
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Reinforcement Learning for Dynamic Dimensioning
of Cloud Caches: A Restless Bandit Approach

Guojun Xiong , Graduate Student Member, IEEE, Shufan Wang , Gang Yan , and Jian Li , Member, IEEE

Abstract— We study the dynamic cache dimensioning problem,
where the objective is to decide how much storage to place
in the cache to minimize the total costs with respect to the
storage and content delivery latency. We formulate this problem
as a Markov decision process, which turns out to be a restless
multi-armed bandit problem and is provably hard to solve.
For given dimensioning decisions, it is possible to develop
solutions based on the celebrated Whittle index policy. However,
Whittle index policy has not been studied for dynamic cache
dimensioning, mainly because cache dimensioning needs to be
repeatedly solved and jointly optimized with content caching.
To overcome this difficulty, we propose a low-complexity fluid
Whittle index policy, which jointly determines dimensioning and
content caching. We show that this policy is asymptotically
optimal. We further develop a lightweight reinforcement learning
augmented algorithm dubbed fW-UCB when the content request
and delivery rates are unavailable. fW-UCB is shown to achieve
a sub-linear regret as it fully exploits the structure of the near-
optimal fluid Whittle index policy and hence can be easily
implemented. Extensive simulations using real traces support our
theoretical results.

Index Terms— Cloud cache dimensioning, index policy, restless
bandits, reinforcement learning.

I. INTRODUCTION

CONTENT delivery networks (CDNs) carry more than
50% of the Internet traffic today, and this number is

predicted to increase over the coming years [2]. However, the
entry cost of traditional CDNs is high, especially for small
content providers (CPs) since the lease is on a long-term basis
with fixed prices. This motivated the popular “cloud CDNs”,
which provide managed platforms with a pay-as-you-go model
for CPs. For example, Amazon AWS [3] provides both cache
dimensioning and caching implementation software services

Manuscript received 24 July 2022; revised 21 November 2022; accepted
30 December 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor I.-H. Hou. This work was supported in part by the National
Science Foundation (NSF) under Grant CRII-CNS-NeTS-2104880 and Grant
RINGS-2148309; in part by the Office of the Under Secretary of Defense,
Research and Engineering (OUSD R&E), National Institute of Standards
and Technology (NIST), and industry partners as specified in the Resilient
and Intelligent NextG Systems (RINGS) Program; and in part by the U.S.
Department of Energy under Grant DE-EE0009341. This work was partially
presented in the IEEE Conference on Computer Communications (IEEE
INFOCOM), Virtual Conference, May 2022 [DOI: 10.1109/INFOCOM48880.
2022.9796809]. (Corresponding author: Jian Li.)

The authors are with the Department of Electrical and Computer
Engineering, Binghamton University, State University of New York,
Binghamton, NY 13902 USA (e-mail: gxiong1@binghamton.edu;
swang214@binghamton.edu; gyan2@binghamton.edu; lij@binghamton.edu).

Digital Object Identifier 10.1109/TNET.2023.3235480

to CPs. A CP can lease storage from AWS and implement
caching policy using open software such as Amazon Cloud-
Front [4], which allows dynamic storage scaling. Caching
dimensioning in cloud CDNs provides large economic yields
to CPs since CPs can shut down storage in clouds when the
traffic is low.

At the same time, this new model brings significant
challenges. First, the CPs not only have to decide how much
storage to lease to meet user content requests, but also what
content to store in cache. This challenge is further exacer-
bated in cloud CDNs, where the storage is leased on-the-fly
using cloud resources, and dimensioning needs to be solved
regularly, often on a per-day or per-hour basis, to accom-
modate the time-varying nature of content requests. Finally,
leasing more storage improves caching performance, e.g.,
reduced user content service latency, but also incurs additional
expenditure. With a given operational expenditure budget,
all cache dimensioning decisions are strongly coupled over
time. Indeed, finding the optimal tradeoff between maximiz-
ing caching performance and minimizing cache dimensioning
costs naturally leads to a new set of algorithmic challenges
as the caching performance also depends on the variability of
content popularity.

In this paper, we are interested in jointly optimizing cache
dimensioning and content caching when a CP regularly leases
storage from cloud CDNs. We note that there is a natural
timescale separation between cache dimensioning and content
caching, where the former is a much slower operation than
the latter. Using this observation, we formulate the problem
of dynamic dimensioning of cloud caches as a two-timescale
Markov decision process (MDP) [5] in Section III, where
the goal is to propose provably optimal algorithms to min-
imize the total expected costs due to cache dimensioning
and content delivery latency. This MDP turns out to be a
restless multi-armed bandit (RMAB) problem [6]. Though in
theory it can be solved by relative value iteration [5], this
approach suffers from the curse of dimensionality. Therefore,
it is highly desirable to design provably optimal and low-
complexity solutions. A celebrated heuristic is the Whittle
index policy [6], which relaxes the hard constraint, in which
the number of cached contents is exactly the leased storage,
to a time-averaged constraint, in which the number of cached
contents is the leased storage on average. However, to the best
of our knowledge, there is no such Whittle index policy for
dynamic dimensioning of cloud caches. Part of the difficulty is

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5943-8109
https://orcid.org/0000-0003-0284-5683
https://orcid.org/0000-0002-7734-1589
https://orcid.org/0000-0003-3642-3569

2 IEEE/ACM TRANSACTIONS ON NETWORKING

that Whittle index policy is not feasible when the lease storage
is unknown, which needs to be repeatedly solved and jointly
optimized with content caching.

In this paper, we design a new Whittle-like index policy
for dynamic dimensioning of cloud caches. Similar to Whit-
tle [6], we first relax the MDP, and then overcome the above
difficulties of directly designing Whittle policy by studying the
corresponding fluid dynamics, the optimal solution to which is
described by a linear programming (LP) problem. The optimal
values of the LP (i.e., the optimal dimensioning decisions)
provide a lower bound on the cost of the original MDP [7],
[8], and are then used to design Whittle index policy for the
original MDP. We show that our original MDP is indexable,
and derive explicitly the Whittle indices of each content. Based
on this result, we propose an associated policy by caching
contents with the largest Whittle indices whose number is
constrained by the optimal dimensioning decisions. Finally,
we prove that our proposed index policy is asymptotically
optimal. Our contribution in Section IV is non-trivial since
establishing the Whittle indexablity of RMAB problems is
typically intractable [9] and the Whittle indices of many
practical problems remain unknown except for a few special
cases. Exacerbating this problem is the fact that the cache
dimensioning and content caching decisions are coupled in
our problem.

Due to the time-varying nature of cloud CDNs, the system
parameters such as content request and delivery rates are
typically unknown in practice. In Section V, we further
propose a reinforcement learning (RL) augmented algorithm
to address this issue. However, simply applying off-the-shelf
methods such as UCRL2 [10] or Thompson Sampling [11] is
tricky due to the curse of dimensionality, since these generic
RL approaches ignore the rich underlying structure of our
problem and hence are inefficient of learning in our settings.
To this end, we propose fW-UCB that not only leverages the
approach of optimism-in-the-face-of-uncertainty [10], [12] to
balance exploration and exploitation, but more importantly,
it learns to leverage the near-optimal index policy for making
decisions. We show that fW-UCB achieves an optimal sub-
linear regret with a low-complexity, and hence can be easily
implemented in real systems. To the best of our knowl-
edge, our work is the first in the literature to design an
index based RL algorithm for dynamic dimensioning of cloud
caches.

We support our analytical results with extensive evaluations
in Section VI using both synthetic trace based and real trace
based simulations, and a Redis-based implementation [13]
running on our experimental testbed via Amazon ElastiCache
service [14]. Numerical results demonstrate the superior per-
formance of our proposed policies over state of the arts that are
employed in today’s major CDNs. Furthermore, our evaluation
results are in close agreement with theoretical models and
confirm a desired tradeoff between cache dimensioning and
content delivery latency costs, which can be achieved by
tuning a system-wide parameter.

An earlier version of this work appeared in [1]. The
differences between our earlier work and this paper are:
(i) we further capture the dynamic nature of cloud CDN with

dynamic content population, i.e., the content catalog is varying
over time frames in our system model; (ii) we provide the
details of the optimistic planning and the extended LP in the
design of fW-UCB; (iii) full proofs of all theoretical results
are presented in the appendix; and (iv) we provide a prototype
testbed implementation, i.e., a Redis-based implementation via
Amazon ElastiCache Service to cache dimensioning to further
evaluate our proposed policies using real traces.

II. RELATED WORK

In this section, we mainly overview two main areas that are
closely related to our work: cache dimensioning and restless
multi-armed bandits, and further provide a brief discussion of
our design methodology in the context of prior work.

Cache Dimensioning. Though offline cache dimensioning
with known content requests has been studied for designing
CDN systems prior to their deployment [15], [16], [17], [18],
it is not appropriate for cloud CDNs with unknown and
time-varying content requests. Online cache dimensioning has
received little attention to date. A TTL-based approximation
approach was proposed for elastic cloud provisioning to mini-
mize the storage and miss costs [19]. We instead formulate the
problem as a MDP and study the storage and content delivery
latency costs, which are critical for many emerging delay-
sensitive applications. Cache dimensioning in wireless CDNs
studied in [20] requires strong assumptions on request process,
while our proposed research provides provable performance
for any request process. Similar problem was considered in
memory management systems [21] for the assignment of mem-
ory to various applications with a computationally intensive
policy. None of these works provided an index based policy
for cache dimensioning.

