
Measurement Study of Commercial Video Conferencing
Systems

Yang Xu, Chenguang Yu, Jingjiang Li, Hao Hu, Yong Liu and Yao Wang
Department of Electrical and Computer Engineering

Polytechnic Institute of NYU
Brooklyn, New York

1. INTRODUCTION
In this technical report, we present our recent measure-

ment study of commercial video conferencing systems. In
our experiments, we focus on investigating three questions:
Q1: What is the service architecture of each system?
Q2: How is video quality adapted to different network con-
ditions in those systems?
Q3: What is the audio and video delays perceived by users?

To answer these questions, in the following sections, we
will present our experiment settings, the obtained results
and insights derived from them. The rest of paper is orga-
nized as follows. Section II describes out testbeds for the
experiment. Then we will answer Q1,Q2,Q3 in Section III.

2. EXPERIMENTS SET-UP
Four systems are investigated in our study:

– Skype Group Video Call (version 5.5.32.117): Server-
Client(S/C) based

– Google+ Video Hangout: web-browser based, Server-
Client(S/C)

– iChat: centralized P2P

– VSee (version 11.0.0.1129): decentralized full-mesh P2P

To study them, we develop the following measurement
testbeds.

2.1 Studying Video Conferencing Topology
To get video conference topology, as the testbed described

in Fig. 1(a), three people set their videos on and form a
video conference. During the video call session, we use Wire-
shark[1] to capture network packets sent out and received
by each computer. Each player in the conference generates
voice and video packets constantly at significant rates.

In our Wireshark analysis, we capture those TCP and
UDP sessions, whose duration is long enough (at least half
of the conference session time) and at the same time flow
rate is high enough (larger than 5kbps), as voice or video

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

flow sessions. Besides, these applications all have technical
information display windows. We also use information from
those windows to help us identify the topology.

2.2 Studying Video Adaptation under Differ-
ent Network Conditions

In the testbed(Fig. 1(b)) for studying video adaptation
under different network conditions, only one user, referred
as the sender, sets his video on and the other two users are
purely video receivers. We denote such case as a video sub-
conference. As sub-conference is a basic component of the
whole video conference, focusing on this can simplify our
analysis. We can inject video sequence into softwares using
a virtual video camera tool [3]. This ensures the transmit-
ted video contents are consistent and repeatable, and let us
focus on the impact of network conditions. To emulate a
wired or wireless network, we employ a software-based net-
work emulator, NEWT [4]. It can emulate a variety of net-
work attributes, such as propagation delay, random packet
loss, and available bandwidth. In the testbed, we add one
emulator in the uplink of the video sender and one emulator
in the downlink of one video receiver.

NEWT can only run on Windows machine. In addition,
when packet loss is added using that tool, Wireshark can
only capture those packets after the loss. In order to use the
emulator in different operation systems and capture both
packets before packet loss and after packet loss, we set up
an ad-hoc wireless connection in our testbed. As in Fig.
1(c), we use one computer as the access point to the Internet.
Another computer, referred as player computer, running the
video conference software, employs wireless ad-hoc mode to
connect to that access point. Thus, the input flow and out-
put flow of the player all go through the access computer.
And we can choose to install NEWT in player computer or
in access computer to fully observe packets before and after
packet loss.

2.3 Studying One-way Video Display Delay
In the testbed in Fig. 1(d), we run a stopwatch program

[6] on a sender computer, and focus the video camera on the
stopwatch window so that the stopwatch window is trans-
mitted to the video receiver by the conferencing software.
Thus, the video of this stopwatch would show in the screen
of video receiver. We put the monitors of these two com-
puters side-by-side, and use camera to take the pictures of
two monitors three times per second. At any given time,
the difference between the clocks of these two monitor is the
one-way end-to-end video display delay perceived by that
user.

Internet

Player 1

Player 3

Player 2

(a) Studying Video Conference Topol-
ogy

Receiver 2 Sender Receiver 1

Network Emulator 1 Network Emulator 2

Internet

(b) Studying Video Adaptation

Sender or

Receiver

Internet

Wireless Ad-hoc

Access Computer

(c) Ad-hoc Connection

Video Receiver Video Sender

(d) Studying One Way Video Display
Delay

Voice Recorder

Voice Sender

Voice Receiver

(e) Studying One Way Voice Delay

(a) Recorded Voice Wave

(b) Enlarged Two Adjacent Voice Waves

(f) Voice Waves Detail

Figure 1: Testbeds in the experiment
For example, in Fig. 1(d), the stopwatch program run-

ning at the sender side shows time “00:00:02.72” and at the
same time, the received video in video receiver shows time
“00:00:01.46”. Thus, the video display delay under such case
is 1260 ms. After getting these pictures, we use softwares
[8][9] to first turn pictures into mono color, and then extract
stopwatch parts from the achieved mono color pictures. Fi-
nally, these stopwatch pictures will be changed to text file
by using Optical character recognition (OCR) software [10].
It should be noted that sometimes the photo we get shows
the transition state. Under such state, the last two numbers
in the stopwatch are in the display transition state and we
can not decide the exact numbers they represent. Thus, we
omit the data under such condition.

