-
tees that there is still adequate redundant bandwidth to tolerate
failures within the predetermined thresholds. In [21], the authors
introduced more flexible network response strategies, called logical

1In [14], the path-based model is called the link-path formulation, while the link-based
model is called the node-link formulation.
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(a) KSP paths from node 9 to node 22 (b) SMORE paths from node 9 to node 22

Figure 4. An example of the difference between KSP paths and SMORE paths. Consider the paths from node 9 to node 22. All KSP paths go
through the link (10, 12), so the link is of high risk. If it fails, the traffic can not be restored. There is no such high-risk link for SMORE paths
because they are spread out.

sequences, to do better than naively re-scaling traffic after failures.
Their approach improves resource utilization efficiency, allowing
more traffic admitted while not violating the fault-tolerance guar-
antee. Instead of providing a hard guarantee, the authors in [20]
took additional inputs of failure probabilities, and optimize the flow
allocation to minimize the Conditional Value at Risk, a concept from
financial risk management.

The above-mentioned schemes provide protection from failures
at the cost of less admitted traffic. They incur heavy computation
overhead and are too slow for fast restoration when the network
topology is large. Therefore, the recent studies, e.g. [12, 13], focused
on reducing the time to calculate the restoration routes, and quickly
deploying the newly-computed solution to routers and switches by
the means of Software-Defined Networking (SDN) [10]. Authors of
[12] observed that in a nationwide backbone network, a large por-
tion of traffic is within nearby nodes. By clustering, they proposed
a four-step hierarchical approach with much faster computation
speed and near-optimal performances. The authors of [13] utilized
the massive historical data and machine learning techniques to
further speed-up. Both schemes can admit more traffic than the
schemes in [20] if no failure or after reconfiguration upon fail-
ure. The drawback of their fast re-computation approach is that
they do not consider whether there will be too many routing re-
configurations, which is also bad for network operation. Following
this trend, we target at speeding up the restoration calculation, to
shorten the control loop of TE and accelerate the reconfiguration
when a failure happens. Upon a failure, we only reroute the affected
flows to avoid unnecessary churns.

2.4 Path Selection
In recent centralized TE systems, the phases of path selection and
traffic splitting among paths are usually decoupled. To help reduce
the real-time optimization overhead, the desired path set should be
limited in size, but it should also contain all the “good" candidate
paths needed for the optimal solution in any possible scenario.

Intuitively, “good" paths should both incur low routing cost and
provide route diversity in different scenarios. The most popular
path selection strategy is K-Shortest-Paths (KSP) [10, 22]. By taking
the top-𝑘 shortest loop-less paths for each node pair, KSP ensures
the paths selected are cheap, while the diversity is controlled by the
parameter 𝑘 , referred to as the path budget. However, 𝑘 is usually
small for computation and operation efficiency, and in some large
topologies, the paths selected tend to share a set of “low-cost" links,
leading to overloading on those links and pure diversity if those
links fail.

In a recent work [11], the authors found that traditional oblivious
routing could be useful in selecting paths. Oblivious routing is
to compute a probability distribution on paths, and the traffic is
forwarded according to the distribution regardless of the actual
volume. They use the iterative approach by Räcke [23] to construct
a probability distribution over a set of low-stretch routing trees,
and then extract the path set, called SMORE, from it. Compared to
the KSP path set, the SMORE path set is more diverse and low-risk,
at the cost of slightly longer path lengths. An illustration is shown
in Fig. 4.

While the previous path selection methods provide ways to
construct path sets, in this work we focus on how to fit them into
our RINP problem, and how to design a TE scheme with good
resilience against failures of different types.

3 2-Stage Traffic Engineering Scheme
The network is modeled as an undirected mesh-connected graph
𝐺 = (𝑉 , 𝐸), where 𝑉 denotes the set of nodes and 𝐸 denotes the
set of undirected edges. Each edge, 𝑒 = (𝑢, 𝑣), represents two di-
rected IP links between the endpoints, and the two IP links share
a total capacity of 𝐶𝑒 . There is a subset of nodes called compute
nodes, 𝑍 , in which each node 𝑧 has some computation capacity
𝑁𝑧 . With virtualization technologies, each computing node can
implement multiple software-based network functions and virtual
middle-boxes for various in-network processing.
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The demands in this network are aggregated directed traffic flows
and can be arbitrarily split among multiple routing paths.2 They are
categorized into two sets, 𝐷0 and 𝐷1, depending on whether they
require computation resources3 or not. The source and destination
nodes of demand 𝑑 are 𝑠 (𝑑) and 𝑡 (𝑑), respectively. For each demand
𝑑0 ∈ 𝐷0 that does not require processing, the corresponding traffic
volume is ℎ𝑑0 . For each demand 𝑑1 ∈ 𝐷1 that requires processing,
the amount of computation resources needed is𝑊𝑑1 , and the traffic
volume before and after computation may vary and are denoted
as ℎ1

𝑑1
and ℎ2

𝑑1
, respectively. Note that there is no direct relation-

ship between the computation resource requirement and the traffic
volume.

The candidate paths for each demand are computed in advance.
For a regular demand 𝑑0 ∈ 𝐷0, we choose the SMORE path set
[11] for its better diversity and resilience. However, for a demand
𝑑1 ∈ 𝐷1 that requires processing, following the segment rout-
ing framework for RINP [9], an end-to-end path consists of two
segments: from the source to some compute node, and from the
compute node to the destination. Since the compute nodes act as
the intermediate nodes of Valiant Load-Balancing (VLB) routing
[24], they have already provided some diversity to the routing prob-
lem. We use KSP paths for both segments, since they are normally
shorter than SMORE paths, and the end-to-end diversity can be en-
hanced by employing multiple compute nodes in the middle. More
details about path setting will be discussed in section 4.