Restless Multi-Armed Bandits. RMAB is a general model
for sequential decision making problems ranging from wire-
less communication [22], [23], [24], congestion control [25],
sensor management [26], [27], cloud computing [28], health-
care [29], [30], [31], queueing systems [32], etc. However,
the RMAB problem is PSPACE hard [33]. To this end,
Whittle [6] proposed a heuristic “Whittle index policy” for
the infinite-horizon RMAB. Since then, many studies focused
on finding index policies for RMABs, e.g., [8], [34], [35], [36],
and [37]. These works assume that the system parameters are
known. Since the true parameters are typically unavailable,
it is important to examine RMAB from a learning perspec-
tive, e.g., [23], [38], [39], [40], [41], [42], [43], and [44].
However, existing RL solutions (e.g., colored-UCRL2 [41] and
Thompson sampling-based methods [42], [43]) suffer from an
exponentially computational complexity and the regret bound
grows exponentially with the size of state space, yielding the
algorithms to be too slow to be useful. Recently, [45], [46],
[47], [48], [49], [50], [51], [52], and [53] developed RL-based
algorithms to explore the problem structure through index
policies. However, [45], [46], [47], [49], and [50] lacked finite-
time performance analysis and multi time-scale stochastic
approximation algorithms usually suffer from slow conver-
gence. The explore-then-commit mechanism [48] depends on
the performance of an offline “black-boxed” oracle approxima-
tor in the exploitation phase, while our fW-UCB leverages an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 3

explicit Whittle index policy. References [52] and [53] focused
on the finite-time horizon setting, making their approaches not
directly applicable to our problem.

Our Design Philosophy. This paper contributes to both
areas. First, we pose the cache dimensioning problem as a
RMAB to minimize the overall costs, including not only
dimensioning costs, bust also content delivery latency costs.
This enables us to characterize tradeoffs between those two
interrelated costs. Second, we depart from existing assump-
tions on content request processes and consider this RMAB
from an online perspective. A key differentiator between our
approach and existing ones stems from two perspectives:
(i) we focus on designing index policies for dynamic cache
dimensioning, which operate on a much smaller dimensional
subspace by exploiting the inherent structure of our problem;
and (ii) our index-policy approach naturally lends itself to
a lightweight RL based framework that can fully exploit
the structure of our index policy so as to reduce the high
computational complexity and achieve an optimal sub-linear
regret.

III. MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the dynamic cache dimensioning problem.

A. System Model

Consider a system where a CP dynamically leases storage
from cloud CDNs to provide services to users. We note
that there is a natural timescale separation between cache
dimensioning and content caching, where the former is a much
slower operation than the latter. To this end, we consider a two-
timescale dynamic system. Specifically, the cache dimension-
ing is performed in a slower (discrete) timescale indexed by
k ∈ K = {1, · · · , K} and K < ∞, while the content caching
is performed in a faster (continuous) timescale indexed by
t. We call each k as one frame with a fixed duration, e.g.,
1 hour or 1 day in some real-world systems. Due to the time-
varying nature of content requests, “new” contents may be
generated while “old” contents may no longer be requested.
As a result, the content catalog is often changing over time.
To this end, we denote the dynamic content catalog over each
frame as Nk,∀k. Without loss of generality, we denote the
full content catalog over all frames as N = {1, · · · , N} with
each integer representing a different content of equal size, and
hence Nk ⊆ N ,∀k.

Requests. Requests for content n ∈ Nk follow a Poisson
process1 with arrival rate λn,k in frame k. The time taken to
deliver content n to users in frame k is a random variable
that is exponentially distributed with mean 1/µn,k, which is
independently across different contents. Note that the content
arrival rates and delivery rates often vary across different
frames due to the time-varying nature of CDN systems which
necessitates the need of dynamic cache dimensioning for CPs.

1Poisson arrivals are widely used in the literature, e.g., [54], [55], [56], [57],
[58], and [59]. However, our model holds for general stationary process [60]
and our RL solutions in Section V hold for any request process. See Section V
for details.

Cache Dimensioning. At the beginning of each frame, the
CP determines how much storage to lease from the cloud
CDN. We denote the leased storage in frame k as a random
variable Bk, which is measured in the number of content size
units. Note that Bk must be non-negative as it is impossible
to sell storage, and it is meaningless to lease more than |Nk|
content size units since that would be enough to fit the entire
content catalog. Hence we have Bk ∈ [0, |Nk|], ∀k.

Content Caching. We use a binary variable An to indicate
caching decisions on content n, where An = 1 means content
n is cached and An = 0, otherwise. Since the CP leases Bk

storage in frame k, the set of feasible content caching decisions
in frame k is Ak = {An ∈ {0, 1}|Nk| :

∑|Nk|
n=1 An ≤ Bk}.

B. System Dynamics and Problem Formulation

Now we formulate the dynamic cache dimensioning prob-
lem for the above model as a MDP.

States. We denote the number of outstanding requests for
content n at time t in frame k as Sn(k, t) ≤ Smax, where Smax
is the maximum number of requests expected in each frame
for any content, and can be arbitrarily large but bounded. Then
the states of the system at time t in frame k can be denoted
S(k, t) = (S1(k, t), · · · , S|Nk|(k, t)). For ease of readability,
we denote S as the finite state space in our system.

Actions. The action An(k, t) for content n at time t in
frame k is defined as whether to cache content n or not.
Hence An(k, t) ∈ Ak, ∀t. Since the cache dimensioning
decision Bk is fixed in frame k and for abuse of nota-
tion, denote A(k, t) := (A1(k, t), · · · , A|Nk|(k, t), Bk), and
A = {(A(1, t), · · · ,A(K, t)),∀t}. Decisions are made only
at those time instants when either a new request arrives, or a
content delivery occurs. As a result, A(k, t) stays unchanged
in between these time instants.

A cache dimensioning policy π maps the state of the system
S(k, t) to the action A(k, t), i.e., A(k, t) = π(S(k, t)).

Controlled Transition Kernel. At each time instant in
frame k, the state of content n can change from Sn to either
Sn + 1 or (Sn − 1)+ with other |Nk| − 1 contents’ states
unchanged. The transition rates satisfy

S →

{
S + en, with transition rate bn,k(Sn, An),
S− en, with transition rate dn,k(Sn, An),

(1)

where en is a |Nk|-dimensional vector with the n-th entry
being 1 and all other elements being zero, and bn,k(·, ·) and
dn,k(·, ·) are given as bn,k(Sn, An) = λn,k, dn,k(Sn, An) =
µn,k(Sn)An, with µn,k(0) = 0. We allow a state-dependent
content delivery rate, which enables us to model realistic
settings [61], [62], [63]. In this paper, we consider the classic
M/M/k queue, i.e., dn,k(Sn, An) = µn,kSnAn.

Dynamic Cache Dimensioning Problem. A CP may have
different requirements on content delivery latency and dimen-
sioning costs. A CP for applications that are more delay-
sensitive may place a greater penalty for its content delivery
latency, while a CP with a smaller dimensioning expenditure
may be more sensitive to the dimensioning costs. To posit a
tradeoff between content delivery latency and dimensioning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

cost, we incorporate unit costs for content delivery latency, cd

and for cache dimensioning, cb.
Our goal is to derive a policy π to minimize the total

expected costs incurred by cache dimensioning and content
delivery latency as defined below:

Cπ(A) = κClatency + (1− κ)Cdim, (2)

where Clatency is the total content delivery latency cost, Cdim is
the total cache dimensioning cost and κ ∈ [0, 1] is a system-
wide weighting factor that determines how the two costs are
weighted against each other. By Little’s Law, the total expected
content delivery latency cost under policy π is given by

Clatency = Eπ

(
cd

K∑
k=1

lim sup
Tk→∞

|Nk|∑
n=1

1
Tk

∫ Tk

t=1

Sn(k, t)dt

)
, (3)

where the subscript denotes the fact that expectation is taken
with respect to the measure induced by the policy π. We focus
on Markovian policies which base their decisions on the
current state and time. Similarly, we have Cdim =

∑K
k=1 cbBk.

Then we can write the overall cost under policy π as

Cπ(A) = Eπ

(
κcd

K∑
k=1

lim sup
Tk→∞

|Nk|∑
n=1

1
Tk

∫ Tk

t=1

Sn(k, t)dt

+ (1− κ)cb

K∑
k=1

Bk

)
. (4)

Therefore, our dynamic cache dimensioning problem to
minimize the total costs subject to the dimensioning constraint
in each frame can be formulated as the following MDP:

min
π∈Π

Cπ(A), s.t.
|Nk|∑
n=1

An(k, t) ≤ Bk, ∀k, t. (5)

We refer to (5) as the “original problem”.
Remark 1: We cannot directly apply the conventional rel-

ative value iteration method [5] to solve (5) since the cache
dimensioning and content caching decisions are strongly cou-
pled and need to be jointly optimized in (5). Even when the
cache dimensioning decisions, i.e., Bk, ∀k are given, it is
well known that solving the above MDP using relative value
iteration suffers from the curse of dimensionality and lacks
of insights. The dimension is dominated by the number of
contents N , the state space S, and the number of frame K. As
a result, many efforts have been focusing on designing low-
complexity solutions. One celebrated heuristic is the Whittle
index policy [6]. However, Whittle index policy is infeasi-
ble [6], [7], [8] if the resource constraint is not given or
unknown, which in our case is the cache dimensioning Bk in
each frame k. This is because in the RMAB literature, whether
to activate an arm (resp. whether to store a content in our
model) is not only determined by its Whittle index value, but
also depends on constrained resource (resp. Bk in our model).
To overcome this challenge, we next introduce a new notion
of fluid Whittle index policy.

Fig. 1. The framework of the proposed solutions.

IV. FLUID WHITTLE INDEX POLICY

In this section, we propose asymptotically optimal index
policies when cache dimensioning and content caching deci-
sions are coupled. Specifically, we introduce the notation of
fluid Whittle index policy, which generalizes the classic Whittle
index policy to the dynamic cache dimensioning setting.

