
Enabling Peer-to-Peer One-view
Multi-party Video Conferencing

Yongxiang Zhao†,‡, Yong Liu†, Changjia Chen‡, Hongluan Liao∗, and Jianyin Zhang∗
†Electrical & Computer Engineering, Polytechnic Institute of NYU, Brooklyn, NY, USA
‡School of Electrical and Information, Beijing Jiaotong university, Beijing, CHINA

∗Research Institute of China Mobile, Beijing, CHINA

Abstract—Multi-Party Video Conferencing (MPVC) facilitates
realtime group interaction between users. While P2P is a natural
delivery solution for MPVC, a peer often does not have enough
bandwidth to delivery her video to all other peers in the
conference. Recently, we have witnessed the popularity of one-
view MPVC, where each user only watches full video of another
user. One-view MPVC opens up the design space for P2P delivery.
In this paper, we explore the feasibility of a pure P2P solution
for one-view MPVC. We characterize the video source rate
region achievable through video relays between peers. For both
homogeneous and heterogeneous MPVC systems, we establish
tight universal video rate lower bounds that are independent of
the number of peers, the number of video sources, and the specific
viewing relations between peers. We further propose P2P video
relay designs to approach the maximal video rate region. Through
numerical simulations, we verified that the derived lower bounds
are indeed tight bounds, and the proposed bandwidth allocation
algorithm can achieve a close-to-optimal peer upload bandwidth
utilization. Our results demonstrate that P2P is a promising
solution for one-view MPVC. Insights obtained from our study
can be used to guide the design of practical P2P one-view MPVC
systems.

I. INTRODUCTION

The Internet has fundamentally changed the way people
communicate, from emails, text-messages, blogs, tweets, to
Voice-over-IP calls, etc. We are now experiencing the next big
change: Video Telephony. Although video telephony was origi-
nally conceived in 1920s, largely due to its stringent bandwidth
and delay requirement, it has little success, especially in the
end-consumer market, until very recently. The proliferation of
video-capable consumer electronic devices and the penetration
of increasingly faster residential network accesses paved the
way for the wide adoption of video telephony. More and more
users are enjoying video calls offered by GTalk, Skype, MSN
messenger, etc. Video telephony is more than just two-party
video call. It also supports Multi-Party Video Conferencing
(MPVC), which facilitates realtime group interaction between
users. P2P is a natural delivery solution for MPVC where users
transmit their video and voice directly among themselves. But
the major challenge for P2P MPVC is that users alone may
not have enough upload bandwidth to transmit all their videos.

Skype [18] offers MPVC service to its paid premium
customers. Our recent measurement study shows that in a
Skype MPVC, while voice is still transmitted using P2P, video
of a user is first uploaded to a server, then relayed to all other
users in the conference. This design choice is due to the fact

that in an all-view MPVC, where each user watches videos of
all other users, the aggregate video upload workload increases
quadratically with the number of users, while the aggregate
upload capacity available on users only increases linearly. Pure
P2P is obviously not a self-scalable solution. Hybrid peer-
assisted solutions have been studied recently [13], [4]. Another
concern for all-view MPVC is that, even though servers can
provide abundant upload bandwidth, the downlink of a user
might not be able to sustain high-quality video streams from
all other users. More recently, Google+ [8] offers a free one-
view MPVC service: each user can only choose one user to
watch at high video quality, and receives all other users’ videos
at the minimum video quality.1 2 Our measurement study
shows that Google+’s one-view MPVC is still implemented as
a pure server-based solution: a user chooses a dedicate server
as her MPVC proxy, uploads her voice and video data to the
proxy, and downloads voice and video data of other users from
the proxy. Such a server-centric solution not only incurs high
server cost, but also introduces additional delays in video/voice
relay.

In one-view MPVC, the aggregate video download work-
load is reduced to be proportional to the number of users.
The aggregate peer upload bandwidth can now keep up with
the aggregate video upload workload. It is therefore tempting
to develop a pure P2P solution for one-view MPVC. Such
a solution not only eliminates the server cost, but also can
explore user locality better to achieve shorter delays, which is
critical to facilitate realtime user interactions. In addition, P2P
MPVC is an attractive solution to set up ad-hoc MPVC not
subject to centralized management and monitoring.

P2P MPVC is admittedly more challenging than P2P VoIP
and P2P video streaming. Compared with voice, video is much
more bandwidth-demanding. Compared with video streaming,
MPVC is much more sensitive to delay. While seconds of
buffering delay is often tolerable in video streaming, in MPVC,
user QoE degrades significantly if the delay goes over 500
milli-seconds. In addition, P2P relay design in MPVC is
more complicated than in video streaming. In P2P video
streaming, a set of peers watching the same video source form

1A user can dynamically choose her full-quality video source based on
her current interest. By default, the system will send full video of the user
currently speaking to users not specifying their interests.

2In our recent measurement study of google+, we found that the size of a
small video is only about 6% of a full video.

2

a swarm and relay video to each other. Due to the common
video interest, video relay between peers are mostly driven
by their bandwidth availability. In P2P MPVC, peers have
diverse viewing interests. Each peer is a potential video source
watched by other peers, and at the same time is watching
another source. The viewing relations between peers are intrin-
sically entangled. More challengingly, peers’ viewing interests
are constantly driven by various conferencing dynamics, such
as user voice and gesture activities, appearance of new objects,
and topic switching, etc. Video relays between peers have to
be adaptive to the entangled and dynamic viewing relations.

In this paper, we explore the feasibility of P2P one-view
MPVC by characterizing its capacity region through analysis
and numerical simulations. Motivated by Google+, we assume
a peer only watches one full video of another peer at any given
time, and can switch her view interest at will. We assume that
voices and small videos of peers are delivered using some
traditional P2P technique and only focus on the P2P delivery
of full videos between peers. 3 We further assume that peers
in the same conference are cooperative and relay videos for
each other. To maintain good delay performance, P2P video
relay is limited to two-hops. The contributions of our study is
four-fold:

1) We propose a P2P relay framework for one-view MPVC.
We characterize the video rate capacity region for homo-
geneous and heterogeneous one-view MPVC. We study
the optimal P2P relay design to maximize the aggregate
video quality. We also propose rate allocation scheme to
achieve the max-min fairness between video sources.

2) We establish several universal video rate lower bounds
for P2P one-view MPVC that are independent of the
viewing relations between peers. For homogeneous one-
view MPVC with normalized peer upload bandwidth of
1, we show that each source is guaranteed to achieve the
video rate of 5/6, that is also independent of the size of
MPVC and the number of sources.

3) For heterogeneous MPVC with the normalized average
peer upload bandwidth of 1, we show that the guaranteed
video rate for source i with upload bandwidth ui is
min(ui, γ), where γ = max(2

3 ,
|N |

|N |+|S|) with |N | being
the number of peers and |S| being the number of
sources. The lower bound can be improved to 3/4 if
all sources’ upload bandwidth is above the average. We
further show that the derived lowers bounds are tight for
homogeneous and heterogeneous systems.

4) We develop peer bandwidth allocation algorithms that
efficiently utilize peers’ upload bandwidth to approach
the maximal video rate region. Through numerical sim-
ulations, we verified that the derived lower bounds
are indeed tight bounds, and the proposed bandwidth
allocation algorithm can achieve a close-to-optimal peer
upload bandwidth utilization.

3The bandwidth available for full video distribution is the total upload
capacity minus the upload bandwidth utilized for transmitting voice and small
videos.

We briefly describe the related work in Section II. The
P2P relay framework for one-view MPVC is presented in
Section III. In Section IV, we establish the universal video
rate lower bound for homogeneous one-view MPVC. We study
the video rate capacity region for heterogeneous MPVC in
Section V. Two optimal P2P MPVC designs are studied to
maximize the aggregate video quality and achieve the max-min
fairness respectively. We also derive the guaranteed max-min
capacity for heterogeneous one-view MPVC. In Section VI,
we present a P2P relay bandwidth allocation algorithm to
approach the maximal video rate region. In Section VII, we
demonstrate the tightness of the derived lower bounds and
the efficiency of the proposed bandwidth allocation algorithm
through numerical simulations of randomly generated one-
view MPVC scenarios. The paper is concluded with future
work in Section VIII.

II. RELATED WORK

While P2P has been widely adopted for file sharing [3], [17]
and video streaming [16], [10], only very limited efforts have
been attempted for P2P MPVC in the research community.
Chu et al. [5] proposed an End-System-Multicast architecture
to support video conferencing applications, where multicast
functionality is pushed to the edge. Lennox and Schulzrinne
[12] proposed a full-mesh conferencing protocol without a
central point of control. Luo et al. [14] proposed to integrate
application layer multicast with native IP multicast in P2P
conferencing systems. In [6], all users watching the same
source form a chain and relay video to each other. Akkus
et al. [1] extends this idea to relay video encoded in multiple
layers. Recently, Chen et al. [4] proposed hybrid solutions to
employ helpers to maximize the utility in P2P conferencing
swarms, where helpers assist sources in relaying video streams
to receivers. Ponec et al. [15] then extended this solution
to support multi-rate conferencing applications with scalable
coding techniques. None of the previous study investigate the
impact of viewing relations on the achievable video capacity
region. According to a recent study [9], a user on average
watches one or two videos of other users since it is difficult
for a user to simultaneously keep track of three or more video
sources. It is often more preferable for a user to watch high
quality videos of a couple of users of interests, rather than
watch lousy videos of all users. Our work is motivated by the
recent trend of one-view MPVC. We establish universal video
rate lower bounds and propose P2P relay algorithm to achieve
the maximal capacity region. Our study demonstrate that it is
promising to develop a pure P2P solution for one-view MPVC.