We also made the following assumptions. First, the traffic ma-
trices (TM) are known in advance and do not change until failures
happen. One of our design goals is to accelerate the solving time
and shorten the TE control loop. While perfect knowledge of the
future TM dynamics is impossible, we can expect that the TM is
relatively stable and can be predicted with good accuracy in a short
period. Second, the computation resources are homogeneous. With
the fast-developing NFV techniques, different computation tasks
could be carried out as network functions, implemented on virtual
machines that can be elastically provisioned on commercial servers.
The amount of computation resources needed could be measured as
CPU, GPU, and storage requirements of the VMs, quantified using
some standard units. The notations are summarized in Table 2.

3.1 Routing in Normal Stage
3.1.1 Path-based RINP Model. In the normal stage without
failure, our objective is to achieve good network and computation
performance at the same time for the RINP problem. Example ob-
jective functions include minimizing the total network/processing
delay, minimizing the maximum link/server utilization, maximizing
the concurrent flow, etc.

For illustration purposes, we choose to minimize the total net-
work delay. The delay on a link is estimated using the M/M/1 queue
formula, and the delay of the whole network is the average of
all the link delays weighted by the link traffic volume. Regarding
computation performance, we introduce a constraint to bound the
utilization of the compute nodes. Empirically, computation delay is
determined by more factors than the computation server utilization
and is application-specific. By keeping the server utilization within
a threshold, we expect the processing delay to be kept low. Our

2One aggregated flow consists of multiple individual user application flows share the
same ingress and egress points of the network, and optionally have the same type of
processing needs.
3Requiring computation resources is equivalent to requiring processing.

Table 2. Notations

Symbol Description
𝑉 Set of nodes
𝑍 ⊂ 𝑉 Set of nodes with computation resources
𝑁𝑧 Computation capacity on node 𝑧 ∈ 𝑍

𝜌 Upper bound of computation resources utilization
𝐸 Set of undirected edges
𝐶𝑒 Capacity of edge 𝑒
𝐷0 Set of demands that do not need processing
𝐷1 Set of demands that need processing
𝑠 (𝑑), 𝑡 (𝑑) Source and destination nodes of a demand
𝑃𝑖 (𝑠, 𝑡) Pre-computed paths for flow 𝑠 → 𝑡 in demand set 𝐷𝑖

𝛿𝑒𝑝 Indicator constant, whether path 𝑝 traverses edge 𝑒
ℎ𝑑0 Traffic volume of flow 𝑑0 ∈ 𝐷0
ℎ1
𝑑1

Traffic volume in the first segment of 𝑑1 ∈ 𝐷1
ℎ2
𝑑1

Traffic volume in the second segment of 𝑑1 ∈ 𝐷1
𝑊𝑑1 Computation resources required by demand 𝑑1 ∈ 𝐷1
𝑓𝑒 Total traffic volume on edge 𝑒
Variables
𝛼𝑑0𝑝 Routing fraction on path 𝑝 ∈ 𝑃0 (𝑠 (𝑑0), 𝑡 (𝑑0)) of 𝑑0
𝛽𝑧
𝑑1𝑝𝑞

Routing fraction on path 𝑝 ∈ 𝑃1 (𝑠 (𝑑1), 𝑧) in segment 1
and path 𝑞 ∈ 𝑃1 (𝑧, 𝑡 (𝑑1)) in segment 2 of 𝑑1 through 𝑧

𝑟𝑧
𝑑1

The computation resources allocated on node 𝑧 ∈ 𝑍

for demand 𝑑1 ∈ 𝐷1
𝑥𝑑0𝑝 The traffic volume on path 𝑝 ∈ 𝑃0 (𝑠 (𝑑0), 𝑡 (𝑑0)) to

realize the demand 𝑑0 ∈ 𝐷0
𝑥𝑧𝑖
𝑑1𝑝

The traffic volume on path 𝑝 in segment 𝑖 , (𝑖 = 1, 2)
through 𝑧 ∈ 𝑍 to realize the demand 𝑑1 ∈ 𝐷1

RINP models can be extended to explicitly minimize computation
delays when the application-specific computation delay models are
available. Note that our model can also be easily customized for
other TE objectives.

When demands are infinitely splittable, the n-stop RINP path can
be decomposed into n 1-stop RINP paths [9]. With this property,
each demand that needs processing can be routed using two seg-
ments, corresponding to the routes before and after the processing.
Therefore, we can formulate a path-based routing model for RINP
problem as follows.

minimize
𝛼,𝛽≥0

F =
∑︁
𝑒

𝑓𝑒

𝐶𝑒 − 𝑓𝑒
(1a)

subject to
∑︁
𝑝

𝛼𝑑0𝑝 = 1, ∀𝑑0 ∈ 𝐷0; (1b)∑︁
𝑧,𝑝,𝑞

𝛽𝑧
𝑑1𝑝𝑞

= 1, ∀𝑑1 ∈ 𝐷1; (1c)∑︁
𝑑1

(
∑︁
𝑝,𝑞

𝛽𝑧
𝑑1𝑝𝑞

)𝑊𝑑1 ≤ 𝜌𝑁𝑧 , ∀𝑧 ∈ 𝑍 ; (1d)

𝑓𝑒 =
∑︁
𝑑0,𝑝

𝛿𝑒𝑝𝛼𝑑0𝑝ℎ𝑑0 +
∑︁

𝑑1,𝑧,𝑝,𝑞

(𝛿𝑒𝑝𝛽𝑧𝑑1𝑝𝑞
ℎ1
𝑑1

+ 𝛿𝑒𝑞𝛽
𝑧
𝑑1𝑝𝑞

ℎ2
𝑑1
), ∀𝑒 ∈ 𝐸; (1e)