2.4 Studying One-way Voice Delay
In order to record one-way voice delay of the conference

software, we employ a repeatable ”tick” sound as the voice
source. In the corresponding testbed in Fig. 1(e), we use
a dedicated computer as voice recorder. A software[7] in-
stalled in that computer records both the sound injected to
the voice sender and the sound coming out of the voice re-
ceiver. Thus, the time difference between that two sound
waves are the one way voice delay.

Fig. 1(f) shows one instance of the experiment. In sub-
figure (a), the impulse with smaller amplitude corresponds
to the repeated voice signal injected to the voice sender.
In the implementation, we set the volume of sound out of
the receiver to the maximum. Thus, the impulse with larger
amplitude is the voice signal out of the voice receiver. Then,
in the enlarged figure of two adjacent voice waves (sub-figure
(b)), the temporal difference between the first peaks of two
adjacent voice waves is the one-way voice delay.

Let Dencode be the video or voice encoding time at sender,

DoneWayTrans be one way transmission delay, Dprocess be
server or super node process time (0 if there is no server or
super node) and Ddecode be the video or voice decoding time
at receiver. Thus, the one way video display delay or one
way voice delay we measure from the experiment is the sum-
mation of these four parts. We subtract DoneWayTrans from
the experiment result, then one-way delay DoneWayDelay can
be expressed as following:

DoneWayDelay = Dencode +Dprocess +Ddecode (1)

3. MEASUREMENT RESULTS

3.1 Network Topology
To get the right topology and differentiate between sig-

nalling packets, video packets and voice packets, we conduct
three types of experiments. The first experiment is like the
example in Fig. 1(a). Every involved user set his video and
voice on to form a video conference. In the second experi-
ment, users choose to only set their microphone on to form
a voice conference. For the third experiment, all users shut
down videos and mute their voices.

Skype: Skype two-party video call uses direct Peer-to-
Peer connection. When three or more users are involved,
the network topology is shown in Fig. 2(a). Voice flow
transmission uses centralized P2P architecture. The initia-
tor, either the one who initializes video conference or the one
who first adds people to video conference, serves as the super
node. In the conference, only initiator has the right to add
people into the conference or close the entire conference ses-
sion. Normal user uploads his voice flow to the initiator and
download other user’s voice information from the initiator.
When three users participate in the conference, the upload
flow rate from a normal player to the initiator is around

40kbps. And the download rate from the initiator to that
player is around 50kbps, which is less than two times of the
single voice flow upload rate. This indicates that initiator
might use sound mix technique to reduce voice flow rates.
For the video transmission, each user uploads his video flow
to a server and that server relays video flows to other users.
Most of the time, each user choose different relay servers.
From our experiments, those servers are all in the same sub-
network 208.88.186.00/24, which locates in Estonia. Usually
network flows in the transmission use UDP. Sometimes they
choose to use TCP. In addition to voice and video flows,
we also observe some small rate flows between servers and
players, players and players. These small flows might carry
feedback or control information.

Google+ Hangout: Whenever two or more users are in-
volved in the conference, the network topology of Google+
Hangout is all like the case in Fig. 2(b). No direct net-
work flow exists between users. Each user sends his video
and voice flows to a dedicated proxy server and also receives
others’ video and voice flows from that server. Generally,
users choose different dedicated proxy servers. Thus, the
proxy servers need to communicate with each other to ex-
change user’s video and voice information. Each user has
four different connection sessions with the proxy server and
those four sessions all connect to the same server port (Port
19305). Most of the time, these four flows all use UDP for
transmission, although the rare case of using TCP exists.
There is a trick that we could access the detailed statistics
information about Google+ Hangout.[11]. The statistics in-
formation shows that two of the four sessions are video and
voice flows respectively. And Google use RTP protocol[13]
to transmit its video and voice network flows. The other t-
wo flows’ payloads conform to the format of RTCP protocol
and we infer that those two flows carry signal information
for voice and video flows. From our observation, the proxy
servers involved are all in California.

iChat: Like Skype, the concept of initiator exists in iChat.
It employs a centralized P2P architecture as shown in Fig.
2(c). Normal user sends one UDP flow, combining his video
and voice information together, to the initiator. At the same
time, that normal user receives other participants’ video and
voice information through one UDP flow from the initiator.
Participants choose to use port 16402 in his transmission.
Normal users only have network connection to the initiator.
No direct UDP flows exists between normal users.