III. P2P ONE-VIEW MPVC

A. One-view MPVC

We consider an one-view multi-party video conference,
where, at any given time, each peer only watches one full
video generated by another peer. We further assume a peer can
switch among videos of other peers, the viewing relations be-
tween peers are time-varying. A snapshot of viewing relations
among all peers in the conference is defined as an one-view

3

TABLE I
NOTATIONS

Notation Definition
N set of peers in the conferencing system
S ⊆ N set of video-active peers (sources)
I , N − S set of video-idle peers (pure viewers)
Gs set of viewers of source s ∈ S

G
(S)
s , Gs ∩ S viewers of source s who are also sources

G
(I)
s , Gs ∩ I viewers of source s who are pure viewers

rs rate of video generated by source s
ui total upload bandwidth of peer i
u
(s)
i , i ∈ S upload bandwidth of a source peer i ∈ S

allocated to the sub-conference it is hosting
u
(w)
i upload bandwidth of peer i allocated to

the sub-conference it is watching
u
(h)
i upload bandwidth of peer i allocated to

the common helper bandwidth pool
B

(W)
s b.w. contributed to swarm s by its viewers

B
(H)
s b.w. contributed to swarm s by helpers

MPVC scenario. As enumerated in Table I, the whole set of
peers is denoted by N , with n = |N | be the total number
of peers. In a specific scenario, peers can be classified into
two classes: the video-active peers, denoted by S, which are
the peers being watched by some other peers, and the video-
idle peers, denoted by I , which are the peers not watched
by any other peer. We call each video-active peer s ∈ S
a video source, and use Gs to denote the subset of peers
watching the video of s. We say peers in Gs participate in a
sub-conference hosted by s. Since each peer watches exactly
one video, {Gs, s ∈ S} forms a partition of N , and we have
n =

∑
s∈S |Gs|, where |Gs| is the number of peers in sub-

conference s. Since a peer watching s can also host her own
sub-conference, we further partition the viewers of s into two
subsets: G(S)

s , Gs∩S, the subset of viewers who are hosting
their own sub-conferences; and G(I)

s , Gs ∩ I , the subset of
viewers who are pure viewers.

1

2 3

4
1

0.5

0.5

0.5

(a) view relations

1

2 3

4
1

0.5
0.5

0.5

0.5

0.5

0.5

(b) P2P relay

Fig. 1. One-view MPVC Example 1

Fig. 1(a) illustrates an one-view MPVC with four peers,
with peer 2, 3 and 4 watching peer 1, and peer 1 watching
peer 4. Therefore, we have S = {1, 4}, and G1 = {2, 3, 4},
G

(S)
1 = {4}, G(I)

1 = {2, 3}, G4 = G
(S)
4 = {1}, and G(I)

4 = ∅.
If we assume peer upload bandwidth is the only bottleneck in
the network and each peer has upload bandwidth of one unit,
Fig. 1(b) plots one feasible bandwidth allocation scheme for
this MPVC scenario: in swarm G1, peer 1 transfers different

video sub-streams at rate 0.5 to peer 2 and 3 individually,
each of them then relays the received stream to the other two
peers in G1; in G4, peer 4 uploads its stream directly to peer
1 at rate 1. Under this bandwidth allocation scheme, all peers
can receive video from their sources at rate 1. The idle peers
will help the video source transfer the video stream and all
peers’ upload bandwidth is fully utilized.

Fig. 2(a) shows another watching scenario for the same
MPVC: peer 2 and 3 watching peer 1; peer 1 watching peer 2;
peer 4 watching peer 3. Fig. 2(b) plots one feasible bandwidth
allocation scheme: for G1, peer 1 transfers one video sub-
stream to peer 4 at rate 0.5, and peer 4 relays the received
sub-stream to peer 2 and 3, peer 1 transfers another sub-stream
at rate 0.25 directly to peer 2 and peer 3 with its remaining
0.5 bandwidth; for G2 and G3, peer 2 and peer 3 upload their
streams directly to their viewers at rate 1 respectively. Under
this bandwidth allocation scheme, the received video rates on
peer 1,2,3,4 are (1, 3/4, 3/4, 1). In this bandwidth allocation
scheme, even though peer 4 is not interested in video of peer
1, it helps peer 1 upload video with all its upload bandwidth.
Fig. 2(c) shows another bandwidth allocation scheme which
enables all peers’ watching rate reach 7/8. In this scheme, the
video sources 2 and 3 reserve 1/8 of bandwidth to relay the
video it is watching.

The previous examples demonstrate that peer upload band-
width allocation and peer perceived video quality depend on
the viewing relations between peers. For general one-view
MPVC, the first natural question to ask is: given peer upload
bandwidth profile, what are the maximal video source rates
that can be supported under a specific viewing scenario? It is
expected that different viewing relations between peers will
lead to different supportable video source rates. It is also
tempting to ask the second question: what are the maximal
video source rates that can be supported under all possible
viewing scenarios? We will provide answers to these questions
using analysis and simulations in the following sections.

B. P2P Video Relay

In this section, we formally introduce the P2P bandwidth
sharing model in one-view MPVC. In P2P overlay networks,
where each peer can reach all other peers, it is commonly
assumed that peer upload links are the only bandwidth bot-
tleneck [7], [4], [11]. In the rest of the paper, we adopt the
assumption that the core network is congestion-free and video
rates in MPVC are limited by peer’s upload bandwidth.

To maximally utilize peer upload bandwidth, we assume
all peers are fully cooperative. A peer not only can relay
video that she is watching to other peers in the same sub-
conference, she can also help peers watching a different source
by downloading and relaying video of the source to which she
has no interest to watch. Since video conferencing is highly
delay-sensitive, to limit the delay incurred by relay, we also
limit P2P video relay to two overlay hops, i.e., video can be
relayed by at most one intermediate peer from a source to all

4

1

2 3

4

(a) view relations

1

2 3

4
0.5

0.5

0.5 11 0.25

0.25

(b) P2P relay 1

1

2 3

41/2

1/2

1/2 7/87/8

1/8

1/8
1/8

1/8

1/8

1/8

(c) P2P relay 2

Fig. 2. One-view MPVC Example 2: video rates determined by P2P relay

H

u
(s)
ii

Gi

(a) as source

H

j

Gji

u
(w)
i

(b) as viewer

H

k

Gk

i

u
(h)
i

(c) as helper

Fig. 3. Different Roles of a Peer in MPVC.

its receivers.4

Fig. 3 illustrates the concept of P2P video relay among peers
in different sub-conferences. Let’s first focus on a source peer
i ∈ S. Without loss of generality, peer i is hosting a sub-
conference Gi, while watching the video of another source,
say peer j. In Fig. 3(a), peer i divides its video into multiple
sub-streams, with possibly unequal rates. Then it sends these
sub-streams to peers in its own sub-conference Gi. Each peer
is responsible for duplicating and relaying the received sub-
stream to all other peers in Gi. Peers outside of Gi can also
help redistribute i’s video. We call those peers the helpers of
Gi. Peer i sends a sub-stream to a helper, who then relays
the sub-stream back to peers in Gi. In Fig. 3(b), other than
distributing its own video, peer i, as a viewer in sub-conference
Gj , is also responsible for redistributing the video of peer j.
Additionally, peer i may also act as a helper to help the sub-
conferences that she is not hosting, nor watching. In Fig. 3(c),
peer i helps relay the video of peer k even though peer i does
not watch video of k. Let’s now examine how a source peer
i ∈ S allocates its upload bandwidth of ui among its three
roles in MPVC.

1) As a video source, peer i allocates u(s)i bandwidth to
upload her own video. u(s)i consists of the bandwidth
used to upload video directly to her viewers and the
bandwidth used to upload video to her helpers;

2) As a viewer, peer i allocates u(w)
i bandwidth to relay

the video of the source she is watching;
3) As a helper, peer i allocates u(h)i bandwidth to relay the

video of other sources that she is not watching.

4It has also be shown that two-hop relay is bandwidth optimal in uplink
throttled P2P systems [4], [11]

For a peer not hosting a sub-conference, i.e., i ∈ I , she has
dual roles: viewer and helper. She only needs to split her
upload bandwidth between u(w)

i and u(h)i .

Given the bandwidth allocation on all peers, we can calcu-
late the bandwidth resource available to each sub-conference.
For the sub-conference hosted by peer i, there are three
portions of bandwidth available. The first portion is the
bandwidth contributed by peer i itself and it is u

(s)
i . The

second portion is the bandwidth contributed by its viewers
B

(W)
i ,

∑
j∈Gi

u
(w)
j . The third portion of the available

bandwidth is contributed by all helpers of sub-conference. In
principle, any peer not in Gi can be a helper of Gi. Instead
of tracking bandwidth allocation of each helper to each sub-
conference, we build a common helper pool H to manage
bandwidth contributed by all helpers. More specifically, each
peer i ∈ N contributes u

(h)
i amount of bandwidth to the

helper pool H. The total bandwidth available in H is therefore
B(H) ,

∑
i∈N u

(h)
i . The manager of the helper pool is in

charge of distributing B(H) to difference sub-conferences. Let
B

(H)
s be the helper bandwidth allocated to sub-conference s,

then we have
∑
s∈S B

(H)
s ≤∑i∈N u

(h)
i In the following, we

treat the helper bandwidth allocated to a sub-conference s as if
it is from a single virtual helper with total upload bandwidth of
B

(H)
s . As will be shown shortly, such a centralized bandwidth

management and helper virtualization can achieve the maximal
video rates in MPVC.