𝑓𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸; (1f)
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The objective function (1a) is the total network delay. Constraint
(1b) and (1c) dictate that the routing fractions of one demand should
sum up to 1. Constraint (1d) states that the utilization of computa-
tion resources on a node should not exceed the utilization upper
bound. Similar to previous work [7–9], we assume that, for each
demand 𝑑1, the amount of processing needed on a computing node
is proportional to the traffic routed to it. Constraint (1e) is to cal-
culate the traffic volume on each link. It is possible that some link
is used by both segments of a demand that requires processing,
which is considered by the second summation term of (1e). Note
that the utilization of computation resources is limited by some con-
figurable threshold, 𝜌 , rather than being optimized in the objective.
By changing the value of 𝜌 , we can trade-off between the resilience
to computation failures and the efficiency of the deployed com-
putation resources. The number of variables in the formulation is
𝑂 ( |𝑉 |2 |𝑍 |𝑘2), approximately reduced by a factor of |𝐸 | compared to
𝑂 ( |𝑉 |2 |𝑍 | |𝐸 |) in the node-link formulation in [9], since 𝑘 is usually
a small constant compared to the number of edges.

The bottleneck of the above model is the dimension of variable 𝛽 ,
which is quadratic to the path budget 𝑘 . By decoupling the routing
variables for both segments and introducing a new variable, 𝑟𝑧

𝑑1
,

the total amount of processing of demand 𝑑1 done on computing
node 𝑧, we can reduce the total number of routing variables to be
linear with the path budget 𝑘 , and the total number of variables
becomes 𝑂 ( |𝑉 |2 |𝑍 |𝑘). The resulting PRINP model is as follows:

minimize
𝑥,𝑟≥0

F =
∑︁
𝑒

𝑓𝑒

𝐶𝑒 − 𝑓𝑒
(2a)

subject to
∑︁
𝑝

𝑥𝑑0𝑝 = ℎ𝑑0 , ∀𝑑0 ∈ 𝐷0; (2b)∑︁
𝑧

𝑟𝑧
𝑑1

=𝑊𝑑1 , ∀𝑑1 ∈ 𝐷1; (2c)∑︁
𝑑1

𝑟𝑧
𝑑1

≤ 𝜌𝑁𝑧 , ∀𝑧 ∈ 𝑍 ; (2d)

∑︁
𝑝

𝑥𝑧1
𝑑1𝑝

=
𝑟𝑧
𝑑1

𝑊𝑑1

ℎ1
𝑑1
, ∀𝑑1 ∈ 𝐷1, 𝑧 ∈ 𝑍 ; (2e)

∑︁
𝑝

𝑥𝑧2
𝑑1𝑝

=
𝑟𝑧
𝑑1

𝑊𝑑1

ℎ2
𝑑1
, ∀𝑑1 ∈ 𝐷1, 𝑧 ∈ 𝑍 ; (2f)

𝑓𝑒 =
∑︁
𝑑0,𝑝

𝛿𝑒𝑝𝑥𝑑0𝑝 +
∑︁
𝑑1,𝑧,𝑝

𝛿𝑒𝑝𝑥
𝑧1
𝑑1𝑝

+
∑︁
𝑑1,𝑧,𝑞

𝛿𝑒𝑞𝑥
𝑧2
𝑑1𝑞

,

∀𝑒 ∈ 𝐸; (2g)
𝑓𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸; (2h)

where 𝑥𝑑0𝑝 is the traffic allocation of 𝑑0 on its candidate path 𝑝 ,
and 𝑥𝑧1

𝑑1𝑝
and 𝑥𝑧2

𝑑1𝑝
are the traffic allocations of 𝑑1 on a candidate

path to/from a computing node 𝑧 on its first and second segments
respectively. In constraint (2d), the computation resources are al-
located among all compute nodes explicitly. Instead of managing
the traffic split ratio of the two segments together, each segment
is considered independently in constraint (2e) and (2f). The other
constraints are similar to those in the model (1).

To further speed up, we propose two ways to further reduce the
dimension and speed up the calculation.

3.1.2 Reduce the Size of the Path Set. For a regular demand
𝑑0 ∈ 𝐷0, there are at most 𝑘 different paths. For a demand 𝑑1 ∈

𝐷1 that requires processing, the total number of paths is 𝑘2 |𝑍 |,
considering the combination of compute nodes and paths of the two
segments. The latter dominates and is beyond adequate. To reduce
the number of paths for 𝑑1 ∈ 𝐷1 and accelerate the resolution time,
it is reasonable to cut down the path budget for the 𝑃1 path set.
Specifically, the PRINP-Red model uses SMORE path set with path
budget of 𝑘0 for demands in 𝐷0, while using KSP path set with
budget of 𝑘1 for demands in 𝐷1, where 𝑘1 < 𝑘0.

3.1.3 Separated Computation Demand Allocation and Traf-
fic Routing. The previous optimization model solves for the opti-
mal computation allocation and traffic allocations jointly. To reduce
the computation time, we could separate the computation resource
allocation and routing decisions into two sub-problems, each of
which is an LP with a much smaller size. In the first sub-problem,
we allocate the computation demands to compute nodes by solving
a simplified allocation problem. With computing demands allocated
to all compute nodes, the RINP problem can be reduced to a standard
MCF problem. The second sub-problem is then the resulting MCF
problem and can be solved with the regular path-based formulation.
We call this separated allocation the PRINP-Sep model.