VSee: As Fig. 2(d) shows, VSee uses a decentralized full-
mesh P2P architecture. One user sends one UDP flow which
combines his video and voice information to each other user
separately. In the case of Fig. 2(d), Player 1 uses one UDP
flow Flow12 for the information transmission to Player 2 and
another UDP flow Flow13 for the information transmission
to Player 3.

We did many experiments and also tried the case of in-
volving four or more users. The architectures are also the
same as above.

3.2 Video Adaptation
Different video sources would generate different transmis-

sion rates in conferencing systems. Table. 1 shows trans-
mission rates of each system under a highly varied video
sequence “Football” and a much smoother video sequence
“Akiyo”. In the result, Skype maintains transmission rate
at the same level. iChat and VSee produce much more

Table 1: Video Transmission Rate under Different
Standard Video Sequences

Softwares Akiyo Football

Skype Two-party 1061.2 kbps 1134.7 kbps

Three-party 523.4 kbps 513.8 kbps

Google Plus 835.7 kbps 314.9 kbps

iChat Two-party 752.8 kbps 1392.2 kbps

Three-party 365.8 kbps 1173.4 kbps

VSee 206.5 kbps 648.5 kbps

Table 2: Skype Video States Definition

Video States Definition

One-version Video sender only generate

one video version

Multi-version Video sender generates

multiple video versions

Kick-out Video receivers in bad condition is

kicked out of video conference

Shutdown Sender decides to close

its video sub-conference

rates under “Football” sequence. With that sequence, in
the opposite trend, Google+ has less rates. In the following
section, we use “Akiyo” as the video source to simulate a
practical video telephony. The sequence is encoded using a
H.264/AVC video codec [2]. And as described in the set-up
section, we mainly focus on one sub-conference.

3.2.1 Video States Definition
For the clarity of presentation, we first define video states

that we encountered in the experiments. All video states are
enumerated in Table. 2.

One-version state is the usual video operation state. Un-
der that state, at any given time, the video sender only gen-
erates one video version and uploads that version to servers
(S/C architecture) or receivers (P2P architecture). When
the network condition is not very good (either the link band-
width is small or link loss is high), other three video states
might emerge.

Multi-version state means that the sender generates sever-
al different video versions. Each video version has a unique
video rate. Such a state happens when network conditions
of receivers are heterogenous and the system doesn’t sup-
port layered video coding. Then, multiple video versions
are produced for different receivers’ conditions.

Kick-out state will happen when one receiver’s download
link is very bad. Under such state, the receiver in bad con-
dition is kicked out of video conference. That receiver can
at most receive voice information.

Shutdown state means that the sender closes its video sub-
conference. It happens when the upload link condition of the
video sender is very bad. In addition, when only download
link of one receiver is bad, we may also observe such state.

3.2.2 RTP protocol
Google Plus Hangout and iChat use RTP[13] protocol for

their video and voice transmission. Thus, understanding the

Player 1

Initiator

Player 2

Voice Flow
Video Flow

(a) Skype multi-party

Player 1

Player 2

Player 3

Voice && Video
Flow

Server 1

Server 2

Server 3

(b) Google Plus Hangout

Player 1

Initiator

Player 2

Voice && Video

Flow

(c) iChat

Player 1

Voice && Video

Flow

Player 3

Player 2
Flow12

(d) VSee

Figure 2: Network Topology of the softwares
meanings of the fields in RTP protocol are helpful for us to
investigate functions of these two systems. The description
of all fields in the standard RTP protocol can be found in
[14]. We just select some useful fields that can help us in
understanding the mechanisms of those two softwares to dis-
cuss here.

“Version” field always sets to 2 in RTP protocol. Google
Plus Hangout uses one flow to transmit video information
and one flow to transmit voice information. 97.2% packets in
the video flow and 85.9% packets in the voice flow are RTP
packets. iChat transmits video and voice information using
one flow. 99.9 % packets in that flow are RTP packets. The
non-RTP packets in those flows might be signal or feedback
packets.

“SSRC” filed identifies the synchronization source. The
value is chosen randomly, with the intent that no two syn-
chronization sources within the same RTP session have the
same SSRC. In Google Plus Hangout, for a receiver, packets
from multiple other users merge together in one RTP ses-
sion. This field is used to identify which user generated the
packets received. In iChat, regardless of the number of users
involved in the conference, we can only observe two different
“SSRC” values. Packet length for one “SSRC” value is very
low (around 70 Bytes). Those packets occupy 44.5% of the
total flow. For the other ”SSRC” value, packet length is kind
of high (> 560 Bytes). We infer those two kind of packets
are voice and video packets respectively. And iChat use the
SSRC field to differentiate video packets from voice packets.

“Sequence Number” field increments by one for each RTP
data packet sent, and could be used by the receiver to detect
packet loss and to restore packet sequence. In Google Plus
Hangout, packets from the same sender in one flow form a
unique sequence. In iChat, packets of video and packets of
voice form two different sequences.