Our proposed policy is based on a relaxed formulation
of (5) and consists of two interdependent steps, as illustrated in
Figure 1. First, we show that the optimal cache dimensioning
decisions in each frame can be solved using a fluid version
of the relaxed problem. Second, given the optimal cache
dimensioning decision, we show that our problem is Whittle
indexable and explicitly derive the Whittle indices. These two
steps enable us to design the fluid Whittle index policy, which
we show is asymptotically optimal. Note that our relaxed
formulation and hence the fluid problem is very general and
can be applied to other MDPs that are provably indexable.
Hence our methodologies not only apply to the dynamic cache
dimensioning problem in this paper but also to other large
MDP problems with coupled decision-makings on resource
allocation and scheduling.

A. Optimal Fluid Control

In this subsection, we first introduce the relaxed formula-
tion. We then solve the fluid version of this relaxed formula-
tion, i.e., we only take into account the average behavior of
the system. The optimal fluid solution provides a lower bound
on the optimal cache dimensioning in the original model [7].

Following Whittle’s approach [6], we study the relaxed
problem in which the cache dimensioning constraint at each
time in a frame in (5) is satisfied on average, i.e.,

min
π∈Π

Cπ(A),

s.t. lim sup
Tk→∞

1
Tk

Eπ

∫ Tk

t=1

|Nk|∑
n=1

An(k, t)dt ≤ Bk, ∀k. (6)

We then define the fluid limit model of the relaxed problem
under a stationary Markovian policy π, which is independent
of the initial state of the MDP [7], [64], [65]. Let xa

n,k,s be
the fraction of content n in state s under action a in frame k
and let xn,k,s = x0

n,k,s + x1
n,k,s be the fraction of content n

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 5

in state s. Denote the transition rate from state s to state s′

with action a for content n in frame k as qn,k(s′|s, a). Similar
to [8], we focus on finding an optimal equilibrium point of the
fluid dynamics that minimize the total costs. Since there exists
a stationary Markovian policy πk for each frame k ∈ K that
is independent of the initial state, the relaxed problem (6) can
be decomposed into each frame k. To this end, we decompose
the relaxed problem (6) to obtain the following “per-frame”
LP problem for each frame k:

min
{xn,k,s},Bk

κcd

|Nk|∑
n=1

∑
a∈Ak

∑
s∈S

sxa
n,k,s + (1− κ)cbBk (7)

s.t.
|Nk|∑
n=1

∑
s∈S

x1
n,k,s ≤ Bk, (8)∑

a∈Ak

∑
s′∈S

xa
n,k,sqn,k(s′|s, a)

=
∑

a∈Ak

∑
s′∈S

xa
n,k,s′qn,k(s|s′, a), ∀n ∈ Nk, (9)∑

a∈Ak

∑
s∈S

xa
n,k,s = 1, xa

n,k,s ≥ 0, ∀n, s, a, (10)

0 ≤ Bk ≤ |Nk|, (11)

where (8) is equivalent with the constraint in (6), (9) repre-
sents the equilibrium condition of the fluid system, i.e., the
fluid flows in state s equals to the fluid flows out state s, (10)
holds due to the definition of xa

n,k,s, and (11) follows from
the cache dimensioning definition.

Denote the optimal cache dimensioning solutions to the LP
(7)-(11) as B⋆

k . It is well known that this LP is equivalent to the
relaxed problem (6) [7] and there exists a stationary policy for
this LP [8]. Furthermore, the fluid analysis achieves a lower
bound of the original problem [6], [8], which is leveraged for
the asymptotic optimality analysis of index policy.

B. Fluid Whittle Index Policy

Provided the optimal caching dimensioning B⋆
k by solving

the fluid control in (7)-(11), the CP only needs to make content
caching decisions in each frame k:

min
πk∈Π

Eπk
lim sup
Tk→∞

1
Tk

|Nk|∑
n=1

∫ Tk

t=1

Sn(k, t)dt

s.t. lim sup
Tk→∞

1
Tk

Eπk

∫ Tk

t=1

|Nk|∑
n=1

An(k, t)dt ≤ B⋆
k , (12)

where we drop the constant κcd for simplicity but we con-
sider it when compute the total costs. Next we consider the
following Lagrangian associated with (12),

Lπk
(Wk) = lim sup

Tk→∞

1
Tk

Eπk

∫ Tk

t=1

[|Nk|∑
n=1

Sn(k, t)

−Wk

(
B⋆

k −
|Nk|∑
n=1

An(k, t)
)]

dt, (13)

where Wk is the Lagrangian multiplier for the k-th frame. The
dual function is then defined as

D(Wk) := min
πk

Lπk
(Wk). (14)

A key observation made by Whittle is that (14) can be
decomposed into |Nk| subproblems, one for each content n.
As a result, we obtain the following “per-content per-frame”
MDP:

min
πk

lim sup
Tk→∞

1
Tk

Eπk

∫ Tk

t=1

(
Sn(k, t)−Wk(1−An(k, t))

)
dt.

(15)

Definition 1: (Passive Set) Consider the per-content per-
frame MDP in (15), let Mn(Wk) be the set of states s for
which the optimal action for content n in frame k is passive,
i.e., not to cache content n in state s in frame k.

Definition 2: (Indexability) The per-content per-frame
MDP in (15) for content n in frame k is indexable if the
passive set Mn(Wk) increases with Wk, i.e., if Wk > W ′

k,
then Mn(Wk) ⊇Mn(W ′

k).
Definition 3: (Whittle Index) If the per-content per-frame

MDP for content n in frame k is indexable, then the Whittle
index in state s is denoted as Wn,k(s), and is given as follows:

Wn,k(s) := inf
Wk≥0

{s ∈Mn(Wk)}, (16)

which is the smallest value of the Wk such that the optimal
policy for content n is indifferent towards a = 0 and a =
1 under state s in frame k.

Threshold Policies. We show that there exists an optimal
policy of (15) that is of threshold-type, and then the MDP
(15) is indexable. Based on these results, we explicitly derive
the Whittle indices and the fluid Whittle index policy for the
original problem (5).

Proposition 1: For a fixed Wk, there exists a threshold type
policy depending on Wk that optimally solves the per-content
per-frame MDP in (15).

Proof: Proof is provided in Appendix A-A. □
We then compute the stationary distribution under a thresh-

old policy as a function of the threshold.
Proposition 2: The stationary distribution of the threshold

policy πn,k = R satisfies ϕR
n (R′) = 0, ∀0 ≤ R′ < R, and

ϕR
n (R) = 1/

1 +
∞∑

j=1

(
λn,k

µn,k

)j 1
Πj

k=1(R + k)

 ,

ϕR
n (R + l) =

(
λn,k

µn,k

)l 1
Πl

k=1(R + k)
ϕR

n (R), l = 1, 2, · · · .

(17)

For the notation abuse, we use a superscript R to denote the
stationary distribution under a particular threshold policy R.

Proof: Proof is provided in Appendix A-B. □
Proposition 3: The MDP (15) is indexable.

Proof: Proof is provided in Appendix A-C. □
We are now ready to derive the Whittle indices for (15).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Proposition 4: For an indexable (15) with
∑R

s=0 ϕR
n (s)

strictly increasing with R, the Whittle index is given by

Wk(R) =
ER+1[Sn]− ER[Sn]∑R

Sn=0 ϕR
n (Sn)−

∑R−1
Sn=0 ϕR−1

n (Sn)
. (18)

Proof: Proof is provided in Appendix A-D. □
Since the cost function and the stationary probabilities are
known, the Whittle indices (18) can be computed. Such an
approach was also used in [62] and [63] for queuing systems.

Fluid Whittle Index Policy. We now describe how the
solutions to the LP (7)-(11) and relaxed problem (12) are
used to obtain a policy for the original problem (5). It is clear
that the optimal solutions to (7)-(11) and (12) are not always
feasible for (5), since in the latter at most Bk content can be
cached. If Bk is known, then we can follow the Whittle policy.
However, in our problem, Bk,∀k are unknown and need to be
solved from the LP (7)-(11). Hence, we refer to this as the
fluid Whittle index policy as defined below.

Definition 4: (Fluid Whittle Index Policy) At time t in frame
k, the Fluid Whittle index policy prioritizes the content in the
decreasing order of their Whittle indices Wn,k(Sn(k, t)) and
caches the top B⋆

k contents that have the largest index values.

C. Asymptotic Optimality

Our fluid Whittle Index Policy achieves asymptotic optimal-
ity when the number of contents |Nk| and the cache dimen-
sioning B⋆

k go to infinity while holding B⋆
k/|Nk| constant in

any frame k ∈ K. Both B⋆
k and |Nk| are typically large in

practice. Hence we only present the main results in a particular
frame k for ease of exposition. This asymptotic regime is the
same as Whittle [6] and many others [7], [8], [62], [66]. For
abuse of notation, we let the number of contents be ρ|Nk|
and the value of cache dimensioning be ρB⋆

k in the limit with
ρ →∞. In other words, it represents the scenarios where there
are |Nk| different classes of contents and each class contains
ρ contents. Let Bopt

k be the optimal cache dimensioning for
the original problem (5) obtained by a genie-aided policy
πopt

k . Denote the corresponding cost as C(πopt
k , ρBopt

k , ρ|Nk|).
Similarly, let C(πk, ρBk, ρ|Nk|) be the expected cost under a
stationary policy πk. Following the fact that the LP (7)-(11) is
invariant with the scaling parameter ρ, the per-frame optimal
cost of the fluid model (7)-(11) satisfies ρCfluid(B⋆

k , |Nk|) ≤
C(πopt

k , ρBopt
k , ρ|Nk|).

Theorem 1: Denote the fluid Whittle Index Policy under B⋆
k

as π⋆
k. Then, π⋆

k achieves the asymptotic optimality as follows

lim
ρ→∞

1
ρ

(
C(π⋆

k, ρB⋆
k , ρ|Nk|)− C(πopt

k , ρBopt
k , ρ|Nk|)

)
= 0.