We construct the first sub-problem as follows,

minimize
[≥0

∑︁
𝑑1,𝑧

[𝑧
𝑑1
(ℎ1

𝑑1
𝑙𝑠 (𝑑1 ),𝑧 + ℎ

2
𝑑1
𝑙𝑧,𝑡 (𝑑1 ) ) (3a)

subject to
∑︁
𝑧

[𝑧
𝑑1

= 1, ∀𝑑1 ∈ 𝐷1; (3b)∑︁
𝑑1

([𝑧
𝑑1
𝑊𝑑1 ) ≤ 𝜌′𝑁𝑧 , ∀𝑧 ∈ 𝑍 ; (3c)

where [𝑧
𝑑1

is the ratio of demand 𝑑1 ∈ 𝐷1 that goes through the
computing node 𝑧, 𝑙𝑠,𝑡 represents the shortest path length (hop-
count) between node 𝑠 and 𝑡 , and is pre-computed. In the objective
(3a), instead of minimizing the congestion delay on each link, we
minimize the total traffic imposed on the network by the two-
segment routing by calculating the product of traffic volume and
path length. To obtain the computation demand allocation solution,
we assume the least-hop paths on both segments are always feasible
for all demands in this stage. The routing solution will be optimized
in the second stage. In constraint (3c), the parameter 𝜌′ controls the
load balancing of compute nodes. We calculate the 𝜌′ as follows,

𝜌′ = min
{
(1 + 𝜖)

∑
𝑑1 𝑊𝑑1∑
𝑧 𝑁𝑧

, 𝜌

}
,

where 𝜖 is a hyper-parameter of the margin allowed for surpassing
the network-wide average computation utilization on any comput-
ing node.

With the computation demand allocation solution [, we find
the routing solution for each demand 𝑑1 consisting of the traffic
flows from the source 𝑠 (𝑑1) to each of the computation node 𝑧 with
[𝑧
𝑑1
, then from 𝑧 to the destination 𝑡 (𝑑1). More specifically, for the

purpose of traffic routing, we replace the set 𝐷1 of demands with
processing needs by a new set �̄�1 of demands without processing
needs:

�̄�1 =�̄�1
1 ∪ �̄�2

1

�̄�1
1 ={𝑑 |∀𝑑1 ∈ 𝐷1, 𝑧 ∈ 𝑍 : [𝑧

𝑑1
> 0, 𝑠 (𝑑) = 𝑠 (𝑑1), 𝑡 (𝑑) = 𝑧, }

�̄�2
1 ={𝑑 |∀𝑑1 ∈ 𝐷1, 𝑧 ∈ 𝑍 : [𝑧

𝑑1
> 0, 𝑠 (𝑑) = 𝑧, 𝑡 (𝑑) = 𝑡 (𝑑1)}
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The traffic volumes of the demands in �̄�1 are denoted as ℎ̄, and
ℎ̄(𝑑) = ℎ1

𝑑1
[𝑧
𝑑1

if 𝑑 ∈ �̄�1
1 , and ℎ̄(𝑑) = ℎ2

𝑑1
[𝑧
𝑑1

if 𝑑 ∈ �̄�2
1 . Then the

routing solution can be obtained by solving the following MCF
without considering processing needs:

minimize
𝛼,𝛼≥0

F =
∑︁
𝑒

𝑓𝑒

𝐶𝑒 − 𝑓𝑒
(4a)

subject to
∑︁
𝑝

𝛼𝑑0𝑝 = 1, ∀𝑑0 ∈ 𝐷0; (4b)∑︁
𝑝

𝛼𝑑1𝑝 = 1, ∀𝑑1 ∈ �̄�1; (4c)

𝑓𝑒 =
∑︁
𝑑0,𝑝

𝛿𝑒𝑝𝛼𝑑0𝑝ℎ𝑑0 +
∑︁
𝑑1,𝑝

𝛿𝑒𝑝𝛼𝑑1𝑝ℎ̄𝑑1 (4d)

𝑓𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸; (4e)

where 𝛼 is the routing variable of similar meaning to 𝛼 , but the
corresponding path set is 𝑃1 instead of 𝑃0.

Note that these two modifications are independent of each other.
The final variation is a model that contains both, called the PRINP-
Max model. It first allocates the computation demands by solving
the optimization model (3), and transforms the demands that re-
quire processing into new regular demands as in model (4). These
transformed demands use smaller path sets than the original regular
demands.

3.2 Restoration After Failure
Failures can happen to both communication and computation el-
ements. The goal of resilient RINP is to quickly and maximally
restore flows affected by failures.

3.2.1 Failure Scenarios. We consider four types of failures, as
listed below:

I Link Failure. A communication link is down and all link
capacity is lost.

II Computation Resource Failure. All computation resources on
a computing node are not available, but the node can still
forward traffic.

III Simple Node Failure. A node that has no computation re-
sources is called a simple node. In this case, the failed simple
node cannot forward traffic anymore, and all the links at-
tached to it could be viewed as failed.

IV Computing node failure. A node with computation resources
is down. It loses all functions, including computation and
forwarding.

Under failures, the capacity of the failed links or nodes changes.
In the following, we focus on complete failures, i.e. the capacity of
failed network element drops to zero. Our model can also be ex-
tended to work with partial failure scenarios, where only a fraction
of the original capacity is available. We will refer to the failures as
type-I to type-IV failures as defined above.

3.2.2 Restoration Approaches. Since resilience is not explicitly
considered in the normal stage, the TE system reacts in a best-effort
way to restore the flows upon failures. There are mainly three
restoration approaches.

The first one is to do a global rerouting, i.e., recalculate the
computation allocation and traffic routing for all flows under the
new resource constraints after each failure. It can promise a globally
optimal solution for each failure scenario. However, it can cause

many route changes, especially for flows that would otherwise not
be affected. Recalculating the solutions and implementing them for
all flows may take a long time, especially in large networks.

The second approach is to reroute only computation and traffic
loads on the failed elements by means of backup paths. Handling
link failures is easy, where all traffic on a failed link is treated as a
new demand to get routed in the residual graph. Node failures or
even computation resource redistribution can be handled in a simi-
lar way, more complicated but acceptable. Themain disadvantage of
this approach is that it requires establishing new tunnels to restore
the traffic. It takes up to a few seconds to update a single switch
rule [10], making the restorations too slow. An alternative way to
avoid this latency is to build all restoration tunnels in advance, but
it would result in very large flow tables in switches. Additionally,
when the affected traffic cannot be fully restored, further adjust-
ments on the computation allocation and traffic routing of other
unaffected flows may be necessary to find a feasible restoration
solution.