Peer upload bandwidth allocation U , {u(s)i , u
(w)
i , u

(h)
i , i ∈

N} determines the upload bandwidth available for each source
to distribute her video to her viewers. In the sub-conference
hosted by source i ∈ S, as shown in [13], [4], the maximal

5

achievable video rate is:

r∗i = min

{
u
(s)
i ,

u
(s)
i +B

(W)
i +B

(H)
i

|Gi|
− B

(H)
i

|Gi|2

}
, (1)

where B
(W)
i is bandwidth contributed by the viewers, and

B
(H)
i is bandwidth borrowed from the helper pool.

IV. CAPACITY OF HOMOGENEOUS MPVC

Equation (1) states that the achievable video rate in each
sub-conference is determined by peer upload bandwidth allo-
cation. In the following two sections, we will study the optimal
peer bandwidth allocation to achieve high video rates cross all
sub-conferences. In particular, we establish several non-trivial
video rate lower bounds independent of the viewing relations
between peers.

In this section, we assume peers are homogeneous and have
normalized upload bandwidth of 1. The simplest bandwidth
assignment is to assign peer bandwidth to each sub-conference
at the gratuity of 1. This means that a video source will
use all its bandwidth to transfer its own video, i.e., u(s)s =1,
u
(w)
s = u

(h)
s = 0, ∀s ∈ S. An idle peer i ∈ I utilizes

its bandwidth either to transfer the stream it is watching or
to help other sub-conferences, i.e., u(w)

i + u
(h)
i = 1, and

u
(w)
i ∗ u(h)i = 0, ∀i ∈ S. The bandwidth allocation becomes

an idle peer assignment problem: how to assign idle peers to
sub-conferences to maximize their video rates?

Theorem 1: For homogeneous one-view MPVC with two
sources, both sources can achieve the maximum rate of 1.

Proof: Without loss of generality, suppose source 1 has
|G1| viewers, and source 2 has |G2| viewers. Since each source
always watches another source, we must have the two sources
watch each other, i.e., 1 ∈ G2 and 2 ∈ G1. Then there are
|G1| − 1 and |G2| − 1 idle peers in sub-conference 1 and 2
respectively. If we let each idle peer only relay video she is
watching, then we have u(s)1 = u

(s)
2 = 1, B(W)

1 = |G1| − 1,
B

(W)
2 = |G2| − 1, and B(H)

1 = B
(H)
2 = 0. According to (1),

we have r∗1 = r∗2 = 1.
From the proof of Theorem 1, we know that, to achieve high
video rates, it is important to have enough idle peers to upload
in each sub-conference. For general cases with more than two
sources, we have the following result.

Lemma 1: For any one-view MPVC scenario, we have∑
i∈S
|G(I)

i | =
∑
i∈S

(|Gi| − 1) (2)

Proof: Since a peer is either an idle peer or a busy peer,
thus |N | = |S|+ |I|. In addition, every peer watches exactly
one video. Hence |N | = ∑i∈S |Gi| . So we have

|I| =
∑
i∈S
|Gi| − |S| =

∑
i∈S

(|Gi| − 1)

In addition, since {Gi, i ∈ S} is a partition of N , and G(I)
i =

Gi ∩ I , then {G(I)
i , i ∈ S} is a partition of I ⊂ N . Then we

have
∑
i∈S |G

(I)
i | = |I| =

∑
i∈S (|Gi| − 1)

Base on Lemma 1, we now present an idle peer assignment
procedure that can guarantees each sub-conference with Gi
users can be assigned with |Gi − 1| idle peers.

1) For a sub-conference where all viewers are idle, i.e.
G

(I)
i = Gi, it will only use |Gi| − 1 of its own viewers

to relay video and B(H)
i = 0, it also contributes one idle

peer to the common helper pool H;
2) For a sub-conference where exactly one viewer is a

source, i.e. |G(I)
i | = |Gi| − 1, it will only use all of

its own viewers to relay video and B
(H)
i = 0, it does

not contribute any peer to the helper pool H;
3) For a sub-conference with |GIi | < |Gi| − 1, it will use

it own |GIi | idle peers and |Gi| − 1 − |GIi | idle peers
from the helper pool H to relay its video, i.e., B(H)

i =
|Gi| − 1− |GIi |.

If we use S1, S2 and S3 to represent the set of sub-conferences
in case 1), 2), and 3) respectively, then the number of helpers
contributed to H by sub-conferences in S1 is:

|H| =
∑
i∈S1

|G(I)
i | − (|Gi| − 1)

=
∑
k=2,3

∑
i∈Sk

|Gi| − 1− |GIi |

=
∑
i∈S3

|Gi| − 1− |GIi | =
∑
i∈S3

B
(H)
i ,

where the second equality is due to Lemma 1 and the third
equality is due to |G(I)

i | = |Gi| − 1 for any sub-conference in
S2. This guarantees that the previous helper allocation scheme
is feasible. Idle peers assigned to sub-conference of source i
include its own idle viewers in G(I)

i , and idle peers from other
sub-conferences.

Theorem 2: If all peers’ bandwidth is one, for any given
scenario {Gi, i ∈ S}, the achievable video rate ri for any
sub-conference Gi satisfy:

ri = 1− B
(H)
i

|Gi|2
≥ 1− 1

|Gi|
+

1

|Gi|2
≥ 3

4
(3)

Proof: In the previous idle peer assignment,

u
(s)
i = 1, B

(W)
i +B

(H)
i = |Gi| − 1,∀i ∈ S. (4)

According to (1), the achievable rate is

ri =
1 + |Gi| − 1

|Gi|
− B

(H)
i

|Gi|2
= 1− B

(H)
i

|Gi|2
.

Since B(H)
i ≤ |Gi| − 1, we have

ri ≥ 1− 1

|Gi|
+

1

|Gi|2

Let f(x) = 1 − x−1 + x−2, f(x) is an increasing function
when x ≥ 2, and f(2) = 3

4 ; Thus, when |Gi| ≥ 2, ri ≥ 3
4 ,

when |Gi| = 1, the source send its stream directly to the only
viewer, and ri = 1.

Theorem 2 applies to any one-view MPVC. The lower
bound of 3/4 is independent of the viewing relations between

6

peers. This non-trivial lower bound has important implications
on the practical implementation of MPVC, within which a
peer may join or leave a sub-conference at her will. It is
undesirable to change the video rates of sub-conferences
frequently whenever the viewing relations change. Our results
suggest that it is possible to find a constant rate for all video
sources that is achievable in any possible one-view MPVC
scenario, independent of the viewing relations among peers,
sub-conference sizes, and even the total number of peers in
the system. We name the maximum value of such a constant
source rate as the guaranteed capacity of one-view MPVC and
denote this value as C1.

Theorem 3: Under the assumption that all peers have ho-
mogeneous upload bandwidth of 1, the guaranteed capacity
C1 for any homogeneous one-view MPVC is 5/6.

Proof: In the configuration of Theorem 2, the video
source uses up its upload bandwidth to distribute the video
stream to other peers in its sub-conference. Here we will use
a slightly different video distribution configuration to achieve
a higher bound of the capacity C1. In this configuration, all
source peer will use rate w to upload the its own video
while the remaining upload bandwidth of 1 − w is used to
distribution the video it is watching. On the other hand, idle
peers are still assigned to different sub-conferences in the same
way as in Theorem 2. An idle peer will contribute its full
upload bandwidth to help transmitting the video assigned to
it. Under this configuration, besides the helper bandwidth, the
busy peers in Gi also contribute upload bandwidth to sub-
conference i. According to Equation (1),

vi(w) =
w + (1− w)|G(S)

i |+ |Gi| − 1

|Gi|
− B

(H)
i

|Gi|2
(5)

Case 1: If all viewers of source i are idle peers, and |G(S)
i | =

0. According to the idle peer assignment rule, B(H)
i = 0,

∀i ∈ S1. Equation (5) becomes

vi(w) =
w + |Gi| − 1

|Gi|
To have vi(w) ≥ w, we need

vi(w) =
w + |Gi| − 1

|Gi|
≥ w ⇒ |Gi|−1 ≥ (|Gi|−1)w ⇒ 1 ≥ w

Since w < 1, we always have vi(w) ≥ w. Thus ri = w.

Case 2: If exactly one viewer of source i is a source, and
|G(S)

i | = 1. In this case, B(H)
i = 0. Equation (5) becomes

vi(w) =
w + (1− w) + |Gi| − 1

|Gi|
= 1

Thus, Thus ri = w in this case.
Case 3: If more than one viewer of source i are sources, and
|G(S)

i | ≥ 2. Substitute |G(S)
i | = |Gi| − |GIi | and B

(H)
i =

|Gi| − 1− |G(I)
i | into Equation (5), we have

vi(w) = (2−w)(1− 1

|Gi|
) +

1

|Gi|2
+ (1−w)

|Gi|+ 1

|Gi|2
|G(I)

i |

Since |Gi| ≥ |G(S)
i | ≥ 2, if we set w = 5

6 , when |Gi| ≥ 4,
we have

vi(5/6) > (2− 5/6)(1− 1

|Gi|
) ≥ (2− 5/6)(1− 1/4) = 7/8.

when |Gi| = 3, we have

vi(5/6) > (2− 5/6)(1− 1/3) + 1/9 ≥ 8/9 >
5

6

when |Gi| = 2, we have

vi(5/6) > (2− 5/6)(1− 1/2) + 1/4 ≥ 5/6

In all cases, we will have ri ≥ 5/6, therefore we conclude
that C1 ≥ 5/6.