“Timestamp” field reflects the sampling instant of the first
octet in the RTP data packet. We infer data in that field
means the sample time of the frame. And all packets be-
longing to the same frame have the same timestamp value.

If the packet is the last one for one frame, then the ”Mark-
er” field for that packet would be 1, otherwise the value is 0.
Thus, we infer that such ”Marker” field means whether the
packet is frame boundary or not.

3.2.3 Video Parameters
From the perspective of viewer, the perceived video qual-

ity is determined by video encoding parameters. Scopes of
resolution values for all systems are listed in Table. 3. FPS
can vary from almost 1 to 30 for each system.

In our experiments, we find that some systems only change
some parameters for video adaptation. We consider three
major parameters: resolution, FPS and quantization, and
list whether they vary in different systems in Table. 4.

Table 3: Resolution Values
Skype Google iChat VSee

640*480, 640*360,480*270, 640*480, 1280*720,640*480,

320*240, 320*180,240*135, 320*240, 320*240,160*120

160*120 160*90,80*44 160*120

Table 4: Varied Parameters
Softwares Resolution FPS Quantization

Skype � � �

Google Plus � �

iChat � �

VSee �

Skype adapts all three parameters. We didn’t observe the
change of quantization in Google Plus Hangout. iChat’s
video resolution is determined by the number of users in the
conference. For example, the resolution of video is always
set to be 640×480 in the case of two-party call. When three
or more users involved in the conference, resolution of video
becomes 320 × 240 or 160 × 120. And once it is decided
in the beginning, that value will not be changed. VSee let
users decide video resolution and FPS level that they want
to use. It has three FPS level options: Low, Adaptive and
High (30fps). In the experiment, we set the resolution to be
1280× 720 and FPS to be Adaptive. Then, we only observe
variations of FPS in the video adaptation process.

3.2.4 Video Adaptation under Bandwidth Variation
When the upload link bandwidth of a sender varies in

a video sub-conference, the video rate out of the sender
changes correspondingly. Generally, for these four systems,
the higher the upload link bandwidth, the larger the send-
ing rate. When the upload bandwidth is too small, those
systems may enter into Shutdown state. This shows that
those softwares have their own network probing algorithms
to determine the video quality to send out.

Then, we change download bandwidth to observe video
adaptation. In the experiment, we only set the download
bandwidth constraint to one of the receivers. Mostly, those
four softwares are all running in One Version state. Un-
der such state, for iChat, VSee and Skype, all receivers re-
ceive the same video version. At this time, receiver in the
worst condition determines the video quality sent out by
the sender. The result also shows that these three softwares
don’t employ layered video coding or video trans-coding.
Google Plus shows a distinct behavior from the others. Het-
erogenous receivers can receive different video versions. For
example, we only limit the download bandwidth of one re-

ceiver, saying receiver 2, to be 500 kbps. The result shows
that for video flow out of the sender, the sending rate is 835.7
kbps, video resolution is 640*360 and video FPS is 30. For
video flow to receiver 1, received rate is 386.9 kbps, video
resolution is 640*360, video FPS is 14. And for video flow
to receiver 2, received rate is 168.6 kbps, video resolution
is 320*180, video FPS is 14. The experiment environmen-
t is not fully controlled, as flows involved in Google Plus
Hangout have to compete with unknown flows in the Inter-
net. That might be the reason that the received quality on
receiver 1 is lower than the original video sent out by the
sender, although we didn’t add any constraint in receiver 1.
At this time, both receiver 1 and receiver 2 receive consis-
tent and acceptable video quality. We show the payloads of
some packets from the experiment in Table. 5. In the table,
the sender sends out 5 frames, both receiver 1 and receiver
2 only receive 2 frames. Besides, receiver 2 only receives the
first two packets of these two frames. It should be noted
that sequence numbers in receiver 1 and receiver 2 are con-
sistent. Thus, the loss of frames or packets is decided by the
server. Payload analysis shows that video codec of Google
Plus Hangout has both temporal and spatial scalability. In
the experiment, we also find that no matter how low the
download bandwidth of receiver is, received video resolution
could only be one quarter of the original sent video resolu-
tion. This shows that encoded video only has two spatial
layers. It is reasonable as spatial layers inducing much more
overheads compared to temporal layers. Thus, the number
of spatial layers could be too large. Without layered coding,
to deal with heterogenous receivers, senders in Skype en-
ter into Multi-version state. In the experiment, it generate
as many as three different resolution video versions when
four heterogenous receivers involved in the conference. The
sender of other two systems always only generate one video
version. These four systems may enter into Kick-out state
when one of its receivers is in bad condition.

In the experiment, VSee doesn’t show a good network
probing capability. We find a high loss ratio when we limit
the bandwidth. VSee only automatically changes one video
parameter, the FPS. Thus, it only have a very coarse adap-
tation granularity.

