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Abstract—Adaptive streaming, such as Dynamic Adaptive
Streaming over HTTP (DASH), has been widely deployed to pro-
vide uninterrupted video streaming service to users with dynamic
network conditions. In this paper, we analytically study the poten-
tial of using P2P in conjunction with adaptive streaming. We first
study the capacity of P2P adaptive streaming by developing utility
maximization models that take into account peer heterogeneity,
taxation-based incentives, multi-version videos at discrete rates.
We further develop stochastic models to study the performance of
P2P adaptive streaming in face of bandwidth variations and peer
churn. Through analysis and simulations, we demonstrate that
incentive-compatible video sharing between peers can be easily
achieved with simple video coding and distribution designs. P2P
adaptive streaming not only significantly reduces the load on the
servers, but also improves the stability of user-perceived video
quality in the face of dynamic bandwidth changes.

I. INTRODUCTION

We have recently witnessed the wide deployment of adap-
tive streaming that provides uninterrupted video streaming
service to users with dynamic network conditions. To our
knowledge, all deployed adaptive streaming solutions to date
are server-based [1]. Notably, Netflix’s online video streaming
service is implemented using Dynamic Adaptive Streaming
over HTTP (DASH) [2], [3]. In adaptive streaming, the video
server encodes the video into multiple versions at different
rates. Each client then dynamically chooses a video version
that matches the available bandwidth along the server-client
connection. To ensure continuous playback, low quality video
will be streamed if either the server is overloaded, or the
server-client connection has low available bandwidth. P2P
video streaming is a proven technology that can efficiently
reduce the load on servers, and provide robust video streaming
services in face of peer churn and bandwidth variations [4],
[5], [6], [7], [8]. It is therefore natural to consider integrating
P2P into adaptive streaming.

In P2P adaptive streaming, peers have heterogeneous and
time-varying upstream and downstream bandwidth availability.
A peer dynamically switches between video versions to match
its current network condition. A peer downloads video either
from the server, or from other peers watching the same version.
To maximally exploit the multiplexing gain, it is desirable to
facilitate P2P sharing among peers watching different versions
of the same video. Towards such a paradigm, the key design
questions for P2P adaptive streaming are:

1) Which video version (rate) should each peer receive?

2) How should we generate and distribute multiple versions
of the same video among heterogeneous peers?

3) How do we deliver stable video quality to peers in face
of temporal bandwidth variations?

Video rate allocation among peers reflects the fundamental
trade-off between providing social equality and contribution
incentives. On one hand we want to maximize the minimum
viewing quality across all peers; on the other hand, we want to
incentivize individual peers to maximally contribute bandwidth
by providing them a better viewing experience. One extreme
is to pool all upload bandwidth in the system and evenly
distribute it to all peers so that they watch the same video
version. This design is “fair” but does not provide incentives
for peers to contribute upload bandwidth. Another extreme
is to make a peer’s video download rate equal to its upload
contribution, so that peers are motivated to contribute more to
improve their viewing experience. However, in this case low
bandwidth peers will receive very poor quality video. Also
a peer with temporary upload bandwidth dips will experience
immediate video quality degradation. This works against P2P’s
multiplexing advantage, both spatially (among heterogeneous
peers at the same time), and temporally (cross different time
instants on a single peer). In this paper, we employ taxation
to strike a balance between fairness and incentives.

To enable video sharing between peers watching different
versions of the same video, transcoding can be applied: a peer
can transcode its received video into a different (normally
lower) quality level, and upload it to other peers watching at
that level. More recently, scalable video coding techniques,
such as layered video and MDC, have been adopted in
P2P streaming. Both of them incur computation and coding
overhead on the servers and peers. Another alternative is the
helper-based design, where a peer downloads a sub-stream
of a video version different from the version it is watching,
and then uploads it to other peers watching that version.
Different schemes call for different video generation and P2P
distribution designs. Finally, to achieve video stability, both
rate allocation and P2P sharing have to be robust against
temporal bandwidth variations.

In this paper, for live video streaming, we analytically study
the capacity of P2P adaptive streaming by developing utility
maximization models that take into account peer heterogeneity,
taxation-based incentives, and different video coding choices.
We further develop stochastic models to study the performance
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of P2P adaptive streaming in face of peer bandwidth variations.
Through analysis and simulations, we demonstrate that
• Taxation serves as a simple, yet powerful, tool to strike

the desired balance between social welfare and individual
welfare in P2P adaptive streaming.

• Optimal P2P sharing between peers watching different
video versions can be achieved if either peers do simple
video transcoding, or the server generates layered video.

• A helper-based P2P sharing design, which does not re-
quire peer transcoding and server layered video coding, is
almost as efficient as the optimal P2P adaptive streaming
with transcoding.

• P2P adaptive streaming not only significantly reduces
the load on servers, but also improves the stability of
video quality perceived by users in face of time-varying
bandwidth changes.

A. Related Work

Several research efforts on P2P adaptive streaming have
been attempted using scalable video coding. Layered coding
is adopted in [9] to fully utilize the available peer upload
bandwidth in a tree-based P2P overlay multicast. Authors of
[10] proposed a 3-stage chunk scheduling algorithm for mesh-
based layered video streaming to achieve high throughput and
low video quality jitter. In [11], layered coding is utilized
to implement ‘tit-for-tat’ type of incentive in P2P stream-
ing. Taxation-based incentive has been proposed for multiple
descriptions coding (MDC) based P2P streaming in [12],
[13]. Taxation-based layered P2P streaming is investigated
in [14]. Different from previous work, our analysis explore
the capacity of generic P2P adaptive streaming systems. We
compare the capacity of different design choices, including
peer transcoding, server layered coding and helper-based dis-
tribution. We also theoretically study the impact of bandwidth
variations, which is crucial in adaptive streaming.

II. CAPACITY WITH CONTINUOUS VIDEO RATES

In this section, we study the capacity of taxation-based P2P
adaptive streaming systems with continuous video rates.