Finally, to show this 5/6 is a tight bound of the guaranteed
capacity, we only need to come up with a homogeneous
MPVC scenario such that the maximal achievable rate on all
video sources is only 5/6. Since we will use an optimization
formulation for the more general heterogeneous MPVC sce-
nario, we present it as a constructive proof in Appendix A

V. CAPACITY OF HETEROGENEOUS MPVC

In the previous section, we assume peer upload bandwidth
is homogeneous and only assign idle peers to different sub-
conferences. In practice, peer upload bandwidth is heteroge-
neous. Peer upload bandwidth should be allocated to sub-
conferences at finer granularity than 1. In this section, we
study optimal peer bandwidth allocation schemes to achieve
different design objectives in heterogeneous MPVC systems.

A. Maximizing Aggregate Video Quality

The first design objective is to maximize the total video
quality received by all peers. We adopt a PSNR-type of video
quality model [4], which quantifies the quality of a video
stream at rate ri as log(ri). The optimal peer bandwidth allo-
cation is to maximize the total video quality of the conference:

OPT I: max
U,R,B

∑
i∈S
|Gi| log(ri), (6)

subject to :

ri ≤
u
(s)
i +

∑
j∈Gi

u
(w)
j +B

(H)
i

|Gi|
− B

(H)
i

|Gi|2
, (7)

ri ≤ u(s)i , ∀i ∈ S (8)

ui ≥ u(s)i + u
(w)
i + u

(h)
i , ∀i ∈ S (9)

ui ≥ u(w)
i + u

(h)
i , ∀i ∈ I (10)∑

s∈S
B(H)
s ≤

∑
i∈N

u
(h)
i , (11)

where (7) and (8) are source video rate constraints according
to Equation (1), (9) and (10) are upload bandwidth constraints
on sources and idle peers respectively, and (11) enforces the
bandwidth supply and demand balance in the common helper
pool. The objective function is a concave function of {ri}
and the constraints are all linear. It is a convex optimization

7

problem, for which efficient centralized and distributed algo-
rithms can be developed to solve for the optimal video source
rates R∗ = {r∗i , i ∈ S} and the associated optimal P2P relay
scheme characterized by the peer upload bandwidth allocation
U∗ = {u(s)∗i , u

(w)∗
i , u

(h)∗
i , i ∈ N} and helper bandwidth

allocation B∗ = {B(H)∗
s , s ∈ S}.

Due to the log video utility function, the optimal solution
of OPT I achieves the weighted proportional fairness among
all video sources, with the weight for a sub-conference be
the number of viewers.

B. Achieving Max-Min Fairness

Another widely used fairness metric is the max-min fairness.
Intuitively, we prefer all sources to achieve the same rate as
long as it allows by the individual source’s upload capacity and
the available bandwidth resource in the whole MPVC system.
To achieve this, we want to find a video rate γ such that if a
video source i’s upload capacity ui is less than γ, it should
be able to stream its video at rate ri = ui, for any other
source with ui ≥ γ, it should stream its video at the common
rate ri = γ. Under this setting, the capacity of the system is
defined as the maximal supportable γ, which can be solved
by the following optimization problem.

OPT II: max
U,R,B

γ (12)

subject to (7), (8), (9), (10), (11) and a new set of constraints

ri = min(γ, ui), ∀i ∈ S (13)

OPT II is no longer a simple convex programming problem
due to the non-linear constraints in (13). To solve it, we
divide the solution space of γ according to the bandwidth
distribution of all video sources. Specifically, we first sort
the upload bandwidth of video sources in a non-decreasing
order and denote the sequence as {b1, b2, · · · , b|S|}, with
bi ≤ bj ,∀i < j. We then condense the list into a strictly
increasing list {c1, c2, · · · cm} by removing redundant values.
Let c0 = 0, and cm+1 = ∞, the solution space for γ can be
divided into m + 1 intervals: [ck, ck+1), 0 ≤ k ≤ m. When
casted into interval k, OPT II becomes a linear programming
problem with (13) being replaced by a set of linear constraints:

ri =

{
ui, ∀i ∈ S such that ui ≤ ck
γ, ∀i ∈ S such that ui > ck

(14)

We can solve OPT II iteratively, starting from interval 0 until
the first interval k0 where the optimal solution of OPT II
satisfies γ∗k0 < ck0+1. Then γ∗k0 is the final solution of OPT II:
γ∗ = γ∗k0 , and the optimal source rates are r∗i = ui if ui ≤ γ∗
and r∗i = γ∗ if ui > γ∗.

Theorem 4: The optimal source rates obtained in solving
OPT II is max-min fair.

Proof: According to the definition of max-min fairness,
an allocation vector X is max-min fair if and only if X , when
sorted in non-decreasing order, is lexicographically maximal
among all feasible allocation vectors sorted in non-decreasing

order. We prove the theorem using contradiction argument.
Let’s assume the optimal source rates R∗ of OPT II is not
max-min fair, then there must exist another source rate vector
R0 which is lexicographically larger than R∗. In other words,
if we sort both R∗ and R0 into non-decreasing order, there
exists an index k such that r∗i = r0i for i = 1, · · · , k, and
r∗k+1 < r0k+1. Without loss of generality, we sort peer id in
non-decreasing order of their upload capacity, let w be the
peer id such that uw < γ∗ and uw+1 ≥ γ∗, then we know that
R∗ = {u1, · · · , uw, γ∗, · · · , γ∗}. For any peer i, 1 ≤ i ≤ w,
its video rate is constrained by its own upload capacity. In
any other feasible solution, including R0, the highest possible
video rate for peer i is still ui. In other words, the first w
components of R0 (when sorted in non-decreasing order) is
upper bounded by {u1, · · · , uw}, with component-wise vector
comparison. So we must have k ≥ w. If k == w, then r0w+1 >
γ∗, and a new vector R1 , {u1, · · · , uw, r0w+1, · · · , r0w+1}
is a feasible source rate vector, and r0w+1 > γ∗ is a better
solution for OPT II. This contradicts with the fact that γ∗

is the optimal solution of OPT II. If k > w, then R0 =
{u1, · · · , uw, γ∗, · · · , γ∗, r0k+1, · · · }. Then for source peer k+

1, we can reduce its video rate by an amount of ∆ =
r0k+1−γ

∗

2 ,
and contribute the saved upload bandwidth ∆ on peer k + 1
to the helper pool to increase the rate of source w+1 through
k. Specifically, let

ε = min

{
uw+1 − γ∗,

∆∑k
i=w+1 |Gi|

}
.

By allocating ε|Gi| helper bandwidth to sub-conference i, with
w+1 ≤ i ≤ k, we increase the video rates of sub-conferences
from w + 1 to k by ε. Then the newly achieved video rates
vector isR2 = {u1, · · · , uw, γ∗+ε, · · · , γ∗+ε, r0k+1−∆, · · · }.
Consequently, γ∗ + ε is a better solution of OPT II than γ∗.
This again contradicts with the fact that γ∗ is the optimal
solution of OPT II.

In conclusion, there is no feasible video source rate vector
which is lexicographically larger than R∗. The optimal source
rates obtained in solving OPT II is max-min fair.

Definition Max-min Capacity: we define the optimal solution
of OPT II γ∗ as the max-min capacity of a heterogeneous
one-view MPVC scenario.

C. Lower Bound of Max-min Capacity

While the max-min capacity γ∗ for each one-view MPVC
scenario can be iteratively solved for the corresponding opti-
mization problem OPT II, similar to the homogeneous case, it
is important to obtain lower bounds of γ∗ for heterogeneous
systems that is independent of specific watching relations, and
even better, independent of conference sizes.

We normalize peers’ upload bandwidth such that the average
peer bandwidth is unit one. Then we have

∑
i∈N ui = |N |.

We first establish a lower bound for γ∗ as a function of the
number of sources and the number of peers in MPVC, but
independent of the viewing relations among peers.

8

Theorem 5: For any one-view MPVC with |N | peers and
|S| sources, for any viewing scenario, we have

γ∗ ≥ |N |
|N |+ |S|

Proof: We prove it by constructing a peer and helper
bandwidth allocation scheme that leads to γ0 , |N |

|N |+|S| .
Specifically, for each source peer i ∈ S, its video rate is
ri = min(ui, γ0), and its bandwidth allocation scheme is
u
(s)
i = ri, u

(w)
i = 0, u(h)i = ui − ri, i.e., each source peer

only reserves upload bandwidth of its own source rate ri, and
contributes the remaining bandwidth to the helper pool. For
each idle peer i ∈ I , the bandwidth allocation scheme is
u
(w)
i = 0, u(h)i = ui, i.e., each idle peer contributes all its

upload bandwidth to the common helper pool. Under such a
bandwidth allocation, source i first uploads its video to the
helper pool using its reserved upload bandwidth u

(s)
i = ri,

then the helpers will duplicate and relay a copy to each peer
in Gi. The total helper bandwidth needed by sub-conference
i is B(H)

i = |Gi|ri.
To make the bandwidth allocation scheme feasible, the

demand of helper bandwidth should be less than the supply
of helper bandwidth, that is∑

i∈S
ri|Gi| ≤

∑
i∈N

ui −
∑
j∈S

ri.