The last approach is to reroute the affected flows in an end-to-
end manner, called partial rerouting. Traffic volumes on failed
paths are counted and then rerouted by other surviving paths. If
the path set is diverse and resilient to failures, we could expect that
most demands still have candidate paths that survived the failure
and can be used to restore them. The traffic split ratios on candidate
paths of the affected flows need to be adjusted on their ingress
routers. The latency of updating the traffic split ratio at the ingress
is usually a few RTTs [12], so the response time depends mainly on
the optimization solving time. In practice, the solving time observed
is low (see section 4.3 for details), thus the restoration runs fast.

3.2.3 Restoration Problem. Based on the above analysis, we
choose the last approach, partial rerouting to do the restoration. The
restoration scheme is separated into two phases, the preparation
phase, and the solving phase. To minimize service interruption, we
will not change computation allocation and routing for flows not
traversing the failed elements. As a result, restoration can only use
computation and communication resources not used by unaffected
flows. After having the solution in the normal stage, we generate the
residual graphwith the remaining communication and computation
capacities to save time for the restoration stage.

After a failure occurs, the affected flows are identified. They
become the demands for the restoration RINP. The restoration de-
mands are also in two sets, namely �̃�0 and �̃�1. The bandwidth used
by them in normal operation is added back to the residual graph,
and the computation resources used by them are also added back to
the residual graph. If the source node or the destination node of a
demand fails, this demand will not be counted. The capacities of the
failed elements are updated accordingly. Results of the preparation
phase are (1) the restoration demand sets �̃�0 and �̃�1, (2) the updated
capacities of all edges𝐶𝑒 and the remaining computation resources
on compute nodes �̃�𝑧 , and (3) the traffic volume from all unaffected
flows on all edges 𝑔𝑒 . The additional notations are summarized in
Table 3.

Then, the restoration demands are rerouted in the solving phase
by solving a routing optimization model called the RRINP problem,
which is similar to the optimization model (1). Note that, each
demand to be restored still uses the same set of candidate paths as
in the normal stage. Only the traffic split ratios among candidate
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Table 3. Additional notations for restoration

Symbol Description
�̃�𝑧 Remaining computation capacity on node 𝑧 ∈ 𝑍

𝜌 Upper bound of resources utilization in restoration
𝐶𝑒 Updated capacity of edge 𝑒
𝑔𝑒 Unaffected traffic volume on edge 𝑒
�̃�0 Set of restoration demands that do not need processing
�̃�1 Set of restoration demands that need processing
𝑠𝑑 Slack variable for the unrestored fraction of a demand 𝑑
F̃ The network delay term in the objective
𝑃 Penalty weight for unrestored demand

paths need to be adjusted at ingress points. This leads to a very
short reconfiguration time.

minimize
𝛼,𝛽,𝑠≥0

F̂ =
∑︁
𝑒

𝑓𝑒

𝐶𝑒 − 𝑓𝑒
+ 𝑃 × (

∑︁
𝑑0

𝑠𝑑0 +
∑︁
𝑑1

𝑠𝑑1 ) (5a)

subject to
∑︁
𝑝

𝛼𝑑0𝑝 + 𝑠𝑑0 = 1, ∀𝑑0 ∈ �̃�0; (5b)∑︁
𝑧,𝑝,𝑞

𝛽𝑧
𝑑1𝑝𝑞

+ 𝑠𝑑1 = 1, ∀𝑑1 ∈ �̃�1; (5c)∑︁
𝑑1

(
∑︁
𝑝,𝑞

𝛽𝑧
𝑑1𝑝𝑞

)𝑊𝑑1 ≤ 𝜌�̃�𝑧 , ∀𝑧 ∈ 𝑍 ; (5d)

𝑓𝑒 = 𝑔𝑒 +
∑︁
𝑑0,𝑝

𝛿𝑒𝑝𝛼𝑑0𝑝ℎ𝑑0

+
∑︁

𝑑1,𝑧,𝑝,𝑞

(𝛿𝑒𝑝𝛽𝑧𝑑1𝑝𝑞
ℎ1
𝑑1

+ 𝛿𝑒𝑞𝛽
𝑧
𝑑1𝑝𝑞

ℎ2
𝑑1
), ∀𝑒 ∈ 𝐸; (5e)

𝑓𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸; (5f)

In the objective function (5a), besides the first term correspond-
ing to the network delay F̃ , there is an additional penalty term P̃
for the unrouted demands. With a large weight 𝑃 for the penalty
term P̃, the solution will try to restore as many demands as possible.
Our penalty term seeks to minimize the number of demands that
are not restored. It can also be customized for other objectives, e.g.
minimizing the volume of unrestored demands. The constraints are
similar to those in model (1). In (5e), the traffic rate on edge 𝑒 is the
summation of traffic generated by flows not affected by the failure
(the first term 𝑔𝑒 ) and the restoration traffic routed on this link.
After solving the restoration model, the performance is evaluated
by two metrics: the changes in network delay and the amount of
unrestored demands.

4 Evaluations
4.1 Simulation Setups
4.1.1 Dataset. We select 12 topologies from SNDlib [25]. The
topologies have TMs corresponding to normal traffic, and we use
them to generate more demand sets. 1-degree nodes are removed
and demands from or to a 1-degree node are merged to its only
neighbor. Demands with traffic volume less than 5% of the maxi-
mum traffic volume are dropped, and the remaining demands ac-
count formore than 80% of the total traffic inmost topologies. Lastly,
topologies with too few nodes, edges, or demands are dropped. The
statistics of the used topologies are reported in Table 4.