A. Taxation-based Incentive

Taxation-based incentive policy offers a flexible framework
that allows the tradeoff between the system-wide social wel-
fare and the incentive to individuals [12], [13], [14]. Let ud
be the upload bandwidth contributed by peer d. Under a tax
rate 0 ≤ t ≤ 1, the target received video rate of peer d is

rd = (1− t)ud + r
(P )
d ,

where (1− t)ud is called the entitled rate, which is a fraction
of its own upload contribution, and r

(P )
d is a share from

the taxed bandwidth pool shared by all users. If t = 0, the
allocation degenerates into the ‘tit-for-tat’ incentive: a peer’s
video download rate matches its video upload rate; if t = 1,
all peers’ upload bandwidth are taxed to the common pool to
maximize the social welfare.

B. Model with Continuous Video Rates

Our design objective is to maximize the aggregate video
quality on all peers under the taxation incentive policy. We
consider a system with one server and N classes of peers.
The server upload bandwidth is us. Let Si be the set of
peers in class i. There are ni peers in Si, each of them
has upload bandwidth of ui. Without loss of generality, we
assume peer classes are ordered in a decreasing order of their
upload bandwidth, u1 > u2 > · · · > uN . Let rij be received
video rate of peer j in Si. We introduce vector notations
U , {ui, 1 ≤ i ≤ N} and N , {ni, 1 ≤ i ≤ N}.
Let R , {rij , 1 ≤ i ≤ N, 1 ≤ j ≤ ni} be the received
video rates on all peers. PSNR (Peak Signal-to-Noise Ratio)
is the standard objective metric to evaluate the quality of a
compressed video. PSNR of a video coded at rate rc can be
approximated by a logarithmic function β log(rc), where β is
a constant related to the video feature. In this section, we study
the case that the server can generate arbitrary number of video
versions, each of which can be at arbitrary rate. We study the
system capacity under three situations: video transcoding on
peers, layered video coding on server, helper-based solution
without transcoding and layered coding.

C. Optimal Rate Allocation among Peers

When peers’ upload bandwidth are the only bottleneck, the
optimal video rate allocation among all peers should maximize
the aggregate video quality.

OPT I:

max
R

N∑
i=1

ni∑
j=1

log(rij), (1)

subject to:

rij ≥ (1− t)ui,∀i = 1, 2, · · · , N ; j = 1, 2, · · · , ni (2)
N∑
i=1

ni∑
j=1

rij ≤
N∑
i=1

niui + us. (3)

In OPT I, (1) denotes the aggregate utility of all peers. (2)
states that each peer should get at least its entitled rate. (3)
states that the aggregate peer video download rate can not
exceed the aggregate video upload rate in the system.

We develop a water-filling type of algorithm to get a feasible
solution of OPT I. In Algorithm 1, each peer reports its upload
bandwidth to a tracker. After collecting all peers’ information,
the tracker can calculate K∗, W ∗ (the meaning of these two
terms will be discussed later), and further determines the video
ratesR of all peers. In the algorithm, B is the taxed bandwidth
pool that can be used to maximize the system-wide utility.
According to the water-filling policy, one should always use
the common tax pool to help “weaker” peers. If B is used to
only help peers in class k and above, those helped peers can
get the same video rate at

Wk =

∑N
i=1 niui + us − (1− t)∑(k−1)

i=1 niui∑N
i=k ni

(4)
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Algorithm 1 Water-Filling-Continuous (U ,N , us, N )

1: All peers enter a FIFO queue Queuep in the increasing
order of their upload bandwidth.

2: for each peer j in Si do
3: rij = (1− t)ui
4: end for
5: Put residual bandwidth of peers and servers to a pool B,

now B = t
∑N
i=1(uini) + us. Initialize Sw = φ.

6: while 1 do
7: Select peers with the same smallest upload bandwidth

uj out of Queuep and assume set of those peers is Sj .
8: if B+(1−t)|Sj |uj

|Sw|+|Sj | < (1− t)uj then
9: W ∗ = B

|Sw| ,K
∗ = j + 1, S∗K = Sw

10: rij = W ∗,∀(i, j) ∈ Sw
11: break
12: else
13: B = B + (1− t)|Sj |uj , Sw = Sw ∪ Sj ,
14: end if
15: end while

To find a feasible solution satisfying the entitled rate con-
straint, we have to make Wk ≥ (1 − t)uk. In the water-
filling algorithm, we try to find K∗, the smallest k such that
Wk ≥ (1 − t)uk. Let W ∗ = WK∗ , then the received video
rates of all peers are given as

r∗ij =

{
(1− t)ui, if (1− t)ui > W ∗

W ∗, if (1− t)ui ≤W ∗ (5)

In other words, all peers at least get the base rate of W ∗, and
peers in class 1 through K∗ − 1 will get their entitled rates,
which are higher than W ∗.

Theorem 1: The video rate R∗ obtained by Algorithm 1 is
the global maximum solution of OPT I.

Proof: We can formulate OPT I into a standard convex
programming problem with the following form:

max f(R)

subject to AR ≥ b
Using Karush-Kuhn-Tucker (KKT) conditions, one can easily
verify that, for the obtained R∗, there exists λ∗ such that

5f(R∗) = ATλ∗, λ∗ ≥ 0,

(λ∗)T(AR∗ − b) = 0,

ZT52f(R∗)Z is positive semi-definite,

where Z is a null-space matrix for the matrix of active
constraints at R∗. Generally, the KKT condition is a necessary
condition for the solution to be optimal. Since the objective
log() here is strictly concave, KKT condition is also a suffi-
cient condition. Thus, R∗ is the global optimal solution.