That is ∑
i∈S

(ri|Gi|+ ri) ≤
∑
i∈N

ui = |N | (15)

Since ri ≤ γ0 = |N |
|N |+|S| , the left-hand side of (15)

∑
i∈S

ri(|Gi|+ 1) ≤ |N |
|N |+ |S|

∑
i∈S

(|Gi|+ 1)

=
|N |

|N |+ |S| (|N |+ |S|) = |N |

Thus, γ0 is a feasible solution of OPT II and γ∗ ≥ |N |
|N |+|S|

While the previous lower bound depends on the number
of sources and viewers, it is still desirable to establish lower
bounds of γ∗ which applies to any one-view MPVC. We call
the maximum of such lower bounds the guaranteed max-min
capacity of one-view MPVC.

Theorem 6: The guaranteed max-min capacity of one-view
MPVC is 2/3.

Proof: We first prove 2/3 is a guaranteed lower bound by
constructing a specific bandwidth allocation scheme to achieve
γ = 2/3 in any one-view MPVC.

Firstly, we allocate peer bandwidth as follows:

u
(s)
i = min(ui, 1), u

(w)
i = 0, u

(h)
i = ui − u(s)i ;∀i ∈ S (16)

u
(w)
i = 0, u

(h)
i = ui,∀i ∈ I (17)

In (16), a video source with bandwidth larger than one reserves
bandwidth of one to transfer its own video, and contributes the
remaining bandwidth to the helper pool; a video source with
bandwidth less than one uses up all its bandwidth to transfer
its own video. In (17), idle peers contribute all their bandwidth
to the common helper pool.

Secondly, we assign the helper bandwidth to each sub-
conference as B(H)

s = |Gs| − u(s)i , ∀s ∈ S. The total helper
bandwidth needed is∑
s∈S

B(H)
s =

∑
s∈S
|Gs| −

∑
s∈S

u
(s)
i = |N | −

∑
s∈S

u
(s)
i

=
∑
i∈N

ui −
∑
s∈S

u
(s)
i =

∑
i∈S

(ui − u(s)i) +
∑
i∈I

ui

=
∑
i∈N

u
(h)
i ,

where the second equality is due to the total number of
reviewers is |N |, the third equality is due to the total user
upload bandwidth (after normalization) is |N |, the last equality
is due to the previous upload bandwidth allocation on sources
and idle peers. The sequence of equalities show that the total
helper bandwidth needed equals to the total helper bandwidth
contributed. This bandwidth allocation scheme is feasible.

Now we calculate the achieved video rates under this peer
and helper bandwidth allocation scheme.

For a source i with ui > 1, according to Equation (1), we
have

ri =
1 + |Gi| − 1

|Gi|
− |Gi| − 1

|Gi|2
= 1− |Gi| − 1

|Gi|2

As discussed in section IV, ri ≥ 3/4.
For a source i with ui ≤ 1, according to Equation (1), we

have

vi =
ui + |Gi| − ui

|Gi|
− (|Gi| − ui)

|Gi|2
= 1− |Gi| − ui|Gi|2

(18)

If |Gi| = 1, vi = ui.
If |Gi| ≥ 2, let f(x) = 1 − x−1 + uix

−2, then df(x)
dx =

x−2−2uix
−3 = x−3(x−2ui). f(x) is an increasing function

when x ≥ 2ui. For any given ui ≤ 1, vi is an increasing
function of |Gi| when |Gi| ≥ 2, and the minimal value is
1/2 +ui/4 when |Gi| = 2. For a source with upload capacity
2/3 ≤ ui ≤ 1, vi ≥ 1/2 + 2

3/4 = 2/3, so the achieved
video rate ri = min(ui, vi) ≥ 2/3. Finally, for a source with
ui < 2/3, we automatically have ui < 1/2 + ui/4 ≤ vi, the
achieved video rate ri = min(ui, vi) = ui, i.e, the video rate
is constrained by the source upload capacity.

In conclusion, with the proposed bandwidth allocation
scheme, the achieved video source rates are:

ri = ui, if ui <
2

3
;

ri ≥
2

3
, if

2

3
≤ ui < 1;

ri ≥
3

4
, if ui ≥ 1.

9

Thus, γ = 2
3 is a lower bound of γ∗ for any one-view MPVC.

The guaranteed max-min capacity is at least 2/3.
Now we prove the guaranteed max-min capacity cannot be

higher than 2/3 by constructing one-view MPVC with γ∗ →
2/3.

We construct the following one-view MPVC: there are 2m+
1 peers (m is a positive integer). Among these peers, there
are m peers acting as video sources, and one source peer has
bandwidth of 1 + ε, with ε be a small positive value, each
other video source’s bandwidth is one. In addition, there is a
super peer whose bandwidth is 2m(1− ε). The remaining m
peers’ upload bandwidth is zero. Each source watches video
of another source, and no two sources watch the same source.
Each idle peer watches one source, and no two idle peers
watch the same source. Finally, the super peer watches the
source with upload bandwidth of 1 + ε/2. All sources with
bandwidth one has two viewers, the source with bandwidth of
1 + ε/2 has three viewers. The bandwidth allocation scheme
to maximize γ is: each video source uploads its video to the
super peer at rate 1 − ε and the super peer relays it to each
of the two viewers in the sub-conference. Each video source
also uploads directly to each of its viewer at rate ε/2. The
achieved video rate of each sub-conference is 1− ε/2, which
is less than each source’s upload capacity. The average upload
bandwidth of the conference is 2m(1−ε)+m+ε/2

2m+1 . Then the max-
min capacity γ∗ is the achieved video rate normalized against
the average upload bandwidth

γ∗(m, ε) =
(2m+ 1)(1− ε/2)

2m(1− ε) +m+ ε/2

Since limm→∞,ε→0 γ
∗(m, ε) = 2/3, we can construct a

sequence of one-view MPVCs with max-min fairness capacity
approaching 2/3 from the above. So the guaranteed max-min
fairness capacity for arbitrary one-view MPVC is 2/3.

With Theorem 5, and Theorem 6, we immediately have
Corollary 1: For any one-view MPVC with |N | peers and

|S| sources, under any viewing scenario, we have

γ∗ ≥ max

{ |N |
|N |+ |S| ,

2

3

}
When proving theorem 6, we noticed that for a source with
bandwidth greater than 1, its video rate can be larger than 3/4.
This suggests that if all sources have upload bandwidth above
the average upload bandwidth, the max-min capacity can be
made large.

Corollary 2: If the bandwidth of all video sources is larger
than one, we have γ∗ ≥ 3/4.

Proof: Similar to the proof in Theorem 6, we assume
each video source allocates bandwidth of one in its own sub-
conference, and contributes the remaining bandwidth to the
helper pool. The bandwidth of each idle peer is contributed
to the helper pool. The total bandwidth in the helper pool is
|N | − |S|.

Since
∑
i∈S (|Gi| − 1) =

∑
i∈S |Gi|−

∑
i∈S 1 = |N |−|S|.

Thus each sub-conference can be assigned with |Gi|−1 helper

bandwidth, i.e, B(H)
i = |Gi| − 1. From (1), we have

ri =
1 + |Gi| − 1

|Gi|
− |Gi| − 1

|Gi|2
= 1− |Gi| − 1

|Gi|2

As discussed in section IV, ri ≥ 3/4,∀i ∈ S. So we have
γ∗ ≥ 3/4.

VI. P2P MPVC RELAY DESIGN

In the previous two sections, we characterized the video rate
capacity region for one-view MPVC. In this section, we pro-
pose peer bandwidth allocation algorithms to achieve a feasible
video source rate vector within the capacity region. Instead of
squeezing all peers’ upload bandwidth to achieve the maximal
video rates, we focus on supporting a given video rate vector
with the minimum peer upload bandwidth through efficient
bandwidth allocation. The saved peer bandwidth provides a
cushion to absorb the impacts of peer churn and network
bandwidth variations incurred in practical MPVC systems.

We first present bandwidth allocation guidelines obtained
from the capacity region study. We then develop peer band-
width allocation algorithm to implement a given video source
rate vector. Finally, we show the bandwidth allocation algo-
rithm can also be used to explore the capacity region through
binary search.