Table 4. Topology information. The last column is the number of
demands after filtering.

Name Nodes Edges Demands
cost266 37 57 758
france 25 45 251

germany50 50 88 92
giul39 39 172 1471
india35 35 80 595

janos-us-ca 39 122 64
janos-us 26 84 236
nobel-eu 28 41 183
norway 27 51 702
pioro40 40 89 780
ta2 64 107 156
zib54 53 80 114

Next, we generate computing node sets and demand sets. We
randomly select some nodes as compute nodes in each topology,
and the number of compute nodes selected is 8 for all topologies. To
generate one demand set for a topology, 90% of its filtered demands
are selected and each selected demand is split into two parts. One
part with 25-50% volume becomes demands without processing
needs (demand set 𝐷0), and the other part are demands with pro-
cessing needs (demand set𝐷1) if neither of the source or destination
is a computing node. The traffic volume before and after processing
may be different. For each demand in 𝐷1, we randomly choose a
factor between 0.5 and 2 to be the ratio between the volume before
and after the processing.

Our model makes no assumption about the relationship between
the amount of computation resources needed𝑊𝑑1 and the traffic
volumes ℎ1

𝑑1
and ℎ2

𝑑1
. Two demands with the same traffic volume

can have very different computation resource requirements. For the
convenience of presentation, in our experiments, the computation
resource requirement of a demand is assumed to be identical to the
traffic volume before processing. For each topology, 40 different
demand sets are generated, and the compute nodes are assigned
enough amount of computation resources to handle the total com-
putation needs.

We scale the traffic and computation volumes of demands to have
different values of Maximum Link Utilization (MLU), to simulate
different load-level of the overall network.

4.1.2 Baselines and Metrics. We focus on the performances of
the following models.

1. PRINP. The PRINP model as discussed in section 3.1. For
regular demands, it uses the SMORE path set, while for de-
mands that require processing, it uses the KSP path set. The
path budget is set to 8.

2. KSP(4), KSP(8), SMORE(4), SMORE(8). The PRINP model
with different path sets and path budgets. In KSP(4), we use
the KSP path set for all demands, with path budget as 4. The
meanings of notations are similar for the other three models.

3. PRINP-Red. The model with reduced size of path set for
demands that require processing. For regular demands, it
uses the SMORE path set with path budget 𝑘0 = 8. For
demands that require processing, it uses the KSP path set
with path budget 𝑘1 = 4.
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4. PRINP-Sep. The model that separates the computation de-
mand allocation and the traffic routing decisions. The path
sets and the parameters are the same as in the PRINP model.

5. PRINP-Max. The final model that utilizes both separated
allocations and reduced path set. The path sets and the pa-
rameter are the same as in the PRINP-Red model.

In the normal stage, we evaluate themodels based on the speedup
of the optimization solving time and the normalized network delay.
It is meaningless to directly compare the network delays and opti-
mizer running times, because the values are related to the traffic
volumes and the topology sizes. Since the link-based RINP formula-
tion can provide the theoretical optimal network performance, we
first solve for the optimal network delay F𝑜𝑝𝑡 and the correspond-
ing solver running time T𝑜𝑝𝑡 using the model in [9], with some
modifications to include the two types of demand sets. The speedup
is calculated as T𝑜𝑝𝑡

T , indicating the computation time reduction
factor of the model over the link-based model. The normalized
network delay is calculated as F

F𝑜𝑝𝑡 , indicating the network delay
increase ratio over the minimal delay. The value is at least 1, and
the smaller the normalized network delay, the better the model’s
performance.

In the restoration stage, we look at the delay change and the
number of unrestorable demands. The delay change is calculated as
F̃−F
F𝑜𝑝𝑡 . F and F𝑜𝑝𝑡 are of the same meaning as in the normal stage

before failure happens, and F̃ is the network delay after restoration,
the first term in the RRINP objective in (5a). This term is meaningful
only when the fraction of unrestored demands is low, otherwise,
the decrease in the network delay could result from the much lower
restored traffic volume.

4.1.3 Other Parameters. The simulation is carried out in Python
on a Laptop, with AMD Ryzen 7-5800H CPU. The optimization
solver is Gurobi [26]. Piece-wise linear approximation of convex
objective function is utilized to turn the convex optimizationmodels
into LP models. We set 𝐶𝑒 = 10, 000 for all 𝑒 , 𝜌 = 0.8 and 𝜌 = 1.

To set the parameter 𝜖 for the PRINP-Sep model, we run an ex-
periment with only the germany50 topology and the corresponding
demand sets. The results are in Fig. 5, where the normalized perfor-
mance is the resulting network delay compared to that of 𝜖 = 0.2.
The network delay slightly reduces with a larger value of 𝜖 when
the network load is low, while it increases when the load is high.
The variation is within a small range, so we choose 𝜖 = 0.2 in the
following experiments.

4.2 Performance in the Normal Stage
A good path set should help to reduce the solving time while achiev-
ing near-optimal network performance. The results from different
models are compared in Fig. 6.

In Fig. 6a, the Cumulative Distribution Function (CDF) of the
speedup by each model is shown, and the x-axis is in log scale. The
models can be categorized into three groups in terms of the speedup.
The first group contains KSP(8), SMORE(8), and PRINP, and their
speedup is mostly within 20x over the link-based RINP model. The
second group contains KSP(4), SMORE(4), and PRINP-Red. They
can provide a speedup of 20-70x because the sizes of the path set
they use are much smaller than those in the first group. The last
group consists of PRINP-Sep and PRINP-Max, and they can provide
a speedup of up to over 100x. It demonstrates that the separated

Figure 5. The influence of computation utilization margin 𝜖 in
PRINP-Sepmodel on the overall performance. DifferentMLU curves
are for different traffic scales on the same topology.