To achieve the optimal rate R∗, a feasible P2P video
sharing scheme has to be developed. For single-rate P2P video
streaming, it has been shown that in a P2P swarm with n peers,

(1 − t)uK∗−1

SK∗ ∪ SK∗+1 ∪ · · · ∪ SN

S2 SK∗−1S1

S0

(1 − t)u2(1 − t)u1

φ0 φ1 φ2 φK∗−1

Fig. 1: Trans-coding Once

(1 − t)uK∗−1

SK∗ ∪ SK∗+1 ∪ · · · ∪ SN

S2 SK∗−1S1

S0

(1 − t)u2
(1 − t)u1

φ0 φ1 φ2 φK∗−1

Fig. 2: Trans-coding Twice

the optimal achievable video rate on all peers is

r = min{us,
us +Bn

n
}, (6)

where us is the server upload bandwidth and Bn is the
aggregate upload bandwidth of all peers [15], [16], [17].

In (5), there are K∗ different video rates to be achieved
between different classes of peers. Based on (6), for each video
rate r with n peers watching at that rate, it is sufficient to
design P2P video distribution such that there is a server/peer
generating the video version at rate r, and the total upload
bandwidth reserved for those n peers is nr. In the following,
we investigate how to achieve the optimal rate R∗ with peer
transcoding, layered coding, and helper-based P2P distribution.

D. P2P Distribution with Peer Transcoding

If peers have video transcoding capabilities, a peer receiving
a video can transcode the video to multiple lower rates and
upload them to peers watching at the lower rates.

Theorem 2: If the server’s upload bandwidth satisfies us ≥
(1 − t)

∑K∗−1
i=1 ui, the optimal rate R∗ can be achieved as

long as peers can do video transcoding once.

Theorem 3: Even if the server bandwidth is only enough to
send out one stream at the highest rate, the optimal rates R∗
can still be achieved if peers can do video transcoding twice.

The above two theorems could be proved by construct the P2P
distributions like Fig. 1 and Fig 2 illustrate. Due to the space
limit, the detailed proofs are put in our technical report [18] .

E. P2P Distribution with Layered Video Coding

P2P sharing between peers downloading video at different
rates can be also enabled if layered video coding is employed
by the server. Specifically, the server encodes the video into
multiple layers with nested decoding dependency. A base layer
has to be received by all peers. An enhancement layer k can
be decoded iff all layers up to k are received. Ideally, if peer
A’s video download rate is higher than peer B, then A has all
layers B needs. A and B share with each other their common
layers without the need of transcoding.

When layered video coding is employed, the server needs to
determine the total number of layers and the rate of each layer
to generate. We must determine which layers each peer should
download. We can show that when using layered video coding,
if coding overhead is negligible, the optimal video allocation
in (5) can also be achieved.
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Theorem 4: The optimal rate in (5) can be achieved if the
server generates K∗ video layers, and all peers subscribing to
the same layer share video with each other.

Proof: The server generates K∗ video layers: the rate ξ1
for the 1st video layer is ξ1 = W ∗, the rate ξ2 for the 2nd
video layer is ξ2 = (1 − t)uK∗−1 −W ∗ and the rate for the
i-th(i > 2) video layer is ξi = (1− t)(uK∗+1−i − uK∗+2−i).
The set of peers receiving the j-th video layer is S

′

j = S1 ∪
S2 ∪ · · · ∪ SK∗+1−j .

For the i-th (1 < i ≤ K∗) video layer, the server transmits
one copy of that layer to peers in set S

′

i . All peers in S
′

i

form a P2P swarm. They need ξi(|S
′

i |−1) more bandwidth to
distribute layer i to all peers in the swarm. After allocating all
the i-th (1 < i ≤ K∗) video layers, we denote the aggregate
peer residual bandwidth be uRestp . Then,

uRestp =

N∑
i=1

niui −
K∗∑
i=2

ξi(|S
′

i | − 1)

=(1− t)u1 +

K∗−1∑
i=1

tniui +

N∑
i=K∗

niui+

W ∗(

K∗−1∑
i=1

ni − 1)

And the residual bandwidth on the server is uRests = us −∑K∗

i=2 ξi = us− (1− t)u1 +W ∗. It is straightforward to check
that uRestp + uRests = (

∑N
i=1 ni)W

∗ = W ∗|S′1|. Hence, the
optimal solution (5) can be achieved with K∗ video layers.

F. Helper-Based P2P Distribution

In practice, video transcoding on peers may impose too
great of a computational burden on peers or altogether im-
practical. Moreover, layered encoding may suffer from low
coding efficiency. In this Section, we study P2P distribution
when neither transcoding nor layered encoding is feasible.
In this case, in order to optimize the average video quality
while satisfying the entitled video-rate constraints, it may
be necessary for certain peers to act as “helpers”, that is,
to download video versions that they are not watching and
redistribute those versions to other peers.

Let G be the set of peers viewing a particular version. As
shown in [19], [20], with helpers, the maximal achievable
video rate r∗ for the peers in G is:

r∗ =
B(W ) +B(H)

|G| − B(H)

|G|2 , (7)

where B(W ) is the aggregate upload bandwidth of the peers in
G plus the amount of server bandwidth allocated to the version
and B(H) is bandwidth used by helpers to help the peers in
G. The last term in (7) reflects the helper-overhead, which
is the upload bandwidth (e.g., from the server’s allocation to
helpers) used to send video content (from the version) to the
helpers, so that they in turn can redistribute (and amplify) the
video to the viewers in G. Notably, helper-overhead decrease
as the number of viewers |G| increases.

Unfortunately, with the helper-overhead, it is no longer pos-
sible to exactly achieve the optimal rate for OPT I. Instead, we
develop a heuristic algorithm for helper-based P2P distribution
scheme, then study how far away it is from the optimal. In the
water-filling algorithm in Algorithm 1, bandwidth-rich peers
only get their entitled rates, and all the bandwidth-poor peers
get the same rate W ∗, which is higher than their entitled rates.
Thus, we propose a heuristic Algorithm 2 for the helper-based
case. In that algorithm, we first use the water-filling approach
in Algorithm 1 to get the base rate W ∗ without considering
the helper overhead. Fig 1 illustrates the distribution design
with transcoding or layered coding. When transcoding and
layered coding are not available, we can use peers from S1

to SK∗−1 as helpers for peers in the base class. Due to the
helper overhead, W ∗ is not achievable in the base class. To
circumvent this, we first let the server reserve bandwidth of
W ∗ to feed the base video to all helpers.1 Now we run the
water-filling algorithm again with the server bandwidth of
us−W ∗. We get a lower base rate W

′
and the corresponding

P2P distribution design as illustrated in Fig 1. We treat those
peers with video rates higher than W

′
as the helpers for

peers at rate W
′
, and use the reserved server bandwidth of

W ∗ > W
′

to feed the base rate video W
′

to all helpers, then
all peers in the base level will get rate of W

′
.