3.2.5 Video Adaptation under Loss Variation
To find how those softwares work under packet losses, two

types of experiments are executed. One is to add upload
losses on the video sender. The other one is to add download
losses on only one of the receivers. Because we capture flows
both before and after packet loss, we can figure out which
packets are lost. In the analysis, we can check if there exists
any other packets that have similar packet payloads like the
lost ones to see whether softwares use retransmission or not.

Skype: We haven’t observed any retransmission packet-
s when packet losses are induced. From Skype’s technical
window, we can easily observe a gap between packet rate
and video rate. Previous study[12] shows that Skype Two-
party Video Call employs Forward Error Correction (FEC)
coding. We infer that here the gap is also due to FEC. Let
rv be the actual video rate, rs be the actual sending rate and
we define the FEC redundancy ratio ρ as the ratio between
the redundant traffic rate and throughput:

ρ =
rs − rv
rs

(2)

Thus when ρ becomes larger, there are more redundant bit-

s. In the experiment, we set the upload bandwidth of video
sender to be 400kbps. The experiment results of adding
upload losses and adding download losses are showed in Ta-
ble. 6 and Table. 7 respectively. When doing experiment
about download loss, we only add download loss to receiv-
er 1. Because of the non-controlled effects in the Internet,
we can’t get a precise model on Skype’s behavior like [12].
But there is still the trend that as loss rate becomes higher,
more FEC packets are added into video flow. In Table. 6,
we can also observe that when upload loss rate is high, the
received flow rate is smaller than the flow rate sent from the
video sender. This scenario indicates that the relay serv-
er first removes FEC packets of incoming network flow and
then adds new FEC packets to the network flow according
to the receiver condition. Result of Table. 7 shows that two
receivers in different conditions receive a same video version
with different FEC ratio. Thus, we infer that relay server
monitors network conditions of receivers and decide corre-
sponding FEC policies to different receivers.

Google+ Hangout: Previous sections show that Google+
Hangout employs SVC and each receiver’s dedicated server
decides the number of layers he received. Each receiver has
no correlation with each other. Thus, we only focus on one
video sender and one video receiver here. Surprisingly, some-
times Google+ Hangout still survive under random loss of
40%. When loss is induced, retransmission packets are ob-
served. We list the experiment results in Table. 8 and Table.
9. For both two types of experiments, the more losses are
induced in the link, the more retransmissions appear in the
flow. However, Sender video FPS doesn’t change too much
when we increase upload loss from 0% to 20%. If we con-
sider the video rate after subtracting retransmission rate,
we find that number doesn’t change too much. The results
of adding download losses in the receiver shows a different
behavior. Received video FPS decreases as download loss
rate increases. The upload video quality decides QOE of all
receivers. That might be the reason that Google+ Hang-
out tends to maintain the upload video quality. Because we
couldn’t control the network condition of Internet, retrans-
mission under packet loss of 0% is still being observed. We
denote retransmission time interval as the temporal differ-
ence between the last transmission and retransmission. And
the CDFs of retransmission time interval for the experiments
are shown in Fig. 3. Most of the time, Google Plus Hang-
out just try to do retransmission once or twice after a pack-
et is lost. Sometimes, we can observe it tries to retransmit
many times, with the highest is up to 18 times. 60% of the
retransmission happens within 70ms after the first original
packet transmission, which is about 3.75 times of RTT. The
retransmissions on the video uploader side all need to wait
such a long time. When server does retransmission to video
receivers, the N-th (N ≥ 5) retransmission happens only
about 5ms after the previous retransmission. We infer such
duplicate retransmissions can solve the problem of bursty
loss. And the statistics of packets show that Google Plus
Hangout do retransmissions only to protect some packets,
which might be the lower layer video packets in SVC. And
using retransmission, it manages to transmit those packets
under protection successfully almost 100%.

iChat: The experiment results are shown in Table. 10
and Table. 11. When doing the experiment of download
loss, we only add download loss to receiver 2. We observe
the existence of retransmission when loss is induced. The