(19)
Proof: Proof is provided in Appendix A-E. □

V. REINFORCEMENT LEARNING SOLUTIONS

The knowledge of content request and delivery rates are
needed for the computation of the fluid Whittle index policy.
However, these parameters are often unknown and time-
varying in cloud CDNs over different frames. Hence, we now
adopt a learning perspective on top of the fluid Whittle index
policy. We denote the resulting learning rule as fW-UCB and

Algorithm 1 fW-UCB Policy
Require: Horizon Tk in frame k and learning counts f(Tk).

1: for n = 1, 2, . . . , |Nk| do
2: Observe content n until there are f(Tk) visits of pairs

(s, 1), ∀s ∈ S.
3: end for
4: Construct Pn,k(s, 1) according to (25);
5: Construct the plausible set of MDPs Mn,k,∀n;
6: Solve the extended LP in (29) to determine P̃ ⋆

n,k(s′|s, 1)
for all s′, s according to (30) and B⋆

k ;
7: Compute Whittle indices (18) based on P̃n,k(s′|s, a);
8: Establish the corresponding fluid Whittle index policy π⋆

k;
9: Execute π⋆

k for the rest of the time in frame k.

show that fW-UCB achieves an optimal sub-linear regret. Due
to the decomposition nature of our problem across different
frames as discussed in Section IV, we describe our proposed
fW-UCB and its finite-time performance in a particular frame
for ease of readability, which applies to any frame k ∈ K.

A. Algorithm Description

We adapt the upper confidence bound (UCB) [12] to
our setting and design the fW-UCB policy as summarized in
Algorithm 1, which has the “explore-then-commit” structure.
More precisely, fW-UCB have two phases: a planning phase
and a policy execution phase. The planning phase focuses on
defining a set of plausible MDPs [10] based on the number
of visits to state-action pairs (s, a) and transitions tuples
(s, a, s′) as accurate as possible (Lines 1-5). We can define
the corresponding fluid Whittle index policy by solving an
optimistic planning problem, which is expressed as an LP
(Lines 6-8). Our key contribution here is to choose the right
value of f(Tk) to balance the accuracy and complexity, which
contributes to the sub-linear regret and low-complexity of
fW-UCB. At the policy execution phase (Line 9), the derived
fluid Whittle index policy is executed for the rest in frame k.
Our key contribution here is to fully exploit our fluid Whittle
index policy, instead of directly contending with the high-
dimensional state-action space as in generic RL algorithms.
As a result, fW-UCB achieves a sub-linear regret and performs
close to the offline optimum since our proposed fluid Whittle
index policy is asymptotically optimal.

1) Optimistic Planning: In frame k, the CP first observes
each content n ∈ Nk with a state-action pair (s, a) for f(Tk)
times (the value of f(Tk) will be specified later). Since the
transition is deterministic with a = 0, we only observe the
transition under a = 1. We denote the number of times that
a transition tuple (s, 1, s′) was observed within f(Tk) as

Tn,k(s, 1, s′) =
f(Tk)∑
h=1

1(sn(h + 1)=s′|sn(h)=s, an(h)=1),

×∀(s, 1, s′) ∈ S ×A× S, (20)

where sn(h) represents the state for content n at time h,
an(h) is the corresponding action and A = {0, 1}. Without
loss of generality, we normalize the true transition rates to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 7

be 1 at any moment in time, i.e.,
∑

s′∈S Pn,k(s′|s, 1) =
1, ∀n, k, s. Following (1), the true transition rate Pn,k(s′|s, 1),
∀(s, a, s′) ∈ S ×A× S satisfies

Pn,k(s′|s, 1) =

λn,k, if s′ = s + 1,

sµn,k, if s′ = s− 1,

1− λn,k − sµn,k, if s′ = s.

(21)

In order to estimate the true transition rates, the CP first counts
the corresponding empirical probability as

In,k(s′|s, 1) =
Tn,k(s, 1, s′)

f(Tk)
. (22)

Since the observations Tn,k(s, 1, s′) are made only when state
transition occurs, from (21) and (22), we have

λ̄s
n,k

µ̄s
n,k

=
sIn,k(s + 1|s, 1)
In,k(s− 1|s, 1)

=
sTn,k(s, 1, s + 1)
Tn,k(s, 1, s− 1)

, ∀s ∈ S.

(23)

To this end, the CP estimates the true transition rates by the
corresponding empirical average as

P̄n,k(s′|s, 1) =

sTn,k(s,1,s+1)

sTn,k(s,1,s+1)+Tn,k(s,1,s−1) , if s′ = s + 1,
sTn,k(s,1,s−1)

sTn,k(s,1,s+1)+Tn,k(s,1,s−1) , if s′ = s− 1.
−(s−1)Tn,k(s,1,s−1)

sTn,k(s,1,s+1)+Tn,k(s,1,s−1) , if s′ = s.

(24)

The CP further defines the confidence interval such that the
true transition rates lie in them with high probability. Formally,
for any content n in state s at frame k, we define

Pn,k(s, 1) := {P̃n,k(s′|s, 1) : |P̃n,k(s′|s, 1)− P̄n,k(s′|s, 1)|
≤ δs

n,k}, (25)

where the size of the confidence interval δs
n,k is built using

the Hoeffding inequality [67], i.e., ∀η ∈ (0, 1),

δs
n,k =

√
s2

2f(Tk)
log

|S||Nk|f(Tk)
η

. (26)

The set of plausible MDPs associated with the confidence
intervals is then given as

Mk ={Pn,k|Pn,k(·|s, 1)∈Pn,k(s, 1),∀n∈Nk, s∈S}. (27)

Then fW-UCB computes a policy π⋆
k by performing optimistic

planning. In other words, given the set of plausible MDPs,
it selects an optimistic MDP and an optimistic policy with
respect to our MDP formulation, which is expressed as the
following LP:

min
Bk,{P̃n,k}

κcd

|Nk|∑
n=1

∑
a∈Ak

∑
s∈S

sxa
n,k,s + (1− κ)cbBk

s.t.
|Nk|∑
n=1

∑
s∈S

x1
n,k,s ≤ Bk,∑

a∈Ak

∑
s′∈S

xa
n,k,sP̃n,k(s′|s, a)

=
∑

a∈Ak

∑
s′∈S

xa
n,k,s′ P̃n,k(s|s′, a),∑

a∈Ak

∑
s∈S

xa
n,k,s = 1, xa

n,k,s ≥ 0, ∀n, s, a,

0 ≤ Bk ≤ |Nk|. (28)

2) The Extended LP: The LP (28) is similar to the LP in
(7)-(11) except that the true transition rates are unknown. This
makes it hard to solve. To this end, we rewrite it as an extended
LP problem by defining zn,k(s, a, s′) := xa

n,k,sP̃n,k(s′|s, a)
to express the confidence intervals of the transition rates. The
extended LP over z = {zn,k(s, a, s′)} is expressed as

min
Bk,{zn,k}

κcd

|Nk|∑
n=1

∑
s∈S

∑
a∈Ak

∑
s′∈S

szn,k(s, a, s′)

+ (1− κ)cbBk

s.t.
|Nk|∑
n=1

∑
s∈S

∑
s′∈S

zn,k(s, 1, s′) ≤ Bk,∑
a∈Ak

∑
s′∈S

zn,k(s, a, s′) =
∑

a∈Ak

∑
s′∈S

zn,k(s′, a, s),

zn,k(s, 1, s′)∑
y zn,k(s, 1, y)

− (P̄n,k(s′|s, 1) + δs
n,k) ≤ 0,

− zn,k(s, 1, s′)∑
y zn,k(s, 1, y)

+ (P̄n,k(s′|s, 1)− δs
n,k) ≤ 0,∑

s∈S

∑
a∈Ak

∑
s′∈S

zn,k(s, a, s′) = 1, ∀n, s, a,

0 ≤ Bk ≤ |Nk|. (29)

Since the extended LP (29) is for the per-frame MDP, the
computational complexity is O(N |S|2), i.e., linear in the
number of contents N and quadratic in the dimension of
state space |S|. This approach was also used for adversarial
and constrained MDPs [68], [69], [70]. Once we compute the
optimal z⋆

n,k and B⋆
k , the transition rates are recovered by

P̃ ⋆
n,k(s′|s, 1) =

sz⋆

n,k(s,1,s+1)

sz⋆
n,k(s,1,s+1)+z⋆

n,k(s,1,s−1) , if s′ = s + 1,
sz⋆

n,k(s,1,s−1)

sz⋆
n,k(s,1,s+1)+z⋆

n,k(s,1,s−1) , if s′ = s− 1.
−(s−1)z⋆

n,k(s,1,s−1)

sz⋆
n,k(s,1,s+1)+z⋆

n,k(s,1,s−1) , if s′ = s.

(30)

Finally, using these transition rates, we can compute the
Whittle indices in (18) for all states of all contents, and then
define the fluid Whittle index policy as in Definition 4, and
execute this policy for the rest of time in frame k.

Though the whole system (the content caching process)
operates in continuous time, decisions are made only at those
time instants when either a new request arrives, or a content
delivery occurs (see Section III-B). Those time instants can be
treated as in the discrete time domain. Hence, in this section,
samples are made on discrete time instants, e.g., in (20).

B. The Learning Regret

We evaluate the efficiency of fW-UCB policy using regret,
which is defined as the expected gap between the cost obtained

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Number of requests per frame in synthetic trace.

by the offline optimum, i.e., the genie-aided policy with
full knowledge of all transition rates, and that of fW-UCB.
Denote the cumulative cost under policy πk as C(πk, Tk) :=
κcd

∑Tk

t=1

∑|Nk|
n=1 Sn(t), which is a random variable. Then

the expected average cost under policy πk satisfies γk :=
limTk→∞

1
Tk

Eπk
[C(πk, Tk)], and the optimal average reward

is γopt
k := infπk

γk. Then the regret of πk is defined as
∆(Tk) := Eπk

[C(πk, Tk)]− Tkγopt
k .