Algorithm 2 Video Version Allocation For Continuous Ver-
sion under Helper-based condition

1: Water-Filling-Continuous(U ,N , us, N ) to get the number
of video versions K∗, the base video rate W ∗, and the
optimal video rate for each peer R∗;

2: Water-Filling-Continuous(U ,N , us − W ∗, N ) to get the
number of video versions K

′
, the base video rate W

′
,

and the video rate for each peer R′ .

Theorem 5: The utility gap between the video rate vector
R′ obtained from heuristic Algorithm 2 and the optimal
solution is smaller than W∗

W ′
.

Proof: When considering helper overhead, the optimal
capacity for this problem could not exceed the optimal solution
for OPT I. Thus, we can use the utility gap between (5) and
the result of Algorithm 2 as the upper-bound. The result of
Algorithm 2 can be expressed as

r
′

ij =

{
(1− t)ui, if (1− t)ui > W

′

W
′
, if (1− t)ui ≤W

′ (8)

If we assume that ri = (1− t)ui,∀i ≤ (K
′ −1), then W

′
can

be expressed as

W
′

=

∑N
i=1 niui + us −W ∗ − (1− t)∑(K

′
−1)

i=1 niui∑N
i=K′ ni

(9)

1The server does not have to send the whole base video to each helper. In
fact, each helper only needs to download a very small sub-stream of the base
video so that it can upload it to all peers at the base level by using up its
residual bandwidth. As shown in [19], the total bandwidth a server needs to
feed all the helpers is at most the base video rate.
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Compared with (5), we have W
′
< W ∗,K

′ ≥ K∗. Then, the
utility gap upper-bound can be expressed as:

N∑
i=1

ni∑
j=1

(log(r∗ij)− log(r
′

ij))

=

K∗∑
i=1

ni(log((1− t)ui)− log((1− t)ui)) +

K
′∑

i=K∗

ni(log(W ∗)

− log((1− t)ui)) +

N∑
i=K′

ni(log(W ∗)− log(W
′
))

<

N∑
i=K∗

ni
W ∗ − r′ij
W ′ <

W ∗

W ′ (10)

In (10), the first inequality is due to the concavity of log()
function and the fact that r

′

ij ≥ W
′
, the second inequality

uses the fact that
∑N
i=K∗(niW

∗−nir
′

ij) = W ∗, which is just
the bandwidth we reserve to deal with overhead.
Note that the upper bound of W∗

W ′
is for the aggregate utility

among all peers. When the peer number is large, the per-peer
utility in the helper-based distribution is almost the same as
the optimal case.

III. CAPACITY WITH DISCRETE VIDEO RATES

The optimal solutions in the previous section assume the
server can generate an arbitrary number of video versions or
layers at infinitesimal granularity. Real systems only allow
finite video versions/layers, and each version/layer will be
encoded at one of a finite set of discrete rates. The system
capacity bounds obtained in the previous section are therefore
upper bounds for real systems. In this section, we extend our
baseline continuous analysis to discrete cases.

A. Transcoding between Discrete Versions

We start with transcoding between discrete video versions,
and assume there are in total Q video versions. The rate for
video version q is vq , and the set of video rates is given by
V , {vq, 1 ≤ q ≤ Q}, and we order V in a decreasing order
so that v1 > v2 > · · · > vQ. Based on OPT I, we formulate
a utility maximization problem OPT II for the discrete case.

OPT II: objective:

max

N∑
i=1

ni∑
j=1

log(rij), (11)

subject to:

rij =

Q∑
q=1

aijqvq,

Q∑
q=1

aijq = 1, aijq = 0 or 1 (12)

N∑
i=1

ni∑
j=1

rij ≤
N∑
i=1

niui + us, (13)

rij ≥ ei, (14)

where aijq is a binary variable for the video version chosen by
peer j in class i, (12) states that each peer only gets one video

version. (13) is the total video bandwidth constraint. Since
peer entitled rate calculated from the taxation is continuous,
we can find the corresponding discrete entitled rate ei for class
i, which is the highest discrete video rate vq(i) such at vq(i) ≤
(1− t)ui and vq(i)−1 > (1− t)ui. Note that discrete entitled
rate is always no greater than the corresponding continuous
entitled rate. (14) guarantees that peers in class i at least get
their discrete entitled rates.

Similar to the water-filling algorithms for the continuous
case, we propose Algorithm 3 for the discrete case that invests
upload bandwidth to enhance peers with lower video rates first.
In Algorithm 3, we first assign peers with their discrete entitled
rates. The residual upload bandwidth is put into a bandwidth
pool B. Each time we select a peer with the smallest video
rate to enhance its video rate to the adjacent higher one. If the
bandwidth pool B is large enough for such an operation, we
execute it, update bandwidth pool B, peer video rate, and move
on to the further iteration; otherwise, the algorithm terminates,
we get the lowest video rate vK∗ , and the second lowest video
rate vK∗−1.

Algorithm 3 Water-Filling-Discrete (U ,N , V, us, N )

1: for each user i do
2: rij = ei
3: end for
4: B =

∑N
i=1(ui − ei) + us

5: All peers form a queue Queuep. In the queue, peer i with
smallest video rate rij appears first. If peers’ video rates
are the same, the peer contributing higher bandwidth ui
appears first.