Table 5: Packet Payloads in Google Plus Hangout

Marker Timestamp Packet Length Sequence Number

(bytes) Sender Receiver 1 Receiver 2

0 2063696701 1269 61603 44445 52498

0 2063696701 1113 61604 44446 52499

0 2063696701 1278 61605 44447

0 2063696701 1234 61606 44448

0 2063696701 1283 61607 44449

0 2063696701 1277 61608 44450

0 2063696701 1077 61609 44451

1 2063696701 989 61610 44452

0 2063699269 621 61611

1 2063699269 560 61612

0 2063703362 1086 61613

0 2063703362 485 61614

0 2063703362 1167 61615

1 2063703362 1048 61616

0 2063706604 543 61617

1 2063706604 914 61618

0 2063709620 1276 61619 44453 52500

0 2063709620 1067 61620 44454 52501

0 2063709620 1272 61621 44455

0 2063709620 1267 61622 44456

0 2063709620 1279 61623 44457

0 2063709620 1276 61624 44458

1 2063709620 736 61625 44459

Table 6: FEC Adaptation at Skype Sender Side

Upload Loss Video Rate Video Sender Side Video Receiver 1 Video Receiver 2

rate (kbps) Sent Rate FEC Ratio Sent Rate FEC Ratio Sent Rate FEC Ratio

(kbps) ρs (kbps) ρr (kbps) ρr

0 209.657 248.304 0.1556 306.536 0.3160 309.464 0.3225

0.02 119.726 190.256 0.3833 160.192 0.2526 164.472 0.2721

0.05 71.227 160.464 0.5783 97.168 0.2670 102.176 0.3029

0.08 85.119 209.096 0.6255 134.736 0.3683 135.000 0.3695

Table 7: FEC Adaptation at Skype Relay Server Side

Download Loss Video Rate Video Sender Side Video Receiver 1 Video Receiver 2

rate (kbps) Sent Rate FEC Ratio Sent Rate FEC Ratio Sent Rate FEC Ratio

(kbps) ρs (kbps) ρr (kbps) ρr

0 209.657 248.304 0.1556 306.536 0.3160 309.464 0.3225

0.02 196.971 217.128 0.0928 306.000 0.3692 215.952 0.0879

0.05 187.722 208.184 0.0983 442.680 0.5971 209.000 0.1018

0.08 131.039 148.144 0.1155 312.688 0.6145 209.072 0.3732

same as Google, retransmission rate increases as loss rate
increases. Unlike Google, video FPS decreases when upload
losses are induced. However, that value doesn’t change too

much under download loss. And iChat doesn’t use a du-
plicate retransmission policy. Most of the time, it just try
to do retransmission once. As the retransmission time inter-

Table 8: Retransmission in the Upload Link of Google Plus Hangout

Upload Video Flow FPS Total Video Retransmission

Loss Loss Ratio Upload Rate (kbps) Rate (kbps)

0 0 29.973 826.0 0.9

0.05 0.0476 29.975 836.9 24.2

0.10 0.0937 29.973 885.7 52.1

0.20 0.1672 29.977 857.2 101.4

Table 9: Retransmission in the Download Link of Google Plus Hangout

Download Video Flow FPS Total Video Retransmission

Loss Loss Ratio Download Rate (kbps) Rate (kbps)

0 0 27.91 810.8 4.4

0.05 0.0495 27.07 827.3 35.2

0.10 0.0889 20.158 744.3 67.4

0.20 0.1695 19.231 677.7 116.4

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission

(a) upload loss 0%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission

(b) upload loss 5%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission

(c) upload loss 10%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission
The 5th Retransmission
The 6th Retransmission
The 7th Retransmission

(d) upload loss 20%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission
The 5th Retransmission
The 6th Retransmission
The 7th Retransmission
The 8th Retransmission
The 9th Retransmission
The N-th(N>=10) Retransmission

(e) download loss 0%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission
The 5th Retransmission
The 6th Retransmission
The 7th Retransmission
The 8th Retransmission
The 9th Retransmission
The N-th(N>=10) Retransmission

(f) download loss 5%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission
The 5th Retransmission
The 6th Retransmission
The 7th Retransmission
The 8th Retransmission
The 9th Retransmission
The N-th(N>=10) Retransmission

(g) download loss 10%

0 50 100 150 200 250 300
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission
The 3th Retransmission
The 4th Retransmission
The 5th Retransmission
The 6th Retransmission
The 7th Retransmission
The 8th Retransmission
The 9th Retransmission
The N-th(N>=10) Retransmission

(h) download loss 20%

Figure 3: Retransmission Time Interval under loss variation for Google Plus Hangout

Table 10: Retransmission in the Upload Link of iChat

Upload Video Flow Video Total Video Video Retransmission

Loss Loss Ratio FPS Rate (kbps) Rate (kbps)

0 0 25.096 365.7 0

0.02 0.020 19.844 363.0 7.0

0.10 0.091 19.598 411.5 34.4

Table 11: Retransmission in the Download Link of iChat

Download To Receiver 1 To Receiver 2

Loss Sent Rate Sent Rate Video Flow Video Total Video Video Retransmission Voice Rate

(kbps) (kbps) Loss Ratio FPS Rate (kbps) Rate (kbps) (kbps)

0 389.6 390.1 0 25.096 365.8 0 24.0

0.02 389.7 426.3 0.0188 24.260 401.7 7.8 24.4

0.10 388.0 474.3 0.092 24.187 447.3 37.7 26.7

0 50 100 150 200
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission

(a) upload loss 2%

0 50 100 150 200
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission
The 2nd Retransmission

(b) upload loss 10%

0 50 100 150 200
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission

(c) download loss 2%

0 50 100 150 200
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Retransmission Time Interval

The 1st Retransmission

(d) download loss 10%

Figure 4: Retransmission Time Interval under upload loss variation for iChat
val shown in Fig. 4, 60% of a retransmission happens within
50ms after the original transmission. And at this time, RTT
between machines is only about 2−4 ms, as we set machines
are in the same subnetwork. The second retransmission hap-
pens only 3ms later than the first retransmission. Also iChat
just choose some lost packets to do retransmission. And
some packets are still lost even if it does retransmission to
protect them.