Theorem 2: The regret of fW-UCB policy satisfies

∆(Tk) = O
(
(1 + B⋆

k

√
log Tk)Smax|Nk|

√
Tk

)
. (31)

Proof Outline: Since there are two phases in fW-UCB,
we decompose the regret in two parts as ∆(Tk) = ∆(L1) +
∆(L2), where ∆(L1) is the regret for the planning phase
with any random policy and ∆(L2) is the regret for the
policy execution phase, and L2 = Tk − L1. The regret of the
planning phase is upper bounded by O(Smax|Nk|

√
Tk). The

regret of the policy execution phase is caused by either “failure
event” (confidence ball fails) or “good event” (true MDP is
within confidence ball). We show that they are bounded by
O(2|Nk|η

√
Tk) and O(SmaxB

⋆
k |Nk|

√
Tk log Tk), respectively.

Combining them completes the proof. Please see Appendix B
for the detailed proof.

Remark 2: Although fW-UCB is a non-episodic algorithm
in each frame k, it still achieves the O(

√
Tk) regret no worse

than the episodic UCRL2. Specifically, the proposed fW-UCB
spends no time for searching a better MDP instance. Instead,
it constructs a upper confidence ball for all plausible MDPs.
Then, it determines the optimal policy by calculating the
extended LP (29) for only once, which significantly reduces the
exponential implementation complexity compared with UCRL2
[10], colored-UCRL2 [41] to a linear scale.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of our proposed fluid Whittle index policy (f-Whittle) and
fW-UCB using both synthetic trace based and real trace based
simulations, and a Redis-based implementation [13] running
on our experimental testbed via Amazon ElastiCache ser-
vice [14]. The LP is solved using Gurobi. We compare to the
widely used Least Recently Used (LRU) and Random policies,
as well as Restless-UCB [48], a state-of-the-art RL solution
for RMAB with low computational complexity. Since LRU,
Random and Restless-UCB are designed for a given cache

Fig. 3. Cache dimensioning per frame in synthetic trace.

Fig. 4. Comparison of costs in synthetic trace.

size and do not account for cache dimensioning, we evaluate
them using the same cache dimensioning decisions over each
frame that are determined by our proposed policies.

A. Evaluation Using Synthetic Trace

We simulate a system with N = 100 contents over K =
30 frames. The arrival rate for requests in each frame are
generated according to a Zipf distribution. The content delivery
rate is set to be 0.1. The Zipf parameter is fixed to be 0.6 but
the total number of requests varies across frames, as shown
in Figure 8. We use κ = 0.5, cd = 1 and cb = 10. The
leased storage in each frame is shown in Figure 9. The per-
frame cost is presented in Figure 4, with the dashed lines
representing the average cost over all frames. It is evident
from Figure 9 that dynamic cache dimensioning can adaptively
tune the leased storage to meet the time-varying trends of
content requests, as it is common in cloud CDNs. This results
in a much smaller cost than conventional policies (LRU and
Random) and RL-based solution, Restless-UCB as shown in
Figure 4. These results reflect the intelligence of our proposed
policies: when the number of requests is low, the CP can lease
less cloud storage with a smaller total cost. We further note
that our learning policy fW-UCB can almost achieve the same
performance as the f-Whittle, which is consistent with our
theoretical results.

We further validate the asymptotic optimality of our pro-
posed fluid Whittle index policy (f-Whittle) (see Theorem 1)
and the sub-linear regret of fW-UCB (see Theorem 2). Due to
the decomposition nature of our problem, we use the requests
from a frame randomly selected in Figure 8. Similar trends
hold for all other frames and hence are omitted. We consider
a similar setting as above. The average cost obtained by our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 9

Fig. 5. Asymptotic optimality.

Fig. 6. Accumulated regret.

f-Whittle and the theoretical upper bound achieved by solving
the LP in (7)-(11) is shown in Figure 5. It is clear that
f-Whittle achieves asymptotic optimality when the number of
contents increases. The learning regrets of fW-UCB in three
randomly selected frames are shown in Figure 6, where we
use the Monte Carlo simulation with 10, 000 independent
trails. Finally, we investigate the impact of the system-wide
parameter κ. The blue curve in Figure 7 presents the optimal
cache dimensioning vs. κ in one frame and the red curve is the
corresponding average cost. A key takeaway from Figure 7 is
that the variation of cache dimensioning and content delivery
latency costs as κ goes from 0 to 1. When κ is small, our
problem (5) weighs more on minimizing cache dimensioning
costs, hence a smaller leased storage is preferred. For example,
when κ < 0.35, no leasing is the optimal decision. On the
other hand, when κ is large, our problem tends to minimize
the content delivery latency costs, and hence a larger leased
storage is beneficial. This provides a tunable knob that can
be used by the network operator to balance the dimensioning
and latency costs for applications with different dimensioning-
latency tradeoff requirement.

B. Evaluation Using Real Trace

We further evaluate our proposed policies for dynamic cache
dimensioning using two real CDN traces: (i) Iqiyi [71], which
contains mobile video behaviors; and (i) YouTube [72], which
contains trace data about user requests for specific YouTube
content collected from a campus network. For the Iqiyi (resp.
YouTube) trace, there are more than 6.7 (resp. 0.6) million
requests for more than 1.4 million (resp. 0.3) unique contents
over a period of 335 (resp. 336) hours. To this end, we consider

Fig. 7. Impact of tradeoff parameter κ.

Fig. 8. Number of requests per frame in synthetic trace.

Fig. 9. Cache dimensioning per frame in synthetic trace.

the cache dimensioning occurring every 1, 3, 6, 12, and
24 hours. For ease of exposition, we only present results
for 12 hours and similar trends hold for other cases, and
hence are omitted here. The number of requests and the cache
dimensioning in each frame in Iqiyi and YouTube traces are
shown in Figures 8 and 9, and Figures 11 and 12, respectively.
Again, it is clear that our dynamic cache dimensioning is able
to tune the leased storage to follow the variations of content
requests in real systems. As a result, our proposed policies
significantly outperform existing policies with a smaller cost
as shown in Figure 10 for Iqiyi trace and in Figure 13 for
YouTube trace, respectively. Finally, we note that fW-UCB
can quickly learn the system dynamics and perform close to
f-Whittle, which matches well with our theoretical results.

C. Prototype Evaluation

Our implementation testbed consists of a cache server and
an origin server. The cache server receives requests and checks

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. Comparison of total costs in Iqiyi trace.

Fig. 11. Number of requests per frame in YouTube trace.

Fig. 12. Cache dimensioning per frame in YouTube trace.

Fig. 13. Comparison of total costs in YouTube trace.

if the content is in the cache. If not, the cache server retrieves
the content from the origin server, serves the user and stores
the content in the cache. In our evaluation, our proposed
algorithms on the cache server is running the Redis [13], which
is one of the most popular open source, in-memory data store.

Fig. 14. Prototype results using Iqiyi trace.

Fig. 15. Prototype results using YouTube trace.

We leverage the same setting as in the trace-base simulations
using Iqiyi and YouTube traces. In addition, we implement fW-
UCB in the prototype design since it is an online algorithm
while f-Whittle is offine. The prototype results are presented
in Figures 14 and 15, respectively. Again, we observe that
fW-UCB consistently outperforms existingR policies.

VII. CONCLUSION

We studied the problem of dynamic cache dimensioning in
the cloud to minimize the total average costs for both storage
and content delivery latency. Though it can be posed as an
MDP, it is hard to solve due to the curse of dimensionality.
To this end, we proposed a fluid Whittle index policy which is
provably asymptotically optimal. Since the system parameters
are often unknown and time-varying in the cloud, we proposed
an RL algorithm entitled fW-UCB that fully exploit the struc-
ture of our index policy and hence is lightweight. We showed
that it has an optimal sub-linear regret. Extensive simulations
using real traces demonstrated the significant gains of our
proposed policies over conventional ones.

APPENDIX A
PROOFS ON FLUID WHITTLE INDEX POLICY

A. Proof of Proposition 1

Proof: Since the set of feasible policies Π is non-empty,
there exists a stationary policy π∗ that optimally solves (15).
Let R∗ = max{S ∈ {0, 1, · · · } : Aπ∗

n (S) = 0}, where we use
the superscript π∗ to denote actions under policy π∗ and let

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 11

Aπ∗

n (S) be the action at state S for content n under policy
π∗. By definition, we have Aπ∗

n (S) = 1, ∀S > R∗.
Given the transition rates in (1), we have dn(Sn, 0) =

dn(Sn, 1) = 0, ∀Sn < R∗. Zero departure rate indicates that
all states below R∗ are transient [63], implying the stationary
probability for content n in state Sn under policy π∗ being 0,
i.e., ϕπ∗

n (Sn) = 0, ∀Sn < R∗. Hence, the average cost under
the optimal policy π∗ reduces to

Eπ∗ [S]−WkE[1{Aπ∗
n (S)=0}] =

R∗−1∑
S=0

Sϕπ∗

n (S) + R∗ϕπ∗

n (R∗)

+
∞∑

S=R∗+1

Sϕπ∗

n (S)−Wk

R∗∑
S=0

ϕπ∗

n (S)1{Aπ∗
n (S)=0}

=
∞∑

S=R∗

Sϕπ∗

n (S)−Wkϕπ∗

n (R∗),

i.e., the threshold-type policy optimally solves (15). Similar
techniques have also been used in [62] and [63], we present
the proof here for completeness. □

B. Proof of Proposition 2

Proof: For ease of exposition, we only consider the state
of content n in frame k. Denote its queue length as S. From
our definition, the transition rate satisfies qn,k(S + 1|S, 0) =
qn,k(S + 1|S, 1) = λn,k, and qn,k(S − 1|S, 0) = 0 for S ≤ R
and qn,k(S − 1|S, 1) = µn,kS for S > R. It is clear that the
dummy states in which R′ < R is transient because the queue
length keeps increasing. Therefore, the stationary probabilities
for dummy states are all zero, i.e, ϕR

n (R′) = 0. Based on
standard birth-and-death process, the stationary probabilities
of content n can be expressed as

ϕR
n (R + l) =

(
λn,k

µn,k

)l 1
Πl

j=1(R + j)
ϕR

n (R).