6: while 1 do
7: Select peer appearing in front of Queuep, assume the

video rate of that peer is vj
8: if vj−1 − vj > B then
9: vK∗ = vj , vK∗−1 = vj−1

10: break
11: end if
12: Enhance video rate of peer from vj to vj−1, B = B −

(vj−1 − vj), insert that peer to the proper position of
Queuep according to its video rate

13: end while

Theorem 6: After Algorithm 3 completes, let X be the
obtained peer video rate allocation. If the bandwidth pool B
is exhausted, then X is the optimal for the discrete case. If B
is not exhausted, the utility gap between X and the optimal
solution is upper-bounded by vK∗−1−vK∗

vK∗
.

Proof: After Algorithm 3 completes, some peers will get
the lowest rate vK∗ , some peers will get the second lowest
rate vK∗−1, all other peers will get their discrete entitled rates.
Let k0 be the class index such that peers from class k, 1 ≤
k ≤ k0 will watch their entitled rates. And B is the total
upload bandwidth allocated. It is straightforward to see that
B >

∑N
i=1 uini + us − (vK∗−1 − vK∗), because otherwise

the algorithm can always allocate the available bandwidth of

5
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vK∗−1 − vK∗ to bring one more peer from video rate level
K∗ to K∗ − 1.

Now suppose Y is another feasible discrete allocation with
the total allocated bandwidth of B. Due to the entitled rate
constraint, in Y , all peers from class k ≤ k0 will at least
get the same video rates as in X . Let ∆ be the total surplus
rate obtained by peers from the first k0 class. Then their total
utility satisfies:

k0∑
k=1

nk∑
j=1

log rkj ≤
k0∑
k=1

nk log ek +
∆

ek0
, (15)

where the inequality is due to the concavity of log() function.
For peers from classes k > k0, we sort their allocated rates

in a non-decreasing order, the resulting vector is {yj , 1 ≤ j ≤
L ,

∑N
k=k0+1 nk}. Let {xj , 1 ≤ j ≤ L} be the associated

vector in X . We have
L∑
j=1

yj =

L∑
j=1

xj −∆. (16)

Since xj takes value of either vK∗ or vK∗−1, and there is no
other video rate in between, we must have y1 ≤ x1 = vK∗ . Let
j0 be the index such that yj0 > vK∗ and yj0−1 ≤ vK∗ , then we
have yj ≤ xj , ∀j < j0, and yj ≥ xj , ∀j ≥ j0. Then the total
utility difference is

∑L
j=1(log yj − log xj) ≤

∑L
j=1

yj−xj

xj
. If

xj0 = vK∗ , then xj = vK∗ , 1 ≤ j ≤ j0, then

L∑
j=1

(log yj − log xj) ≤
j0−1∑
j=1

yj − xj
vK∗

+

L∑
j=j0

yj − xj
vK∗

= − ∆

vK∗

(17)
If xj0 = vK∗−1, then xj ≤ vK∗−1, 1 ≤ j ≤ j0, then

L∑
j=1

(log yj−log xj) ≤
j0−1∑
j=1

yj − xj
vK∗−1

+

L∑
j=j0

yj − xj
vK∗−1

= − ∆

vK∗−1
.

(18)
Based on (15), (17), (18) and vK∗ ≤ vK∗−1 ≤ ek0 , we have
the total utility of Y is no more than X . In other words, X
is optimal among all allocations used up bandwidth of B.
Since B >

∑N
i=1 uini + us − (vK∗−1 − vK∗), the utility gap

to the optimal allocation used up all bandwidth is at most
vK∗−1−vK∗

vK∗
.

Corollary 6.1: If the gaps between two adjacent video rates
are the same, Algorithm 3 always find the optimal discrete
video rate allocation.

Proof: Given the video rate gap δ among two adjacent
video rates, for any two feasible discrete video rate allocations,
the gap between their total allocated bandwidth must be a
multiple of δ. As proved in Theorem 6, after Algorithm 3
completes, the unused bandwidth is less than vK∗−1− vK∗ =
δ. Therefore the total used bandwidth B of Algorithm 3 is
no less than any other feasible allocation. Since we proved
in Theorem 6 that X is optimal among all allocations used
bandwidth up to B. Then X is optimal among all feasible
discrete allocations.

B. Discrete Layered Video Coding

When employing layered video coding, we assume that
there are totally L video layers, and the rate for layer l is
denoted by sl. Similar to the analysis in the continuous case,
without considering coding overhead, discrete layered video
coding can be converted into an equivalent multiple video ver-
sion case. Specifically, if we let Q = L and vj =

∑Q+1−j
i=1 si,

∀1 ≤ j ≤ Q, then this problem can be casted into OPT II.
We can still use the similar approach like Algorithm 3 to solve
this problem. Each time, we check whether we can add one
more video layer to the peers with the smallest video rate.

C. Helper-based P2P Distribution

Algorithm 4 Video Version Allocation For Discrete Version
under Helper-based condition

1: Run Algorithm Water-Filling-Discrete (U ,N , V, us, N ) to
obtain vK∗ , vK∗−1;

2: Run Algorithm Water-Filling-Discrete (U ,N , V, us −
vK∗ − vK∗−1, N ) to obtain vK′ , vK′−1,R

′

To cope with helper-overhead, we apply the same two-round
allocation trick in Section II-F to the discrete case. We can first
use the discrete water-filling approach to find the lowest video
rate vK∗ and the second lowest video rate vK∗−1 without
considering the helper-overhead. Different from continuous
case, peers in the two bottom groups might need help from
the helpers. Thus, the server should reserve these two rates
before executing the second round water-filling approach, as
shown in Algorithm 4. Finally we get the new lowest video
rate vK′ and second lowest video rate vK′−1.

Theorem 7: The utility gap between the video rate vector
R′ from Algorithm 4 and the optimal solution is upper-
bounded by (b vK∗+vK∗−1

v
K
′−1
−v

K
′
c+ 2)

v
K
′−1
−v

K
′

v
K
′

.