VSee: The experiment results are shown in Table. 12
and Table. 13. When doing experiment of download loss,
we add losses to receiver 1. As loss rate becomes higher, we
can observe the increase of the flow rate. And we haven’t ob-
served any retransmission packets in the experiment. In or-
der to understand the behavior that sender did under packet
losses, we try to analyze the payload of packets. We know

that VSee doesn’t employ SVC and the video versions from
sender to receivers are all the same. Thus, the general video
part of two flows to different receivers should be the same.
In the experiment, we use Windows 7 to run VSee. Windows
has the feature that the IPID of packets generated from the
same port number should increase linearly. Coincidentally,
VSee chooses just one port number for all its transmission.
Using such feature, we list the packet information under no
loss condition in Table. 14. In that table, we could see
that the IP ID of those packets increase one by one. And
mostly the length of the corresponding packets in that table
is the same. For example, the lengths of packets with IP
ID 26799 and 26800 are the same. We infer those packets
should convey the same content. Looking into the payload
of those two packets, they are totally different. That might

Table 12: Video Adaptation under Upload Packet Loss for VSee

Upload Loss Rate from Sender to Receiver 1 (kbps) Rate from Sender to Receiver 2 (kbps)

0 206.543 204.875

0.05 216.542 212.672

0.10 222.856 225.003

0.20 240.663 242.200

Table 13: Video Adaptation under Download Packet Loss for VSee

Download Loss Rate from Sender to Receiver 1 (kbps) Rate from Sender to Receiver 2 (kbps)

0 206.543 204.875

0.02 206.392 202.550

0.05 214.954 203.126

0.10 235.719 194.57

Table 14: Packet Information under No Loss Condition For VSee
Sender to Receiver 1 Sender to Receiver 2

Capture IP ID Packet Capture IP ID Packet

Time(ns) Length(KB) Time(ns) Length(KB)

1325521587318240 26799 462 1325521587318863 26800 462

1325521587377320 26801 110 1325521587377495 26803 76

1325521587377355 26802 556 1325521587377532 26804 556

1325521587377617 26805 556 1325521587377731 26806 556

1325521587378374 26807 556 1325521587378522 26808 556

1325521587379384 26809 556 1325521587379515 26810 556

1325521587380386 26811 108 1325521587380543 26813 108

1325521587380407 26812 556 1325521587380571 26814 556

1325521587381394 26815 556 1325521587381566 26816 556

1325521587433555 26817 256

1325521587441696 26818 288 1325521587451146 26820 462

1325521587450977 26819 556 1325521587451182 26821 556

be the reason of encryption. For different flow session, VSee
may choose different public key and private key combina-
tion. Some corresponding packet lengths are not the same.
Or one flow has more packets than another flow, like the
existence of packet with IP ID 26817. We infer such packet
is for error correction. Different flows endure different net-
work conditions. Thus, their packets for error correction are
not the same. But generally, under no loss condition, the
packets are almost the same. Then We look into the case of
just setting download link loss of receiver 1 to be 10%. Like
Table. 15, at that time, compared to receiver 2, receiver 1
receives much more packets. We didn’t observe retransmis-
sion of the lost packets. Thus, we infer that VSee uses FEC
for error correction.

3.3 Delay Performance
The voice delay and video delay performances for those

softwares are shown in Table. 16. As Skype employs differ-
ent network topology for its voice and video transmission, its
video and voice are unsynchronized. And the gap is as large
as 200ms when we consider the case from the initiator to
none-initiator. In centralized P2P architecture, flow from a

none-initiator to another none-initiator has to be transmit-
ted to the initiator first. The initiator has to do some process
work, like voice mixing, combining video packets from dif-
ferent source into one flow, etc. The result shows that delay
from none-initiator to none-initiator is larger than the delay
from initiator to none-initiator.

When used in wired condition, one-way video delay of
Skype two-party call is about 200ms. Table. 17 shows one-
way video delay of Skype two-party call under 802.11b set-
up. In the experiment, four computers are all connected to
a wireless router which is running in the mode of 802.11b.
Two computers are using Skype two-party video call: one
serves as pure video sender and the other one serves as pure
video receiver. The other two computers induce background
flow traffic in the uplink of video call. For the background
traffic, with rate of UDP being higher or number of TCP
connections being more, one-way video delay becomes high-
er. Video delay deviation becomes very large when TCP
is used as background traffic. Because rate of background
flow varies all the time. But when lots of TCP are used,
the deviation of video delay becomes smaller because of the
multiplex effect.