A. Design Guidelines

As discussed in Section III-B, a peer can play three different
roles in a sub-conference: source, viewer, and helper. A peer
allocates its upload bandwidth among the three different roles.
To develop efficient bandwidth allocation algorithm, let’s first
examine how different roles contribute to the achieved video
rate. According to (1), if source i is not constrained by its own
upload capacity, the achieved video rate can be rewritten as

r∗i =
u
(s)
i

|Gi|
+
B

(W)
i

|Gi|
+
B

(H)
i

|Gi|

(
1− 1

|Gi|

)
, (19)

where a unit bandwidth from either the source or a viewer
increases the video rate by 1/|Gi|, but the contribution of a
unit helper bandwidth is discounted by a factor of (1−1/|Gi|).
The discount reflects the overhead of employing a helper.
Specifically, whenever swarm i employs a helper, source i has
to first stream some video to the helper so that it can relay
video back to the viewers of swarm i. Since the helper itself is
not a viewer in swarm i, the bandwidth used to stream video
to it does not directly contribute to the achieved video rate in
swarm i. The overhead is inversely proportional to |Gi| and
decreases with the size of the sub-conference being helped. An
efficient bandwidth allocation should maximally avoid helper
bandwidth overhead. This leads to the first guideline:
G1: A sub-conference should maximally utilize bandwidth
available on its source and viewers before using helpers.
A peer should always allocate its bandwidth to the sub-
conference she is hosting or viewing before contributing
bandwidth to the helper pool.

To avoid helper bandwidth overhead, an idle viewer’s band-
width can only be used by the sub-conference she is viewing,

10

but the bandwidth of a video source can be utilized by two
sub-conferences: the sub-conference that she is hosting and
the sub-conference that she is viewing. To preserve bandwidth
allocation flexibility, we propose the second guideline:
G2: A sub-conference i with target video rate ri first draws
bandwidth ri from its source, then it should maximally uti-
lize bandwidth available on its idle viewers before drawing
additional bandwidth from its source and busy viewers.

From (19), the helper bandwidth overhead is a decreasing
function of the sub-conference size. Between the two sub-
conferences that a video source can upload to without over-
head, the one with the smaller number of viewers would incur
higher helper bandwidth overhead if it uses bandwidth from
the helper pool. To reduce the system-wide helper bandwidth
overhead, we have the third guideline:
G3: If a source has surplus bandwidth over its target video
rate, between the two sub-conferences that she is hosting and
viewing, she should allocate the surplus bandwidth first to the
sub-conference with the smaller number of viewers.

B. Bandwidth Allocation Algorithm

Now we present our bandwidth allocation algorithm based
on the three guidelines. We adopt two-level hierarchy for
bandwidth management. At the top level, a centralized tracker
manages the helper pool shared by all sub-conferences. It
keeps track of the bandwidth contributed by peers in sub-
conferences with surplus bandwidth, and allocates helper
bandwidth to sub-conferences with bandwidth deficit. At the
bottom level, the bandwidth allocation among peers in each
sub-conference is coordinated by the video source. Source of
sub-conference i maintains the following states:

1) ri: the target video rate for sub-conference i;
2) B

(H)
i : the helper bandwidth borrowed from the helper

pool, initialized to 0.
3) Ai: achieved video rate under current allocation, initial-

ized to 0.
4) Lj : bandwidth on peer j ∈ Gi that has not been

allocated, initialized to uj .
Bandwidth allocation is carried out in four stages: video source
bandwidth allocation at target rate ri; idle peer bandwidth
allocation; busy peer bandwidth allocation; bandwidth allo-
cation to/from helper pool. Bandwidth allocation in all sub-
conferences are coordinated such that bandwidth allocation in
any sub-conference advances to stage k only after all sub-
conferences finish the allocation in stage k − 1.
Stage 1: Video source i allocates ri bandwidth to send out the
video stream it produces. The remaining bandwidth of video
source i is updated as Li = ui−ri. According to Equation (1),
the achieved video rate is Ai = ri/|Gi|.
Stage 2: Video source i utilize idle viewers’ bandwidth to
grow the achievable video rate from Ai. The detailed algorithm
is shown in Algorithm 1. Line 1 picks up an idle viewer p in
local sub-conference Gi. Line 2 uses this peer’s bandwidth
to increase the video rate. (ri − Ai)|Gi| is the amount of
bandwidth needed to improve video rate from Ai to ri. Line
3 and line 4 update the achieved video rate Ai and the

Algorithm 1 Idle Viewer Bandwidth Allocation

1: for each idle peer p ∈ G(I)
i do

2: xi = min ((ri −Ai)|Gi|, Lp)
3: Ai = Ai + xi/|Gi|
4: Lp = Lp − xi
5: if Ai ≥ ri then
6: break
7: end if
8: end for
9: B(H) = B(H) +

∑
p∈G(I)

i
Lp

unallocated bandwidth Lp. Line 5, 6 and 7 break loop if the
target rate ri is achieved. Line 9 allocates the unallocated idle
viewer’s bandwidth to the helper pool.
Stage 3: In this stage, we allocate the bandwidth on busy
peers to sub-conferences in which the target video rate has
not been achieved. According to guideline G3, a busy peer
should first upload to the smaller sub-conference between the
one she is viewing and the one she is hosting. To achieve this,
we conduct bandwidth allocation for sub-conferences in the
no-decreasing order of their sizes. The bandwidth allocation
within each sub-conference follows Algorithm 2. This process

Algorithm 2 Busy Viewer Bandwidth Allocation

1: for each peer p ∈ G(S)
i ∪ {i} do

2: xi = min ((ri −Ai)|Gi|, Lp)
3: Ai = Ai + xi/|Gi|
4: Lp = Lp − xi
5: if Ai ≥ ri then
6: break
7: end if
8: end for
9: B(H) = B(H) +

∑
p∈G(S)

i ∪{i}
Lp

allocates bandwidth on the video source of sub-conference i
and all other viewers who act as video source for other sub-
conferences. The allocation is similar to Algorithm 1 and is
self-explanatory.
Stage 4: In this stage, a sub-conference that has not achieved
its target rate using bandwidth on its source and viewers
borrows bandwidth from the helper pool. According to (19)
to improve video rate of Gi from Ai to ri taking into account
the helper bandwidth overhead, the needed helper bandwidth
is

B
(H)
i =

(ri −Ai)|Gi|2
|Gi| − 1

.

Each sub-conference with bandwidth deficit will request band-
width B(H)

i from the common helper pool. In the helper pool,
if sum of the requested helper bandwidth is not bigger than the
aggregate helper bandwidth B(H) contributed by bandwidth
surplus sub-conferences, the centralized tracker will allocate
to each sub-conference the requested helper bandwidth. Oth-
erwise, the targeted video rate vector is not supportable, and

11

the tracker can proportionally reduce the helper bandwidth
allocation to sub-conferences.

C. Approaching Capacity Region

The algorithm presented in the previous section can be used
to check whether a given video rate vector is supportable or
not. Through iterative binary search, it can also be used to
dynamically approach the max-min capacity γ∗ defined in
OPT II. We first set the search interval to be [γl, γh], with
γh = maxs∈S us, and γl being the lower bounds obtained in
Section IV and V. Specifically, for a homogeneous MPVC
with normalized upload bandwidth of 1, we set γl = 5

6 ;
for a heterogeneous MPVC with normalized average upload
bandwidth of 1, we set γl = max(2

3 ,
|N |

|N |+|S|). From the
analysis in Section IV and V, the video rate vector determined
by γl: {rs = min(us, γl),∀s ∈ S}, is always achievable.
Using γl as the starting point, we iteratively find the maximal
γ that can be achieved by our bandwidth allocation algorithm.
At each iteration, we check whether the video rate vector
determined by γ = (γl+γh)/2 is achievable. If yes, the search
range shrinks to [γ, γh]; otherwise,the search range shrinks to
[γl, γ]. This process finishes until the range is smaller than
a pre-defined threshold ε. The binary search pseudocode is
presented in Algorithm 3.

Algorithm 3 Approaching Capacity through Binary-search
1: procedure MAX-γ(S, N , {ui, i ∈ N}, {Gs, s ∈ S})
2: normalize ui such that ūi = 1;
3: if ui homogeneous then
4: γl = 5

6
5: else
6: γl = max

(
2
3 ,

|N |
|N |+|S|

)
7: end if
8: while (γh − γl) > ε do
9: γ ← (γh − γl)/2, rs = min(ui, γ), ∀s ∈ S

10: ok=bandwidth-allocation ({rs, s ∈ S})
11: if ok==1 then
12: γl ← γ
13: else
14: γh ← γ
15: end if
16: end while
17: return γ
18: end procedure

VII. NUMERICAL EVALUATION

In this section, we present numerical results to demonstrate
the tightness of the derived lower bounds and the efficiency
of the proposed bandwidth allocation algorithm.

We adopt three types of performance measures. The first
one is the difference between the achieved video rates and
the optimal video rates. The second one is the average video
quality perceived by all users. Based on the PSNR video

quality model, the average video quality is:

V =

∑
i∈N log(wi)

|N | =

∑
s∈S |Gs| log(rs)

|N | , (20)

where wi is the video rate received by viewer i, rs is the
video rate of source s, and wi = rs, ∀i ∈ Gs. The third
measure is the bandwidth utilization in the conference. First of
all, the aggregate received video rate cross all sub-conferences
should be less than the sum of upload bandwidth on all peers.
Secondly, the video rate of a sub-conference is limited by
the bandwidth of its video source. Even if there is abundant
bandwidth available, the aggregate received video rate in sub-
conference hosted by s is limited by |Gs|us. We define the
upload bandwidth utilization as

B =

∑
i∈N wi

min(
∑
i∈N ui,

∑
s∈S |Gs|us)

(21)

A. Homogeneous One-view MPVC

We first study the tightness of the derived universal lower
bounds at different system sizes by varying |N | from 6 to 14
with step-size 4. For each |N |, we generate 1, 000 random
viewing scenarios: we first select a random number of peers
as video sources, then each peer randomly selects a source
to watch. For each scenario, we first calculate its max-min
capacity γ∗ using the optimal algorithm OPT II. The CDF
distribution of γ∗ is plotted in Fig. 4(a). The minimum of
γ∗ is 0.8333 ≈ 5/6. At all system sizes, more than 90%
scenarios have max-min capacity greater than 0.9. Note that
the maximum achievable video rate is at most 1. This indicates
that while 5/6 is a universal lower bound independent of
viewing relations between peers, for most viewing scenarios,
the achievable video rate is pretty close to the upper bound
of 1. As the systems size grows, less scenarios can achieve
the maximum rate of 1. For each scenario, we also use the
binary search algorithm presented in Section VI-C, denoted
as the BA algorithm, to iteratively approach the capacity. We
also calculate the difference between the achieved rate γ by the
BA algorithm with the optimal value γ∗ and find the maximum
error is smaller than 10−3.