Proof: Compared with the result of OPT II, Algorithm
4 deducts bandwidth of vK∗ + vK∗−1 to feed the helpers,
and might leave some unused bandwidth of Brest (Brest <
(vK′−1 − vK′ )) in the second round water-filling. The max-
imal utility gain can be achieved if one can invest the total
bandwidth of Brest + vK∗ + vK∗−1 to increase the video rate
of the poorest peers. Thus, the utility gap upper bound is(
bBrest + vK∗ + vK∗−1

vK′−1 − vK′
c+ 1

)
[log(vK′−1)− log(vK′ )]

<

(
bvK∗ + vK∗−1

vK′−1 − vK′
c+ 2

)
vK′−1 − vK′

vK′

IV. STOCHASTIC MODELS FOR BANDWIDTH VARIATIONS
AND PEER CHURN

In the previous sections, we assume that there are multiple
classes of peers with heterogeneous upload bandwidth, and
study the optimal sharing between them under the assumption
that peers are stable and the upload bandwidth of peers within

6
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each class is time-invariant. In practice, peers join and leave
the system dynamically, and their upload bandwidth varies
over time. In this section, we develop stochastic models to
study the impact of bandwidth variations and peer churn on
P2P adaptive streaming.

A. System without Peer Churn

Similar to the static case, we assume there are totally N
possible upload bandwidth levels, {ui, 1 ≤ i ≤ N}, and there
are C classes of peers, with n(c) peers in class c, 1 ≤ c ≤ C.
Similar to [21], we model the upload bandwidth variation of
peers in class c by a continuous time random process:

1) The peer upload bandwidth remains constant at a band-
width level for a random amount of time before switch-
ing to another level. The holding time at level ui has an
arbitrary distribution with mean 1/µ

(c)
i .

2) The switch probability from level i to level j is p(c)
ij . Let

P(c) denote the N ×N switching matrix for class c.
3) Bandwidth varying processes between all peers in the

same class are i.i.d. Bandwidth varying processes be-
tween peers in different classes are independent.

Let M (c)
i be a random variable denoting the number of peers

in class c at bandwidth level i. Because the total number
of peers in class c is fixed at n(c), we have M

(c)
1 + · · · +

M
(c)
N = n(c). Thus, the random variables M

(c)
1 , . . . ,M

(c)
N

are dependent. We can characterize the joint distribution of
{M (c)

i , 1 ≤ i ≤ N} by modeling the joint bandwidth switch-
ing process of peers in class c as an infinite-server Jackson
queuing network [22], with each bandwidth level being a node
in the network, and each peer as a customer which sojourns
at node i for a random amount of time with mean 1/µ

(c)
i . Let

λ(c) = (λ
(c)
1 , · · · , λ(c)

N ) be the unique probability distribution
that satisfies λ(c) = λ(c)P(c). Let ρ(c)

i = λ
(c)
i /µ

(c)
i . We

normalize the ρ
(c)
i ’s so that ρ

(c)
1 + · · · + ρ

(c)
N = 1. We

immediately arrive at the following result:

Theorem 8: For any m
(c)
1 , . . . ,m

(c)
N with m

(c)
1 + · · · +

m
(c)
N = n(c), we have

P
(
M

(c)
1 = m

(c)
1 , . . . ,M

(c)
N = m

(c)
N

)
= n(c)!

ρ
m

(c)
1

1

m
(c)
1 !
· · · ρ

m
(c)
N

N

m
(c)
N !
(19)

Essentially, (M
(c)
1 , . . . ,M

(c)
N ) has a multinomial distribution.

Let M ,
{
{M (c)

i }Ni=1

}C
c=1

be the collection of bandwidth

levels of peers from all classes, and ω ,
{
{m(c)

i }Ni=1

}C
c=1

be a specific combination with
∑N
i=1m

(c)
i = n(c). Due to

the independence assumption on bandwidth variations between
peers in different classes, we have

P (M = ω) =

C∏
c=1

P
(
{M (c)

i = m
(c)
i }Ni=1

)
(20)

B. Video Quality

For a specific peer upload bandwidth combination ω, we
can calculate the optimal video rate for all peers according to
Theorem 1 by setting

ni =

C∑
c=1

m
(c)
i , 1 ≤ i ≤ N.

Specifically, the base video rate is calculated as W ∗(ω), and
the bandwidth level threshold is K∗(ω), such that all peers at
upload bandwidth level i < K∗(ω) will get video rate (1 −
t)ui, the rest of peers with get video rate W ∗(ω).

To assess the video quality distribution of peers in class c,
we define q(c)(r) as the number of peers in class c with video
rate no less than r. Then we have

q(c)(r|ω) =

{
n(c), if W ∗(ω) ≥ r∑k(r)
i=1 m

(c)
i , if W ∗(ω) < r

(21)

where k(r) denotes the upload bandwidth level k such that
(1 − t)uk ≥ r and (1 − t)uk+1 < r. Then the overall video
rate distribution of class c can be calculated as

P (R(c) ≥ r) = P (M∈ Ω1(r))+
∑

ω∈Ω2(r)

q(c)(r|ω)

n(c)
P (M = ω) ,

(22)
where Ω1(r) = {ω : W ∗(ω) ≥ r} and Ω2(r) = {ω :
W ∗(ω) < r}. P (R(c) ≥ r) can be easily calculated using
the Monte Carlo method.