Table 15: Packet Information under Download Loss 10% For VSee

Sender to Receiver 1 Sender to Receiver 2

Capture IP ID Packet Capture IP ID Packet

Time(ns) Length(KB) Time(ns) Length(KB)

1325542081617251 21852 108 1325542081617139 21850 76

1325542081617251 21853 556 1325542081617140 21851 556

1325542081617435 21855 556 1325542081617369 21854 556

1325542081667571 21857 428 1325542081643944 21856 494

1325542081667572 21858 556

1325542081667684 21859 556

1325542081668725 21860 556

1325542081668810 21861 556

1325542081669715 21862 556

1325542081669791 21863 556

1325542081670704 21864 556

1325542081670786 21865 556

1325542081671709 21866 556

1325542081671778 21867 556

1325542081672696 21868 476

1325542081681239 21869 110

1325542081681312 21871 556 1325542081681241 21870 556

1325542081682219 21873 556 1325542081681425 21872 556

1325542081683218 21875 108

1325542081683218 21876 556 1325542081682323 21874 556

Table 16: Delay Performance

Softwares One-way Video Delay (ms) One-way Voice Delay (ms)

Google+ 180 100

Skype initiator to none-initiator 230 100

none-initiator to none-initiator 230 200

iChat initiator to none-initiator 160 200

none-initiator to none-initiator 230 270

VSee 235 215

Table 17: One-way Video Delay of Skype Two-party Call in 802.11b

Background Flow Condition Delay(ms) Deviation(ms)

No Background 220 65

UDP 200kbps 220 50

UDP 500kbps 310 155

UDP 1Mbps 320 160

UDP 2.5Mbps 760 175

TCP 1 connection 290 145

TCP 5 connection 630 400

TCP 15 connection 690 350

TCP 30 connection 720 150

4. REFERENCES
[1] Wireshark, http://www.wireshark.org/.

[2] FFMPEG group, Ffmpeg project,

http://www.ffmpeg.org.

[3] e2eSoft, VCam: Webcam Emulator,
http://www.e2esoft.cn/vcam.

http://www.wireshark.org/
http://www.ffmpeg.org
http://www.e2esoft.cn/vcam

[4] Microsoft Asia Resarch, Network Emulator for
Windows Toolkit (NEWT),
http://blogs.msdn.com/b/lkruger.

[5] Renovation Software, Text Grab for Windows,
http://www.renovation-software.com/en/

text-grab-sdk/textgrab-sdk.html.

[6] Comfort Software Group, Free Stopwatch,
http://free-stopwatch.com/

[7] GoldWave Inc., GoldWave, http://www.goldwave.com/

[8] Jian Ma, Comic Enhancer Pro,
http://www.comicer.com/stronghorse/

[9] FlyingSpace, FlyingSpace PhotoBatch,
http://www.flyingspace.com/

[10] Ralph Richardson, FreeOCR,
http://www.freeocr.net/

[11] Paul Spoerry, Hidden features in Google+ Hangouts ĺC
updated, http://plusheadlines.com/
hidden-features-googleplus-hangouts/1198/

[12] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, Y. Wang,
”Profiling Skype Video Calls: Rate Control and Video
Quality”, to appear in INFOCOM, 2012

[13] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson,
RTP: A Transport Protocol for Real-Time Applications,
http://tools.ietf.org/html/rfc3550

[14] RTP protocol fields, http:
//www.networksorcery.com/enp/protocol/rtp.htm

APPENDIX

http://blogs.msdn.com/b/lkruger
http://www.renovation-software.com/en/text-grab-sdk/textgrab-sdk.html
http://www.renovation-software.com/en/text-grab-sdk/textgrab-sdk.html
http://free-stopwatch.com/
http://www.goldwave.com/
http://www.comicer.com/stronghorse/
http://www.flyingspace.com/
http://www.freeocr.net/
http://plusheadlines.com/hidden-features-googleplus-hangouts/1198/
http://plusheadlines.com/hidden-features-googleplus-hangouts/1198/
http://tools.ietf.org/html/rfc3550
http://www.networksorcery.com/enp/protocol/rtp.htm
http://www.networksorcery.com/enp/protocol/rtp.htm

	Introduction
	Experiments Set-up
	Studying Video Conferencing Topology
	Studying Video Adaptation under Different Network Conditions
	Studying One-way Video Display Delay
	Studying One-way Voice Delay

	Measurement Results
	Network Topology
	Video Adaptation
	Video States Definition
	RTP protocol
	Video Parameters
	Video Adaptation under Bandwidth Variation
	Video Adaptation under Loss Variation

	Delay Performance

	References