(a) CDF of Speedup

(b) CDF of Normalized Network Delay

Figure 6. Comparisons of Network Performance and Solution
Speed between Different Models in Normal stage

computation and traffic allocations can greatly reduce the size of
LP and shorten the solving time.

In Fig. 6b, we plot the CDF of the normalized network delay.
The KSP(4) and KSP(8) models are the closest to the optimal. This
is because the KSP path set has the shortest path lengths, thus
reducing the routing cost and the network delay if there is no failure.
The network delays of SMORE(4) and SMORE(8) models are higher
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Figure 7. The influence of network load on the performance of the
PRINP-Sep model

Table 5. 90th percentile of RRINP problem solving time

Model in the Failure types
normal stage type-I type-II type-III type-IV

PRINP 0.407 1.166 0.434 0.851
PRINP-Red 0.133 0.312 0.149 0.271
PRINP-Sep 0.430 1.083 0.473 0.897
PRINP-Max 0.140 0.277 0.148 0.260

PRINP-Max Global 3.043 2.829 2.704 2.650

than those of the models using KSP paths, since SMORE paths
sacrifice path length for better path diversity, which will play an
important role in the restoration stage. The PRINP and PRINP-Red
models have similar performances, which are better than models
using SMORE paths and not far from those using KSP paths. Even
though the size of the path set in the PRINP-Red model is greatly
reduced, its performance is still as good as that of the PRINP model,
while it has a substantial speedup. The performance degradation of
the PRINP-Sep and PRINP-Max models comes from the trade-off
for solving speed over network delay. The 90th percentile of the
normalized network delay of both models is about 1.25x, and the
tail goes to 3x.

In Fig. 7, we plot separately the CDF of the normalized network
delay of the PRINP-Sep model under different network load levels.
We can see the performance of the PRINP-Sep model degrades as
the network load level increases, because the network delay is more
sensitive to routing when the network load level is high. It can also
be seen that the normalized network delay is within 1.25x in most
cases, even if the network load level is high.

4.3 Resilience during the Restoration Stage
After having the normal-stage solution for the models, we inject
failures into the network system. We assume no a priori knowledge
about the failure distribution, and each failed network element is
drawn totally at random. We generate 5 link failure scenarios for
each demand set, with total failure on one randomly selected link
in each scenario. For the other 3 types of failures, we generate 3
scenarios for each demand set, again total failure on a randomly
selected element. In total, there are 14 failure scenarios for each
demand set. We evaluate the resilience performance over a small
yet representative subset of the topologies, which consists of ger-
many50, india35, and janos-us-ca.

Table 6. Restoration information of the PRINP-Red model

Total Number, Percentage Failure types
or Average Delay Change type-I type-II type-III type-IV

Affected Demands 29995 20008 25495 33052
Affected Percentage 4.62% 5.63% 5.51% 8.48%
Unrestored Demands 31 0 45 52

Delay Change +0.090 +0.084 +0.015 +0.241
Unrestored Demands (Global) 34 0 45 51

Delay Change (Global) +0.049 +0.061 -0.033 +0.196

4.3.1 Rerouting Time and Effectiveness. Since the time for
routing update is short [12], we mainly focus on the time spent in
solving the RRINP problem. The solving time includes the prepa-
ration time. The 90th-percentiles of model solving times are listed
in Table 5. The differences in solving time of models mainly come
from the different path set sizes, so the models with a smaller size of
path sets are generally faster in restoration. For type-II and type-IV
failures, the rerouting times are longer than those of the other two
types. This is because the failures with computation resources may
involve much more demands, leading to a larger restoration de-
mand set in the RRINP problem. The last row is the rerouting time
if we reroute globally all the demands under failure, with the path
set in the PRINP-Red model. It is obtained by solving the RRINP
problem when the �̃�𝑖 contains all the demands in 𝐷𝑖 whose source
or destination node does not fail and 𝑔𝑒 = 0 for all edges 𝑒 ∈ 𝐸.
The rerouting time is much longer in global rerouting compared to
the same setting in partial rerouting, because only a small portion
of the demands are affected. The small size of the demand set also
helps to reduce the restoration time.

To evaluate the effectiveness of the restoration stage, wemeasure
the total number of demands affected by failures, and the fraction
of them that our schemes cannot restore. For the PRINP-Red model,
the numbers are shown in Table 6. The row of the affected demands
contains the numbers of the affected demands under all failure
scenarios of each type. The averages of the affected demands as a
percentage of all demands are in the second row, and we can see
most demands are not affected under failures. The total number of
the affected demands under type-I failures is larger than that under
type-II failures while the percentage is smaller. This is because
there are more type-I failure scenarios than the others, so the total
number is larger. The last four rows are the number of the demands
that are not fully restored in the restoration stage and the delay
change, resulting from partial rerouting in the PRINP-Red model
and global rerouting. Only a few demands are not restored, either
because there is no candidate path that survived the failure, or there
is not enough bandwidth on the survived paths. Global rerouting
has a lower delay change than partial rerouting, meaning that the
network delay after restoration is lower. There is not a large gap
between the partial rerouting approach and the global rerouting
approach.