To investigate the impact of the number of sources, we
fix |N | at 10 and vary the number of video sources |S|
from 2 to 10. For each |S|, we generate 1, 000 random
viewing scenarios and calculate the max-min capacity for each
scenario. The results are presented as boxplot in Figure 4(b).
For each |S|, the central mark in the box is the median,
the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. When |S| = 2,
as proved in Theorem 1, the maximal rate of 1 is achieved.
As |S| increases, the median value decreases and the variance
increases. The lowest median value and the highest variance
appear at |S| = 6, where the number of possible viewing
scenarios is the largest. As |S| increases further, the median
increases and the variance decreases. When |S| = 10, each
peer is a source and only has one reviewer. Each source sends

12

0.8 0.85 0.9 0.95 1 1.05
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

|N|=6
|N|=10
|N|=14

(a) varying # of peers

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Y
*

Number of video source

(b) varying # of sources

Fig. 4. Capacity of Homogeneous MPVC

TABLE II
BANDWIDTH DISTRIBUTION

Uplink(kbps) Probability
class 1 128 0.2
class 2 384 0.4
class 3 1000 0.25
class 4 4000 0.15

video directly to her viewer to achieve the maximum rate of
1.

B. Heterogeneous One-view MPVC

To simulate heterogeneous system, we randomly set peer
upload capacity according to the distribution listed in the Table
II, which is obtained from a measurement study in [2]. The
average peer upload bandwidth is 1.029Mbps. We vary the
number of peers |N | from 6 to 12 with step-size of 2. For each
|N |, we randomly generate 4, 000 viewing scenarios by letting
each peer randomly choose another peer to watch. Totally
16, 000 random viewing scenarios are generated. Figure 5(a)
plots the CDF distribution of max-min capacity obtained by
OPT II and BA algorithm. We also plot the lower bound of
max (2

3 ,
|N |

|N |+|S|)ūi for each scenario. We can see that the
BA curve is very close to the OPT II curve. This suggests
that the BA algorithm is very efficient in approaching the
max-min capacity bound in heterogeneous systems. In the
figure, there is a large gap between the max-min capacity and

lower bound. This is because the lower bound is independent
of viewing scenarios and is always below peer’s average
upload bandwidth. But OPT II and BA algorithms work on
specific viewing scenario, and the obtained γ reflects the
obtained maximal video source rate, which can go well beyond
the average upload rate if a video source with high upload
bandwidth has just one or few viewers. In Figure 5(a), we also
plot the average viewing rate among all peers. In addition to
OPT II, BA and the lower bound, we also consider OPT I
defined in (6), the bandwidth allocation optimized directly for
video quality. The average curves of OPT I, OPT II, and BA
algorithm are clustered together, and the gap between them
and the average rate curve of the lower bound is smaller
than the max-min capacity gap. Figure 5(b) shows the relative
performance difference of OPT I, BA algorithm and lower
bound compared with OPT II (the relative difference between
x and y is define as x−y

y). We first consider the max-min
capacity obtained by BA. By the curve labeled as “γ∗ of
BA”, the BA algorithm can achieve 93% of optimal max-min
capacity with 90% probability. For the average viewing rate,
the difference between the BA algorithm and OPT II is fairly
small. Since OPT I is optimized for the video quality, the
average rate obtained by OPT I can be higher than OPT II.
The relative performance of the lower bound is the worst. The
average rate of the lower bound is within 75% of OPT II with
80% probability.

Figure 5(c) plots the average video quality V obtained by
different algorithms. The curve of OPT I, OPT II and BA
algorithms are almost identical. The performance of the lower
bound is worse than the other three algorithms, with the
relative difference less than 8%. Finally, Figure 5(d) compares
the peer bandwidth utilization B as defined in (21). The
utilization of OPT I, OPT II, BA algorithm are all very close to
one. This suggests that those algorithms have efficiently utilize
upload bandwidth available on sources and viewers to achieve
high video rates, and there is not much space for further
quality improvement. But for the lower bound curve, since it
is not optimized for specific viewing scenario, the bandwidth
utilization is still far from the perfect case. This suggests that
the space for bandwidth allocation optimization for individual
viewing scenarios is often necessary and rewarding.

To investigate the impact of |N | and |S|, we cluster 16, 000
random viewing scenarios based on the 〈|N |, |S|〉 tuple. For
each scenario, we normalize the average video viewing rate
with the average upload bandwidth. For each 〈|N |, |S|〉 cluster,
we calculate the mean of the normalized average viewing rate
for all scenarios in that cluster. Table III presents results for
〈|N |, |S|〉 clusters with at least 20 random scenarios. Each
column corresponds to one system size. Different from the
homogeneous case, at all simulated system sizes, the average
video rate increases as the number of sources increases. This
is because the achieved video rate in each sub-conference
is limited by both the source upload bandwidth and the
bandwidth available to this sub-conference. When the number
of sources is smaller, each source will have more viewers. If a
weak peer is chosen as a source, it will degrade the video

13

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Y* of BA
lower bound
OPT II
Ave BA
Ave lower bound
Ave OPT I
Ave OPT II

(a) achieved video rates

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Y* of BA
lower bound
Ave BA
Ave OPT I
Ave lower bound

(b) relative performance

4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

OPT II
lower bound
BA
OPT I

(c) average video quality

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

optimal II
lower bound
BA
opt I

(d) bandwidth utilization

Fig. 5. Performance of Heterogeneous MPVC with 16, 000 random viewing scenarios.

TABLE III
HETEROGENEOUS MPVC, RANDOM SOURCES

|N |=6 |N |=8 |N |=10 |N |=12
|S|=2 0.6838 - - -

|S|=3 0.7706 0.7263 - -

|S|=4 0.8255 0.7932 0.7700 -

|S|=5 0.8981 0.8222 0.7753 0.7644

|S|=6 1.000 0.8610 0.8148 0.8009

|S|=7 - 0.9088 0.8483 0.8179

|S|=8 - - 0.8759 0.8436

|S|=9 - - 0.9329 0.8700

|S|=10 - - - 0.8953

|S|=11 - - - 0.9239

quality on more peers. Consequently, the achieved average
video rate will belower.

To eliminate the impact of weak sources, we repeat the
previous experiments with an additional requirement that each
source must have upload bandwidth larger than the average
bandwidth. Specifically, we first generate the peer bandwidth
according to Table II, choose only peers with bandwidth larger
than the average bandwidth as sources, then let each peer
randomly choose a source to watch. According to Corollary 2,
we now use max (3

4 ,
|N |

|N |+|S|)ūi as the lower bound. The

results are plotted in Fig. 6. When we require all sources
have capacity higher than the average upload bandwidth, the
source uplink will no longer be the bottleneck. To achieve
the max-min fairness, all sub-conferences will achieve the
same rate. So the max-min capacity achieved by OPT II is
exactly the same as the average viewing rate of all peers. In
Fig. 6(a), we only plot the average rates achieved by different
algorithms. If we compare Fig. 5(a) and 6(a), we do achieve
higher average viewing rates when all sources are bandwidth-
rich. But the corresponding max-min capacity γ∗ is lower than
those achieved in Figure 5(a). This is because when there is no
requirement on source bandwidth, sub-conferences hosted by
weak sources are limited by source upload bandwidth, strong
sources can potentially achieve higher rates and push up the
max-min capacity γ∗. Fig. 6(b) plots the relative performance
on the average rate of BA, OPT I and lower bound compared
with OPT II. Fig. 6(c) compares the average video quality
achieved by different algorithms. In Fig. 6(a), 6(b) and 6(c),
the new lower bound curves are closer to OPT and BA curves
than in Fig. 5(a), 5(b) and 6(c). Comparing Fig. 5(d) and 6(d),
bandwidth utilization improves when sources are no longer
bottleneck. The lower bound curve in Fig. 6(d) is piece-wise
constant. This is because the bandwidth utilization defined
in (21) is now exactly max (3

4 ,
|N |

|N |+|S|). For the simulated
scenarios, there are only limited number of 〈|N |, |S|〉 tuples

14

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Ave BA
Ave lower bound
Ave OPT I
Ave OPT II

(a) achieved video rates

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Ave BA
Ave OPT I
Ave lower bound

(b) relative performance

4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

OPT II
lower bound
BA
OPT I

(c) average video quality

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

optimal II
lower bound
BA
opt I

(d) bandwidth utilization

Fig. 6. Performance of Heterogeneous MPVC when each video source’s bandwidth is larger than the average bandwidth.

satisfying |N |
|N |+|S| >

3
4 , e.g, 〈8, 2〉, 〈10, 3〉, etc., leading to five

discrete values of B.
Finally, we revisit the impact of the number of sources

when sources are bandwidth-rich. As presented in Table IV,
opposite to Table III, at all simulated system sizes, when the
number of sources increases, the video rate decreases. This is
because when the sources are no longer the bottleneck, the
achieved video rate in a sub-conference is only determined
by the bandwidth available to this sub-conference. When the
number of sources is larger, the number of peers in each
sub-conference is smaller. With heterogeneous peer upload
bandwidth, the average bandwidth within each sub-conference
has larger variance. Sub-conferences with less bandwidth have
to borrow bandwidth from the helper pool and incur helper
bandwidth overhead. Consequently the achieved video rate
decreases.