Since ϕR
n (R) + ϕR

n (R + 1) + ϕR
n (R + 2) + · · · = 1,

we obtain (17). □

C. Proof of Proposition 3

Proof: Since the optimal policy for (15) is a threshold
policy, for a given Wk, the optimal average cost under thresh-
old R is J(Wk) := minR{JR(Wk)}, where

JR(Wk) :=
∞∑

S=0

LϕR
n (S)−Wk

R∑
S=0

ϕR
n (S). (32)

It is easy to show that JR(Wk) is a concave non-increasing
function since it is a upper envelope of linear non-increasing
functions in Wk, i.e., JR(Wk) < JR(W ′

k) if Wk > W ′
k.

This means we can choose a larger threshold R when Wk

increases to further increase the total cost according to (32),
i.e, R(Wk) ⊆ R(W ′

k) when Wk < W ′
k. Next we show that∑R

S=0 ϕR
i (S) is strictly increasing in R. From Proposition 2,

we have
R∑

S=0

ϕR
n (S) = ϕR

n (R) =
1

1 +
∑∞

S=1

(
λn,k

µn,k

)S∏S−1
m=0

1
R+1+m

,

which is strictly increasing in R. □

D. Proof of Proposition 4

Proof: This follows from the definition of Whittle index
that the performance of a policy with threshold R equals to
the performance of a policy with threshold R + 1 [62], [63],
i.e.,

ER[S]−WER[1{An(S)=0}]
= ER+1[S]−WER+1[1{An(S)=0}], (33)

where a subscript denotes the fact that the associated quantities
involve a threshold policy with the value of threshold equal to
this value. Since the evolution of the n-th content is described
by the transition kernel (a birth-and-death process) in (1),
we have ER[1{An(S)=0}] =

∑R
S=0 ϕR

n (S). □

E. Proof of Theorem 1

Proof: To prove (19), it suffices to show that

lim
ρ→∞

1
ρ
C(π⋆

k, ρB⋆
k , ρ|Nk|) ≤ lim

ρ→∞

1
ρ
C(πopt

k , ρBopt
t , ρ|Nk|).

Let Dn,k(s) be the average number of class-n contents under
state s in frame k under the stationary policy π⋆

k. Follow-
ing [66], the difference between the state distribution under the
Whittle index policy π⋆

k and the steady-state distribution under
the optimal policy for the relaxed problem in (6) diminishes
to zero, when ρ|Nk| → ∞ and B⋆

k/|Nk| is a constant, i.e.,
limρ→∞Dn,k(s)/ρ = xn,k,s,∀n, k. Therefore, we have

lim
ρ→∞

C(π⋆
k, ρB⋆

k , ρ|Nk|)
ρ

= lim
ρ→∞

1
ρ

Eπ⋆
k

[
κcd lim sup

Tk→∞

ρ|Nk|∑
n=1

1
Tk

∫ Tk

t=1

Sn(k, t)dt

]
+ (1− κ)cbB

⋆
k

(a)
= lim

ρ→∞

[
κcd

|Nk|∑
n=1

∑
s∈S

sDn,k(s)
ρ

]
+ (1− κ)cbB

⋆
k

(b)
= κcd

|Nk|∑
n=1

∑
s∈S

sx⋆
n,k,s + (1− κ)cbB

⋆
k = Cfluid(B⋆

k , |Nk|)

(c)

≤ lim
ρ→∞

C(πopt
n , ρBopt

k , ρ|Nk|)
ρ

,

where (a) follows from the definition of Dn,k(s), (b) holds
because of limρ→∞Dn,k(s)/ρ = xn,k,s, and (c) is due to
definition. □

APPENDIX B
PROOF OF THEOREM 2

Since there are two phases in fW-UCB, we decompose the
regret in two parts as ∆(Tk) = ∆(L1)+∆(L2), where ∆(L1)
is the regret for the planning phase with any random policy
and ∆(L2) is the regret for the policy execution phase, and
L2 = Tk − L1.

A. The Regret of the Planning Phase

In the planning phase, each state-action pair (s, 1) for
each content is randomly sampled for f(Tk) times. The
performance gap between the genie-aided policy and the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

random policy for each time is bounded because the cost is
bounded, and hence we have

Lemma 1: Since the reward is bounded, the regret
in the planning phase can be bounded by ∆(L1) =
O (Smax|Nk|f(Tk)) .

Proof: The result follows the fact that there are |Nk|
contents with a total Smax state-action pairs and to guarantee
each state-action pair being sampled for f(Tk) times. □

B. The Regret of the Policy Execution Phase

We next analyze the regret of the policy execution phase,
i.e., ∆(L2), which is defined as ∆(L2) := L2γ

opt
k −

E[C(π⋆
k, L2)], which characterizes the accumulated cost gap

when the true MDP employs the optimal policy πopt and the
learned policy π⋆

k, respectively. For the entire parameter space,
two possible events can occur at the policy execution phase,
which separates the regret into two disjoint parts. Next we
bound these two parts separately.

The first event is called the failure event, which occurs when
the true MDP Mk := {Pn,k,∀n} lies outside the plausible
MDPs set Mk (see definition in (27)), and the second is the
good event when true MDP Mk lies inside the plausible MDPs
set Mk. Therefore, the regret of the policy execution phase
can be decomposed into two parts as follows

∆(L2) = ∆(L2)1(Mk /∈Mk) + ∆(L2)1(Mk ∈Mk).

1) Regret Conditioned on the Failure Event: Define the
failure event as Ep := {∃s, n, |Pn,k(s′|s, 1)− P̄n,k(s′|s, 1)| >
δs
n,k}, which means that the true parameters are outside

the confidence interval constructed in (25). The associated
complementary event is denoted as Ec

p . Therefore, we have the
following relations: {Mk /∈Mk} := Ep, and {Mk ∈Mk} :=
Ec

p . We now characterize the probability that the failure event
occurs.

Lemma 2: With δs
n,k =

√
s2

2f(Tk) log
(
Smax|Nk|f(Tk)/η

)
,

we have
P(Mk /∈Mk) ≤ 2η

f(Tk) .

Proof: By Chernoff-Hoeffding inequality [67], we have

P
(
|Pn,k(s′|s, 1)− P̄n,k(s′|s, 1)| > δs

n,k

)
≤ 2η

Smax|Nk|f(Tk)
.

By leveraging union bound over all states, actions, number of
arms, we have P(Mk /∈Mk) ≤

∑|Nk|
n=1

∑
s P
(
|Pn,k(s′|s, 1)−

P̄n,k(s′|s, 1)| > δs
n,k

)
≤ 2η/f(Tk). □

Lemma 3: The regret conditioned on the failure event is

∆(L2)1(Mk /∈Mk) = O
(
2|Nk|L2η/f(Tk)

)
.

Proof: From Lemma 2, we have

∆(L2)1(Mk /∈Mk) = O(|Nk|L21(Mk /∈Mk))
= O(2|Nk|L2η/f(Tk)),

where the first equality is due to that ∆(L2) is bounded by
O(|Nk|L2). □

2) Regret Conditioned on the Good Event: From Lemma 5,
we have that the true MDP is inside the plausible MDPs
set, i.e., Mk ∈ Mk, with probability at least 1 − 2η/f(Tk).
Now we consider the regret conditioned on the good event
Mk ∈ Mk. Define γopt

k as the optimal average cost achieved
by the optimal policy πopt

k and γ⋆
k as optimistic average reward

achieved by the learned policy π⋆
k for the ture MDP Mk. Then

∆(L2)1(Mk ∈Mk) = L2γ
⋆
k − L2γ

opt
k .

Before showing the regret conditioned on the good event,
we first present a key lemma.

Lemma 4: (Optimism) Conditioned on the good event, there
exists a transition P̃n,k ∈ Pn,k,∀n such that

|Nk|∑
n=1

∑
s∈S

ϕopt
n,k(s)s ≥

|Nk|∑
n=1

∑
s∈S

ϕ̃n,k(s)s,

where ϕ̃n,k is the stationary distribution derived from
{P̃n,k,∀n}.

Proof: The true Pn,k is contained in Pn,k,∀n for a good
event. The result directly comes from the fact that confidence
interval expands the feasibility region of original problem. □

Remark 3: Lemma 4 indicates that inside the plausible
MDPs set Mk, there exists an MDP M̃k with parameters
{P̃n,k,∀n} achieving no more accumulated cost compared to
the cost achieved by optimal policy for the true MDP Mk.

For ease of expression, we denote the state for all contents
as a stacked vector s ∈ S |Nk|×1 := [s1, s2, . . . , s|Nk|], the cor-
responding actions under policy π as π(s), and the unknown
MDPs as Θk := [P1,k, P2,k, . . . , P|Nk|,k]. The transition kernel
of the stacked system is then PΘ(·|s, π(s)),∀s ∈ S |Nk|×1.

Let π⋆
Θk

denote the proposed Fluid Whittle index policy
corresponding to the transition model Θk and PΘk

be the
controlled transition matrix under policy π⋆

Θk
. Denote γ⋆

Θk
as

the average reward of policy π⋆
Θk

, which satisfies the average
reward Bellman equation [5],

γ⋆
Θk

+ FΘk
(s) = R(s, π⋆

Θk
(s))

+ [PΘk
FΘk

](s),∀s ∈ S |Nk|×1, (34)

where FΘk
(s) is the relative value function.