4.3.2 Restoration Performance. Now we compare the restora-
tion performance of different models under different types of fail-
ures. After failure and restoration, the network delay should in-
crease if all the affected demands get restored, because the total
available communication/computation resources in the network
are reduced and the new solution should be at least no better than
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Table 7. The 90th percentile delay changes and the number of unrestored demands of the models under different types of failures

90th Percentile of 90th Percentile of Delay Changes Number of Unrestored Demands
Model Normalized Delay Type-I Type-II Type-III Type-IV Type-I Type-II Type-III Type-IV
KSP(4) 1.014 +0.072 +0.155 +0.059 +0.276 855 0 2880 1938

SMORE(4) 1.248 +0.162 +0.212 +0.232 +0.512 202 0 856 842
KSP(8) 1.004 +0.067 +0.152 +0.062 +0.270 79 0 1106 979

SMORE(8) 1.107 +0.096 +0.173 +0.098 +0.351 31 0 45 34
PRINP 1.058 +0.080 +0.158 +0.082 +0.295 31 0 45 30

PRINP-Red 1.060 +0.083 +0.160 +0.084 +0.306 31 0 45 52
PRINP-Sep 1.220 +0.060 +0.109 +0.047 +0.254 31 0 47 35
PRINP-Max 1.233 +0.063 +0.116 +0.055 +0.263 30 0 48 56

the original optimal solution. However, if all the paths of some
demand failed, the demand can no longer be routed, thus reducing
the total traffic volume and the network delay. To address the issue,
we consider the network delay term F̃ in the RRINP solution and
the number of unrestored demands together. The results are shown
in Table 7.

The KSP(4) and KSP(8) models have a good normalized delay
and small delay changes, but they also have a large number of
unrestored demands. The path lengths in the KSP path sets are
short, but the paths may overuse some short edges, so the resilience
is bad. The normalized delay and delay changes of the SMORE(4)
and SMORE(8) models are worse than the ones with KSP path sets,
but the unrestored demands under the SMORE paths set are much
less. The SMORE path sets trade off the normal-stage performance
for better resilience in the restoration stage.

The SMORE(8), PRINP, PRINP-Red, PRINP-Sep, and PRINP-Max
models have a similar number of unrestored demands. The PRINP
model outperforms the SMORE(8) model in both the normal stage
and the restoration stage. This demonstrates that the SMORE path
sets for the demands that require processing only bring additional
cost but do not add to the resilience.With traffic relayed by compute
nodes, the KSP paths can provide enough diversity for resilience.
The difference between the PRINP model and the PRINP-Red mode
is small, meaning that the reduced size of the path set does not add
much to the delay or harm the resilience. The PRINP-Sep and PRINP-
Max models have larger normalized delays than the PRINP and
PRINP-Red models become they don’t jointly optimize computation
demand allocation and traffic routing. This is the trade-off between
the performance and the fast resolution time.

In terms of the failure types, type-II failures have the lowest harm
to the network, while type-IV failures produce the highest negative
impact. In type-II failures, only some computation resources are
down. All the links and nodes can still forward traffic and no path
fails. As long as there are still enough computation resources in the
network to do the processing and enough bandwidth on the links,
there will be no failed demands. The other three types of failures
could all lead to some failed paths. Node failures are of higher
impact because the number of paths involved is generally larger
than that of a link failure. In general, the numbers of unrestored
demands in type-III and type-IV failures are higher than in type-I
failures. Type-IV failures have a larger delay change because all
the demands that take computation resources at the node would
need rerouting. This would involve a greater number of demands
as shown in Table 6, bringing higher loads to the network during
restoration.

(a) Optimal MLU = 0.2

(b) Optimal MLU = 0.4

(c) Optimal MLU = 0.6

Figure 8. The delay change of the PRINP model under different
network load levels

To understand how the network load influences restoration per-
formance, we plot the CDF of delay changes separately. Fig. 8 is the
result for the PRINPmodel and Fig. 9 is the result for the PRINP-Red
model. In most failure scenarios, there is not a huge change in the
network delay after the restoration for both models, because their
path sets are resilient to survive the failures and avoid congestion.
The network delays may even decrease, mostly for two reasons.
One is for type-III or type-IV failures, the source or destination of
some demands may fail. These failed demands could reduce the
total traffic volume, leading to a decrease in the network delay. The
other is the change of the limit on compute node utilization. In the
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(a) Optimal MLU = 0.2

(b) Optimal MLU = 0.4

(c) Optimal MLU = 0.6

Figure 9. The delay change of the PRINP-Red model under different
network load levels

normal stage, the limit is 𝜌 = 0.8, while in the restoration stage,
the limit changes to 𝜌 = 1. Some demands have far-away compute
nodes in the normal stage, because the computation resources on
compute nodes with much lower costs have reached the limit. These
demands could benefit from the additional computation resources
to have a lower delay. However, when the network load level is high,
the decrease in the volume cannot compensate for the increase in
congestion. We can observe that for both models, the endpoint of
the CDF curve goes to a high value when the network load is high.

In terms of the worst-case performance, the PRINP model is
better than the PRINP-Red model, especially in Fig. (8b) and Fig.
(9b). The reduced path set size in the PRINP-Red model does help
to accelerate the model solution, but a larger path set could still be
more resilient upon failures.

5 Conclusions
While applications can benefit from various processing inside edge
networks, routing of flows with computation needs is significantly
more complex than the traditional traffic routing, and has to be
resilient against unexpected failures on communication and com-
putation elements. In this paper, we developed a novel path-based
two-stage traffic engineering scheme to trade-off between rout-
ing model complexity, network performance in the normal stage,
and restoration efficiency upon failures. Our path-based routing

formulation significantly speedups routing calculation, and path-
based traffic splitting can be easily implemented/updated on ingress
nodes. We demonstrated that computation allocation and traffic
routing can be conducted sequentially to further speed-up routing
calculation. After network failures, our fast restoration routing
scheme minimizes the disruption to application flows and maxi-
mizes the restored traffic using the survived communication and
computation resources. Our two-stage TE schemes were evaluated
extensively using real network instances. In the normal stage, our
scheme achieves near-optimal performance with up to 50-100x
speedup compared to link-based optimal routing models. In the
restoration stage, in various evaluated failure scenarios, our scheme
can restore most of the affected traffic with up to 10x speedup com-
pared to globally rerouting all the flows. Our fast restoration routing
schemes are ready to be implemented in SDN/NFV-equipped edge
networks to improve their performance and resilience.
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