C. Helper Overhead of BA Algorithm

The design objective of the BA algorithm is to achieve target
video rates with minimum peer upload bandwidth. The major
consideration of the BA design guidelines in Section VI-A is
to maximally avoid helper bandwidth overhead. In this section,
we study the helper bandwidth overhead incurred by our BA
algorithm. We define the aggregate helper bandwidth overhead

TABLE IV
HETEROGENEOUS MPVC, STRONG SOURCES

|N |=6 |N |=8 |N |=10 |N |=12
|S|=2 0.9992 0.999 0.9986 0.9984

|S|=3 0.9818 0.9791 0.9866 0.9920

|S|=4 0.9546 0.9702 0.9666 0.9770

|S|=5 0.9515 0.9500 0.9506 0.9570

|S|=6 - - 0.9404 0.9393

|S|=7 - - - 0.9388

ratio as:

OH , 1−
∑
i∈N wi∑

i∈S (u
(s)
i + u

(w)
i + u

(h)
i) +

∑
i∈I (u

(w)
i + u

(h)
i)

,

where in the second term, the numerator is the total video rate
received by all peers, and the denominator is the total upload
bandwidth consumed on all peers. If there is no bandwidth
overhead, the total video receive rate should equals to the total
video upload rate.

We generate 100 heterogeneous bandwidth settings ran-
domly according to the bandwidth distribution in Table II.
The number of users in the conference is 12. For each each
bandwidth setting, we generate 200 random viewing scenarios
among peers. For each viewing scenario, we first obtain the

15

maximal value of γ∗ using the BA algorithm. Then we set
the target video rate vector as {rs = min(us, γ),∀s ∈ S},
with γ ranging from 0.5γ∗ to γ∗. At each γ, we run our
bandwidth allocation algorithm and calculate the incurred
helper bandwidth overhead. The distribution of OH is shown
in Figure 7. In the figure, almost all incurred overhead ratio is
less than 25%. This demonstrates that our bandwidth allocation
algorithm is robust against random bandwidth settings and
viewing relations. The overhead ratio increases as the video
rate vector is pushed closer to the capacity bound. This is
because to push all sub-conferences to achieve higher video
rates, sub-conferences with weak source and viewers have to
borrow bandwidth from the helper pool, thus incur higher
helper bandwidth overhead.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

0.5 Y*

0.6 Y*

0.7 Y*

0.8 Y*

0.9 Y*

Y*

Fig. 7. CDF of Helper Bandwidth Overhead

VIII. CONCLUSION AND FUTURE WORK

In this paper, we explore the design space of pure Peer-to-
Peer one-view Multi-party Video Conferencing. We proposed
a P2P relay framework for one-view MPVC. Through analysis,
we characterized the video rate capacity region of P2P one-
view MPVC. For homogeneous system with normalized peer
upload bandwidth, we showed that each source is guaranteed
to achieve the video rate of 5/6, that is independent of system
size, the number of sources, and the viewing relations between
peers. For heterogeneous system with the normalized average
peer upload bandwidth, we showed that the guaranteed max-
min capacity is max(2

3 ,
|N |

|N |+|S|) with |N | being the number
of peers and |S| being the number of sources, which is
again independent of the viewing relations between peers. We
further showed that all the derived lowers bounds are tight. We
developed peer bandwidth allocation algorithms that efficiently
utilize peers’ upload bandwidth to approach the maximal video
rate region. Through numerical simulations, we demonstrated
that the proposed bandwidth allocation algorithm can achieve a
close-to-optimal peer upload bandwidth utilization. Our study
demonstrates that P2P is a promising delivery solution for one-
view MPVC. Almost all proofs in this paper are constructive
and can be applied into real implementation directly with few
modifications.

The capacity study here can be generalized to study k-view
MPVC where each user watches full videos of k, 1 ≤ k ≤

|N |, users. One straightforward way is to decompose a k-
view MPVC into k parallel one-view MPVCs, and on each
peer, equally partition its upload bandwidth into k shares, one
for each one-view MPVC. Then immediately the lower bounds
obtained in this paper can be applied to each one-view MPVC
after being scaled down by a factor of k. It will be interesting
to investigate how much gain one can obtain by considering
k-views jointly. Another immediate extension is to study the
capacity of server-assisted P2P MPVC, where a server can
provide additional bandwidth to disseminate users’ videos. To
analyze its capacity, we can treat the server as a super peer with
abundant bandwidth and randomly assign a source for it to
view, then the derived lower bounds automatically apply. Since
our derived lower bounds are normalized with the average
peer upload bandwidth, the impact of the server assistance is
quantified as the increase in the average peer+server upload
bandwidth. The lower bounds demonstrate that it is possible to
maintain stable video quality on all sources in face of dynamic
peer churn and viewing relation changes. We will refine our
algorithms to minimize the disruptions to P2P video relays
upon peer churn ad viewing relation changes.

REFERENCES

[1] I. E. Akkus, O. Ozkasap, Civanlar, and M. Reha. Multi-objective
Optimization For Peer-to-Peer Multipoint Video Conferencing Using
Layered Video. In Packet Video 2007, 2007.

[2] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing
and Improving a BitTorrent Network Performance Mechanisms. In
INFOCOM, 2006.

[3] BitTorrent. Homepage. http://www.bittorrent.com/.
[4] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. Chou. Utility Maximiza-

tion in Peer-to-peer Systems. In Proceedings of ACM SIGMETRICS,
2008.

[5] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture.
In Proceedings of ACM SIGCOMM, 2001.

[6] M. Civanlar, O. Ozkasap, and T. Celebi. Peer-to-peer multipoint video-
conferencing on the Internet. Signal Processing: Image Communication,
20(8):4–27, 2005.

[7] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Char-
acterizing Residential Broadband Networks. In Internet Measurement
Conference, 2007.

[8] Google+. Homepage. https://plus.google.com/.
[9] M. Hosseini and N. D. Georganas. Design of a Multi-sender 3D

Videoconferencing Application over an End System Multicast Protocol.
In ACM Multimedia, 2003.

[10] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang. Challenges,
design and analysis of a large-scale p2p-vod system. In Proceedings of
the ACM SIGCOMM, 2008.

[11] R. Kumar and K. Ross. Optimal Peer-Assisted File Distribution: Single
and Multi-Class Problems. In IEEE HOTWEB, 2006.

[12] J. Lennox and H. Schulzrinne. A Protocol for Reliable Decentralized
Conferencing. In NOSSDAV, 2003.

[13] J. Li, P. A. Chou, and C. Zhang. Mutualcast: An Efficient Mechanism
for Content Distribution in a P2P Network. In Sigcomm Asia Workshop,
2005.

[14] C. Luo, W. Wang, J. Tang, J. Sun, and J. Li. A Multiparty Video
Conferencing System over an Application-Level Multicast Protocol. In
IEEE Transactions on Multimedia, 2007.

[15] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. Chou. Multi-rate Peer-
to-Peer Video Conferencing: A Distributed Approach Using Scalable
Coding. In Proceedings of ICME, 2009.

[16] PPLive. Homepage. http://www.pplive.com.
[17] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.

In IEEE/ACM Transactions on Networking, pages 219–232, 2002.
[18] Skype. Homepage. http://www.skype.com.

http://www.bittorrent.com/
https://plus.google.com/
http://www.pplive.com
http://www.skype.com

16

APPENDIX

A. tightness of lower bound in Theorem 3

We construct the following homogeneous one-view MPVC:
there are six peers with unit bandwidth, four of them are
sources, S = 1, 2, 3, 4, the viewing relation is: G1 = {3, 4},
G2 = {6}, G3 = {1, 2},G4 = {5}. Plugging in this scenario
to OPT II, we obtain the max-min capacity γ∗ = 5/6. Since
all sources have bandwidth 1, 5/6 is the maximal achievable
rate on all sources. This proves that the guaranteed capacity
C1 for any homogeneous one-view MPVC can not be higher
than 5/6.

	Introduction
	Related Work
	P2P One-view MPVC
	One-view MPVC
	P2P Video Relay

	Capacity of Homogeneous MPVC
	Capacity of Heterogeneous MPVC
	Maximizing Aggregate Video Quality
	Achieving Max-Min Fairness
	Lower Bound of Max-min Capacity

	P2P MPVC Relay Design
	Design Guidelines
	 Bandwidth Allocation Algorithm
	Approaching Capacity Region

	Numerical Evaluation
	Homogeneous One-view MPVC
	Heterogeneous One-view MPVC
	Helper Overhead of BA Algorithm

	Conclusion and Future Work
	References
	Appendix
	tightness of lower bound in Theorem 3