C. Model Peer Churn

To include peer churn in the model, similar to [21], we use
an open network of infinite-server queues. In such an open
system, peers join and leave the system freely. Let γ(c)

i be the
exogenous arrival rate of peer class c at bandwidth level i.
After staying at bandwidth level i, a peer leaves the system
(peer churn) with probability p(c)

i0 , or switches to level j with
probability p(c)

ij . One can treat N bandwidth levels as an open
Jackson network of N infinite-server queues (again with arbi-
trary sojourn time distributions). Let λ(c) = (λ

(c)
1 , · · · , λ(c)

N )
be the effective arrival rates for all bandwidth levels, then

λ
(c)
i = γ

(c)
i +

N∑
j=1

λ
(c)
j p

(c)
ji ,

or in vector-matrix form λ(c) = γ(c) + λP(c), where P (c) is
the N×N level switching matrix for class c, and

∑N
j=1 p

(c)
ij =

1−p(c)
i0 . Let ρ(c)

i = λ
(c)
i /µ

(c)
i , and ρ(c)

i is the expected number
of peers at level i. From the theory of Jackson networks [22],
we can calculate bandwidth distribution for peers in class c:

Theorem 9: For the multi-class system with peer churn, the
peer upload bandwidth distribution in class c is:

P (M
(c)
1 = m

(c)
1 , . . . ,M

(c)
N = m

(c)
N ) =

N∏
i=1

(ρ
(c)
i )m

(c)
i e−ρ

(c)
i

m
(c)
i !
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TABLE I: Peer Uplink Capacity Setting
Types Uplink Capacity Number
Server 4000 kbps 1

Peer1 1500 kbps 100

Peer2 1000 kbps 200

Peer3 500 kbps 300

Using (20), we can calculate the joint upload bandwidth
distribution of peers from all classes P (M = ω). Similar
to the churnless case, we can further calculate video rate
distribution based on (21) and (22).

V. NUMERICAL STUDY

We conduct numerical case studies to verify our analysis
and further illustrate the design trade-offs in P2P adaptive
streaming. We use AMPL/CPLEX package to solve OPT
I, OPT II. For the various heuristic algorithms, we use
MATLAB to realize them. Layered coding incurs coding rate
overhead. When employing SVC, an r-d optimized multi-layer
encoder [23] encodes 10% more compared to the single-layer
H.264/AVC coding. In our simulation, we use 0.1 as the
overhead of employing layered video, although this number
is much higher in reality [24].

A. Impact of Taxation Ratio

We study the impact of taxation ratio. To isolate the effects
of discrete video versions and helper overhead, we use contin-
uous transcoding here. In the simulation, there are three types
of peers as listed in Table I. Under different taxation ratios,
Fig. 3 shows the distribution of video rates of peers from
different classes. The system-wide utility is also plotted. At
low taxation ratio, video rates are quite diverse. It gives strong
incentive for the bandwidth-rich peers, but the bandwidth-poor
peers suffer bad quality, as a result the system-wide utility
is low. As the taxation ratio increases, the video rate gap
between classes decreases. Bandwidth-poor peers are helped
a lot by the taxed bandwidth pool. The system-wide utility
quickly approaches the optimal at tax rate around 0.38, where
heterogenous peers turn to watch video at more similar video
rates. It demonstrates that taxation can be used to tradeoff
between system-wide utility and incentive for individual peers.

B. Capacity Comparison of Three Distribution Designs

We compare the capacity of transcoding, layered coding,
and helper-based distribution when varying the number of
peers in the system. The taxation ratio is set to be 0.02 and
there are three classes of peers with uplink capacity listed
in Table I. Initially each class only has 4 peers. Then, we
gradually add 10 more peers to each class at each round. Fig.
4(a) plots video rate distributions of three classes of peers
under different distribution designs. As shown in Theorem 2,
transcoding can achieve the optimal rate. Due to the layered
coding overhead, the rate achieved by layered coding is now a
fraction lower than that of transcoding regardless of peer num-
bers. Helper-based distribution incurs helper-overhead. The
achieved rates are slightly lower than the optimal transcoding
case. Even when peer number is very small, helper-based

distribution achieves higher rate than layered-coding. When
peer number is large, helper-overhead is almost negligible, and
the achieved rates are almost the same as the transcoding case.
Fig. 4(b) compares the per-peer utility gap from the optimal
for helper-based distribution and layered coding. As expected,
layered coding leads to a constant utility loss, while the utility
loss for helper-based distribution quickly converges to zero as
the number of peers increases. Although video transcoding
always gives us the optimal solution, it incurs computation
overhead on peers. Since P2P streaming systems usually
have a large number of peers, helper-based distribution is a
promising simple approach. We will just use the helper-based
approach in the following simulations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16
x 10

5

Taxation Ratio

V
id

e
o

 R
a

te
 (

b
p

s
)

 

 

0 0.2 0.4 0.6 0.8 1
8120

8130

8140

8150

8160

8170

8180

8190

U
ti

li
ty

Peer1

Peer2

Peer3

System Utility

Fig. 3: Video Rates and System Utilities under Different
Taxations

C. Impact of Discrete Video Rates

We investigate the impact of discrete video rates. We assume
server’s uplink capacity is 11, 000 kbps, other peers’ band-
width setting still follows Table I and the taxation ratio is set to
be 0.1. We set the discrete video versions according to Table II,
where each column represents a configuration with a certain
number of versions, the checked entries within each column
are the offered video rates. Fig. 5(a) shows the utility of using
helper-based approach and the corresponding optimal solution.
The utilities for the continuous curves are invariant under
version numbers. Conforming to the bound in Theorem 5,
our helper-based distribution according to Algorithm 2 can
achieve a close-to-optimal solution. For the discrete curves,
conforming to the bound in Theorem 7, our discrete helper-
based distribution according to Algorithm 4 can also achieve
a close-to-optimal solution. It is interesting to notice that the
optimal utility of the discrete case is initially lower than the
continuous case, then quickly jumps up at three video versions,
and converges back to the continuous optimum as the number
of versions increases. This is because the discrete entitled rate
of a peer is always lower than its continuous entitled rate.
The gap can be large if the offered video versions are too
coarse. As a result, the system can collect more taxes from
strong peers in the discrete case than in the continuous case.
The additional taxed bandwidth can be used to improve the
system-wide utility, at the price of reduced rates on strong
peers. This is illustrated in Fig. 5(b), when the video version
numbers are three or four, the discrete entitled rate of peers in
class 1 is much lower than their entitled rate in the continuous
case. More of their upload bandwidth is used to increase the
video rates of peers from class 2 and 3, leading to a improved
system-wide utility. As the number of video version increases,
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Fig. 4: Comparison of Transcoding, Layered Coding, and Helper-based Distribution

both the video rate distribution and the aggregate system utility
converges to the continuous case. This demonstrates that the
number of provisioned video versions also plays an important
role in the utility and incentive trade-off.