Define γopt
k as the optimal average reward achieved by the

optimal policy πopt
k and γ⋆

k as average reward achieved by
the learned policy π⋆

k for the true MDP Mk. Define γ̃⋆
k as

the optimistic average reward achieved by the learned policy
π̃⋆

k for the optimistic MDP M̃k. Then we have the following
lemma to upper bound the regret conditioned on good event,
i.e., Mk ∈Mk.

Lemma 5: The regret for conditioned on the good event can
be expressed as

∆ (L2)1(Mk ∈Mk)

≤

[
L2∑
t=1

FΘ̃k
(st+1)− [PΘ̃k

FΘ̃k
](st)

]
+ c1,

where Θ̃k is the parameter of the optimistic MDP M̃k and
c1 is a constant.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 13

Proof: The proof goes as follows:

∆(L2)1(Mk ∈Mk) =
L2∑
t=1

R(s(t), π⋆
k(s(t)))− L2γ

opt
k

=
L2∑
t=1

R(s(t), π⋆
k(s(t)))− L2γ

opt
k

−L2γ̃
⋆
k + L2γ̃

⋆
k

(a)

≤
L2∑
t=1

R(s(t), π⋆
k(s(t)))− L2γ̃

⋆
k

(b)
= −

L2∑
t=1

R(s(t), π̃⋆
k(s(t)))

−
L2∑
t=1

[PΘ̃k
FΘ̃k

](st) + FΘ̃k
(st)

+
L2∑
t=1

R(s(t), π⋆
k(s(t)))

(c)
=

L2∑
t=1

−[PΘ̃k
FΘ̃k

](st) + FΘ̃k
(st)

=
L2∑
t=1

−[PΘ̃k
FΘ̃k

](st) + FΘ̃k
(st+1)

−FΘ̃k
(st+1) + FΘ̃k

(st)

=
L2∑
t=1

−[PΘ̃k
FΘ̃k

](st) + FΘ̃k
(st+1)

−FΘ̃k
(sL2+1) + FΘ̃k

(s1)

(d)

≤
L2∑
t=1

FΘ̃k
(st+1)− [PΘ̃k

FΘ̃k
](st) + c1,

where (a) holds due to the fact the optimistic average reward
γ̃⋆

k for the optimistic MDPs Θ̃k is no larger that the opti-
mal average reward γopt

k for the true MDP according to
Lemma 4; (b) directly follows from the Bellman equation
in (34); (c) is due to the fact that

∑L2
t=1 R(s(t), π̃⋆

k(s(t))) =∑L2
t=1 R(s(t), π⋆

k(s(t))), and c1 in (d) is a constant term. □

To bound the regret we present two key lemmas as follows.
Lemma 6 Azuma-Hoeffding inequality [73]: Let X1, X2,

be a martingale difference sequence with |Xi| ≤ c for all i.
Then for all ϵ > 0

P

(
n∑

i=1

Xi > ϵ

)
≤ exp

(
− ϵ2

2nc2

)
.

Lemma 7 [74]: For any Θ, we have that 0 ≤ γΘ ≤ SmaxB
⋆
k

and span(FΘ) ≤ c2γΘ, with c2 being a constant value related
with the ergodicity coefficient.

We are now ready to characterize the regret conditioned on
the good event.

Lemma 8: Conditioned on the good event, the regret is
given by

∆(L2)1(Mk ∈Mk) = O
(
SmaxB

⋆
k |Nk|

√
Tk log Tk

)
,

with a probability larger than 1− 1
T 2

k
.

Proof: Define Xt = E
[
[PΘ̃k

FΘ̃k
](st+1)− FΘ̃k

(st)
]
.

We have

∆(L2)1(Mk ∈Mk) ≤
∑L2

t=1 Xt + c1.

Due to the fact that

E
[
[PΘ̃k

FΘ̃k
](st+1)− FΘ̃k

(st)
]

≤ c2SmaxB
⋆
k

∑
n

E[|Pn(s′|s, a)− P̃n(s′|s, a)|1]

≤ c2SmaxB
⋆
k |Nk|,

we have

|Xt| ≤ c2SmaxB
⋆
k |Nk|.

Since E[Xt|s1,a1, . . . , st,at] = 0, Xt is a sequence of
martingale difference due to the Bellman equation in (34).
Applying Azuma-Hoeffding inequality yields,

P

(∑
t

Xt ≥ c2SmaxB
⋆
k |Nk|

√
4Tk log Tk

)
≤
(

1
Tk

)2

.

Hence, conditioned on good event we have

∆(L2)1(Mk ∈Mk) = O
(
SmaxB

⋆
k |Nk|

√
Tk log Tk

)
.

□
3) Total Regret: Combining Lemma 1, 3 and 8 and let

f(Tk) =
√

Tk, the total regret is given by

∆(Tk) = ∆(L1) + ∆(L2)

= O((1 + B⋆
k

√
log Tk)Smax|Nk|

√
Tk).

REFERENCES

[1] G. Xiong, S. Wang, G. Yan, and J. Li, “Reinforcement learning for
dynamic dimensioning of cloud caches: A restless bandit approach,” in
Proc. IEEE INFOCOM, May 2022, pp. 2108–2117.

[2] G. Forecast et al., “Cisco visual networking index: Global mobile data
traffic forecast update, 2017–2022,” Cisco, San Jose, CA, USA, 2019.

[3] Amazon AWS. Accessed: May 2021. [Online]. Available: https://aws.
amazon.com/

[4] Amazon Cloudfront. Accessed: May 2021. [Online]. Available: https://
aws.amazon.com/

[5] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 1994.

[6] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, no. A, pp. 287–298, 1988.

[7] J. Gittins, K. Glazebrook, and R. Weber, Multi-Armed Bandit Allocation
Indices. Hoboken, NJ, USA: Wiley, 2011.

[8] I. M. Verloop, “Asymptotically optimal priority policies for indexable
and nonindexable restless bandits,” Ann. Appl. Probab., vol. 26, no. 4,
pp. 1947–1995, Aug. 2016.

[9] J. Niño-Mora, “Dynamic priority allocation via restless bandit marginal
productivity indices,” Top, vol. 15, no. 2, pp. 161–198, 2007.

[10] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds
for reinforcement learning,” J. Mach. Learn. Res., vol. 11, no. 51,
pp. 1563–1600, 2010.

[11] A. Gopalan and S. Mannor, “Thompson sampling for learning parame-
terized Markov decision processes,” in Proc. 28th Conf. Learn. Theory,
2015, pp. 861–898.

[12] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[13] Redis. Accessed: May 2021. [Online]. Available: https://redis.io/
[14] Amazon Web Service ElastiCache. Accessed: May 2021. [Online].

Available: https://aws.amazon.com/elasticache/
[15] J.-C. Bolot and P. Hoschka, “Performance engineering of the world wide

web: Application to dimensioning and cache design,” Comput. Netw.
ISDN Syst., vol. 28, nos. 7–11, pp. 1397–1405, May 1996.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[16] J. Sahoo et al., “A survey on replica server placement algorithms for
content delivery networks,” IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 1002–1026, 2nd Quart., 2017.

[17] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The role
of caching in future communication systems and networks,” IEEE J. Sel.
Areas Commun., vol. 36, no. 6, pp. 1111–1125, Jun. 2018.

[18] G. Iosifidis, J. Kwak, and G. Paschos, “19 Economic ecosystems in
elastic wireless edge caching,” in Wireless Edge Caching: Modeling,
Analysis, and Optimization. Cambridge, U.K.: Cambridge Univ. Press,
2021, p. 387.

[19] D. Carra, G. Neglia, and P. Michiardi, “Elastic provisioning of cloud
caches: A cost-aware TTL approach,” IEEE/ACM Trans. Netw., vol. 28,
no. 3, pp. 1283–1296, Jun. 2020.

[20] J. Kwak, G. Paschos, and G. Iosifidis, “Dynamic cache rental and content
caching in elastic wireless CDNs,” in Proc. 16th Int. Symp. Model.
Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), 2018, pp. 1–8.

[21] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:
Dynamic cloud caching,” in Proc. USENIX HotCloud, 2015, pp. 1–27.

[22] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Trans. Inf. Theory, vol. 56, no. 11, pp. 5547–5567, Nov. 2010.

[23] W. Dai, Y. Gai, B. Krishnamachari, and Q. Zhao, “The non-Bayesian
restless multi-armed bandit: A case of near-logarithmic regret,” in Proc.
IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), May 2011,
pp. 2940–2943.

[24] S. P. Sheng, M. Liu, and R. Saigal, “Data-driven channel modeling using
spectrum measurement,” IEEE Trans. Mobile Comput., vol. 14, no. 9,
pp. 1794–1805, Sep. 2015.

[25] K. Avrachenkov, U. Ayesta, J. Doncel, and P. Jacko, “Congestion control
of TCP flows in internet routers by means of index policy,” Comput.
Netw., vol. 57, no. 17, pp. 3463–3478, Dec. 2013.

[26] A. Mahajan and D. Teneketzis, “Multi-armed bandit problems,” in
Foundations and Applications of Sensor Management. Berlin, Ger-
many: Springer, 2008, pp. 121–151.

[27] S. H. A. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari,
“Optimality of myopic sensing in multichannel opportunistic access,”
IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4040–4050, Sep. 2009.

[28] V. S. Borkar, K. Ravikumar, and K. Saboo, “An index policy for dynamic
pricing in cloud computing under price commitments,” Applicationes
Mathematicae, vol. 44, pp. 215–245, Jan. 2017.