TABLE II: Video Version Selection
Video Video Version Number

Version 2 3 4 5 6 7 8 9 10 11 12

300 kbps ! ! ! ! ! ! ! ! ! ! !

400 kbps ! ! ! !

500 kbps ! ! ! ! ! !

600 kbps ! ! ! ! !

700 kbps ! ! ! ! ! ! !

800 kbps ! ! ! ! ! ! ! !

900 kbps ! ! !

1000 kbps ! ! ! ! ! ! !

1100 kbps ! ! ! ! !

1200 kbps ! ! ! ! ! !

1300 kbps ! ! ! !

1400 kbps ! ! ! ! ! ! ! ! ! ! !
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Fig. 5: Impact of Video Version Numbers in Discrete Case

D. Results under Bandwidth Variations

To investigate the impact of peer bandwidth variations, we
first simulate a system with only one peer class, and without
peer churn. We assume that there are four peer upload band-
width levels: 1, 500 kbps, 1, 000 kbps, 600 kbps, 400 kbps;
and the server’s upload bandwidth is 15, 000kbps. Bandwidth
variations on all peers follow the same switching probability

matrix P =


0.4 0.45 0.1 0.05
0.2 0.5 0.2 0.1
0.1 0.4 0.4 0.1
0.05 0.1 0.45 0.4

, the mean sojourn time at

level i is 1/µi = 1(1 ≤ i ≤ 4). Then, we change the
taxation ratio. At each taxation ratio, we run Monte Carlo
simulations with 10, 000 sample points. Fig. 6(a) and Fig.
6(b) show video rate and system utility distributions under

different taxation ratios. Since we use continuous model here,
the base video rate can take any value, and has continuous
probability distribution, the entitled rates only take discrete
values. As the taxation ratio increases, video rates of all peers
get closer and the whole system utility is enhanced. When the
taxation ratio is large enough, more taxation ratio does not
help any more, like the curves of t = 0.4 and t = 0.5 are
overlapped in the figure. Since we are dealing with a single
class of peers, a high taxation ratio is justifiable. Within the
same class, taxation achieves the temporal multiplexing gain:
it allows a peer with temporary bandwidth dips continue to
get stable video download from other peers.
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Fig. 6: Single Class without Peer Churn
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Fig. 7: Video Rates for Multiple Classes without Peer Churn

Now, we study a system with multiple classes. In the
simulation, there are three classes. In each class, peer’s uplink
capacity has four levels like in Table III, and the server’s
upload bandwidth is 15, 000 kbps. We assume that system
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provides 18 discrete video versions with rates ranging from
100 kbps to 1, 800 kbps, and the rate difference between
two adjacent video versions is 100 kbps. For each class,
we reuse the switching probability matrix P in the previous
section to control the switching between its four levels, 2

and the mean sojourn time at level i in class c is still
1/µ

(c)
i = 1(1 ≤ i ≤ 4, 1 ≤ c ≤ 3). Then, we also change

the taxation ratio and run Monte Carlo simulation with 10, 000
samples for each ratio. Fig. 7(a), Fig. 7(b) and Fig. 7(c) plot the
video rate distributions when the taxation ratio t = 0, 0.2, 0.5
respectively. Table IV shows the mean and standard deviation
(SD) of the video rate for each class and the system utility
under different taxation ratios (TR). We can see that with
higher taxation ratio, the system utility becomes larger and
its variance becomes smaller. For all classes, a higher taxation
ratio makes video rate variation smaller, which is beneficial
for all peers. Meanwhile, higher taxation ratio also has the
effect that there would be much smaller difference between
strong peers’ video rates and week peers’ video rates. Thus,
an appropriate taxation ratio should be determined by jointly
considering video quality variation, system wide efficiency,
and incentive to individual peers.

TABLE III: Peer Class Setting
Peer Upload Capacity (kbps) Peer

Class(c) Level 1 Level 2 Level 3 Level 4 Number
1 1700 1500 1300 1100 100
2 1200 1000 800 600 200
3 700 500 300 100 300

TABLE IV: Rate (Mbps) and Utility Variation for Multiple
Classes without Peer Churn

TR Class 1 Class 2 Class 3 Utility
Mean SD Mean SD Mean SD Mean SD

0 1.43 0.19 0.93 0.19 0.44 0.17 8037.9 10.05
0.1 1.23 0.19 0.83 0.14 0.58 0.04 8104.5 7.11
0.2 1.11 0.16 0.78 0.07 0.65 0.05 8119.2 6.56
0.3 0.97 0.09 0.77 0.04 0.70 0.03 8128.1 5.96
0.4 0.88 0.07 0.79 0.03 0.72 0.04 8130.5 6.04
0.5 0.80 0.00 0.80 0.01 0.74 0.05 8132.3 6.06
0.6 0.80 0 0.80 0.01 0.74 0.05 8132.5 5.89

VI. CONCLUSION

In this paper, we studied the capacity of P2P adaptive
streaming by developing utility maximization models that take
into account peer heterogeneity, taxation-based incentives, and
multi-version videos at discrete rates. We demonstrated that
incentive-compatible sharing between peers watching different
video versions can be enabled through taxation. We charac-
terized the capacity regions of P2P adaptive streaming with
peer transcoding, layered video encoding, or helper-based dis-
tribution. Through analysis and simulations, we demonstrated
that simple helper-based P2P distribution can achieve close-
to-optimal efficiency. We further developed stochastic models
to study the performance of P2P adaptive streaming in face
of bandwidth variations and peer churn. We showed that P2P
adaptive streaming not only significantly reduces the load on

2Since different classes have different four bandwidth levels, the actual
bandwidth variation processes between different classes are different.

the servers, but also improves the stability of user-perceived
video quality in face of dynamic bandwidth changes. As
future work, we plan to develop a helper-based P2P adaptive
streaming system and test its adaptiveness and robustness
through experiments on the Internet.
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