[29] E. Lee, M. S. Lavieri, and M. Volk, “Optimal screening for hepatocel-
lular carcinoma: A restless bandit model,” Manuf. Service Operations
Manage., vol. 21, no. 1, pp. 198–212, Jan. 2019.

[30] A. Mate, A. Perrault, and M. Tambe, “Risk-aware interventions in public
health: Planning with restless multi-armed bandits,” in Proc. AAMAS,
2021, pp. 880–888.

[31] J. A. Killian, A. Perrault, and M. Tambe, “Beyond ‘to act or not to act’:
Fast Lagrangian approaches to general multi-action restless bandits,” in
Proc. AAMAS, 2021, pp. 710–718.

[32] T. W. Archibald, D. P. Black, and K. D. Glazebrook, “Indexability
and index heuristics for a simple class of inventory routing problems,”
Operations Res., vol. 57, no. 2, pp. 314–326, Apr. 2009.

[33] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queueing network control,” in Proc. IEEE Conf. Struct. Complex.
Theory, Jun. 1994, pp. 318–322.

[34] J. Niño-Mora, “Restless bandits, partial conservation laws and indexa-
bility,” Adv. Appl. Probab., vol. 33, no. 1, pp. 76–98, Mar. 2001.

[35] D. Bertsimas and J. Niño-Mora, “Restless bandits, linear programming
relaxations, and a primal-dual index heuristic,” Operations Res., vol. 48,
no. 1, pp. 80–90, Feb. 2000.

[36] W. Hu and P. Frazier, “An asymptotically optimal index policy for finite-
horizon restless bandits,” 2017, arXiv:1707.00205.

[37] G. Zayas-Cabán, S. Jasin, and G. Wang, “An asymptotically optimal
heuristic for general nonstationary finite-horizon restless multi-armed,
multi-action bandits,” Adv. Appl. Probab., vol. 51, no. 3, pp. 745–772,
Sep. 2019.

[38] H. Liu, K. Liu, and Q. Zhao, “Logarithmic weak regret of non-Bayesian
restless multi-armed bandit,” in Proc. IEEE ICASSP, May 2011,
pp. 1968–1971.

[39] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless
multiarmed bandit with unknown dynamics,” IEEE Trans. Inf. Theory,
vol. 59, no. 3, pp. 1902–1916, Mar. 2013.

[40] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5588–5611, Aug. 2012.

[41] R. Ortner, D. Ryabko, P. Auer, and R. Munos, “Regret bounds for
restless Markov bandits,” in Proc. Algorithmic Learn. Theory, 2012,
pp. 214–228.

[42] Y. H. Jung and A. Tewari, “Regret bounds for Thompson sampling in
episodic restless bandit problems,” in Proc. NeurIPS, 2019, pp. 1–10.

[43] Y. Hun Jung, M. Abeille, and A. Tewari, “Thompson sampling in non-
episodic restless bandits,” 2019, arXiv:1910.05654.

[44] C. Tekin and M. Liu, “Adaptive learning of uncontrolled restless bandits
with logarithmic regret,” in Proc. 49th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), 2011, pp. 983–990.

[45] V. S. Borkar and K. Chadha, “A reinforcement learning algorithm
for restless bandits,” in Proc. Indian Control Conf. (ICC), Jan. 2018,
pp. 89–94.

[46] K. Avrachenkov and V. S. Borkar, “A learning algorithm for the whittle
index policy for scheduling web crawlers,” in Proc. 57th Annu. Allerton
Conf. Commun., Control, Comput. (Allerton), 2019, pp. 1001–1006.

[47] J. Fu, Y. Nazarathy, S. Moka, and P. G. Taylor, “Towards Q-learning
the whittle index for restless bandits,” in Proc. Austral. New Zealand
Control Conf., 2019, pp. 249–254.

[48] S. Wang, L. Huang, and J. Lui, “Restless-UCB, an efficient and low-
complexity algorithm for online restless bandits,” in Proc. NeurIPS,
2020, pp. 1–12.

[49] J. A. Killian, A. Biswas, S. Shah, and M. Tambe, “Q-learning Lagrange
policies for multi-action restless bandits,” in Proc. ACM SIGKDD, 2021,
pp. 871–881.

[50] A. Biswas, G. Aggarwal, P. Varakantham, and M. Tambe, “Learning
index policies for restless bandits with application to maternal health-
care,” in Proc. AAMAS, 2021, pp. 1–2.

[51] K. Nakhleh et al., “NeurWIN: Neural whittle index network for restless
bandits via deep RL,” in Proc. NeurIPS, 2021, pp. 1–12.

[52] G. Xiong, J. Li, and R. Singh, “Reinforcement learning augmented
asymptotically optimal index policy for finite-horizon restless ban-
dits,” in Proc. AAAI Conf. Artif. Intell., Jun. 2022, vol. 36, no. 8,
pp. 8726–8734.

[53] G. Xiong, X. Qin, B. Li, R. Singh, and J. Li, “Index-aware reinforcement
learning for adaptive video streaming at the wireless edge,” in Proc.
ACM MobiHoc, 2022, pp. 81–90.

[54] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. IEEE INFOCOM,
Apr. 2014, pp. 2040–2048.

[55] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in Proc. ACM SIGMETRICS, 2016, pp. 113–124.

[56] J. Li et al., “DR-cache: Distributed resilient caching with latency
guarantees,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 441–449.

[57] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache
networks,” in Proc. IEEE INFOCOM, Jan. 2019, pp. 1130–1143.

[58] N. K. Panigrahy, J. Li, D. Towsley, and C. V. Hollot, “Network
cache design under stationary requests: Exact analysis and Poisson
approximation,” Comput. Netw., vol. 180, Oct. 2020, Art. no. 107379.

[59] Y. Li and S. Ioannidis, “Universally stable cache networks,” in Proc.
IEEE INFOCOM, Jul. 2020, pp. 546–555.

[60] F. Baccelli and P. Brémaud, Elements of Queueing Theory: Palm Mar-
tingale Calculus and Stochastic Recurrences, vol. 26. Berlin, Germany:
Springer, 2013.

[61] A. Wierman, L. L. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 2007–2015.

[62] M. Larra naga, U. Ayesta, and I. M. Verloop, “Index policies for a multi-
class queue with convex holding cost and abandonments,” in Proc. ACM
Sigmetrics, 2014, pp. 1–13.

[63] M. Larrnaaga, U. Ayesta, and I. M. Verloop, “Dynamic control
of birth-and-death restless bandits: Application to resource-allocation
problems,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3812–3825,
Dec. 2016.

[64] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic
arrivals,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 2634–2638.

[65] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[66] R. R. Weber and G. Weiss, “On an index policy for restless bandits,”
J. Appl. Probab., vol. 27, no. 3, pp. 637–648, Sep. 1990.

[67] W. Hoeffding, “Probability inequalities for sums of bounded ran-
dom variables,” in The Collected Works of Wassily Hoeffding. Berlin,
Germany: Springer, 1994, pp. 409–426.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: REINFORCEMENT LEARNING FOR DYNAMIC DIMENSIONING OF CLOUD CACHES 15

[68] C. Jin, T. Jin, H. Luo, S. Sra, and T. Yu, “Learning adversarial MDPs
with bandit feedback and unknown transition,” 2019, arXiv:1912.01192.

[69] A. Rosenberg and Y. Mansour, “Online convex optimization in adversar-
ial Markov decision processes,” in Proc. ICML, 2019, pp. 5478–5486.

[70] K. C. Kalagarla, R. Jain, and P. Nuzzo, “A sample-efficient algorithm
for episodic finite-horizon MDP with constraints,” in Proc. AAAI, 2021,
pp. 8030–8037.

[71] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
J. Sel. Areas Commun., vol. 35, no. 5, pp. 1076–1089, May 2017.

[72] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local:
YouTube network traffic at a campus network: Measurements and
implications,” in Proc. SPIE, Multimedia Comput. Netw., San Jose, CA,
USA, vol. 6818, Jan. 2008, Art. no. 681805.

[73] B. Bercu, B. Delyon, and E. Rio, Concentration Inequalities for Sums
and Martingales. Berlin, Germany: Springer, 2015.

[74] N. Akbarzadeh and A. Mahajan, “On learning whittle index policy for
restless bandits with scalable regret,” 2022, arXiv:2202.03463.

Guojun Xiong (Graduate Student Member, IEEE)
received the B.S. degree in information science
and technology from the Sun Yat-sen University in
2015 and the M.S. degree in electrical engineering
and computer science from the University of Kansas
in 2020. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, Binghamton University, State Univer-
sity of New York. His research interests include
wireless communication, networking, optimization
and control, and reinforcement learning.

Shufan Wang received the B.S. degree from Nan-
jing University in June 2017 and the M.S. degree
from Binghamton University in September 2022,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering. His research interests include online
algorithms in large-scale networked systems and
reinforcement learning.

Gang Yan received the B.S. degree from Nankai
University in June 2016, where he received the M.S.
degree in statistics in June 2019. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Bingham-
ton University, State University of New York. His
research interests include federated learning, security
and defense in distributed systems, and caching and
content delivery.

Jian Li (Member, IEEE) received the B.E. degree
from Shanghai Jiao Tong University in June
2012 and the Ph.D. degree in computer engineering
from Texas A&M University in December 2016.
He was a Post-Doctoral Researcher at the College
of Information and Computer Sciences, University
of Massachusetts Amherst, from January 2017 to
August 2019. He is currently an Assistant Professor
of computer engineering with the Department of
Electrical and Computer Engineering, Binghamton
University, State University of New York. His cur-

rent research interests include intersection of algorithms for reinforcement
learning, federated/distributed learning, and stochastic optimization and con-
trol, with applications to next-generation networked systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on January 19,2023 at 18:32:33 UTC from IEEE Xplore. Restrictions apply.

