
44 Int. J. Internet Protocol Technology, Vol. 5, Nos. 1/2, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

Detecting and blocking P2P botnets through contact
tracing chains

Zhiyong Huang* and Xiaoping Zeng
College of Communication Engineering,
Chongqing University,
Chongqing, 400030, P.R. China
E-mail: zyhuang@cqu.edu.cn E-mail: zxp@cqu.edu.cn
*Corresponding author

Yong Liu
Department of Electrical and Computer Engineering,
Polytechnic Institute of NYU,
5 Metrotech Center,
Brooklyn, NY 11201, USA
E-mail: yongliu@poly.edu

Abstract: Peer-to-peer (P2P) botnets have recently become serious security threats on the
internet. It is difficult to detect the propagation of P2P botnets by isolated monitoring on
individual machines due to its decentralised control structure. In this paper, we propose a contact
tracing chain-based framework to detect and block P2P botnets by tracing contact behaviours
among peers. In the proposed framework, the contacts of peers with suspicious symptoms are
traced and tracing chains are established to correlate contacts among peers with their abnormal
symptoms. Peers are confirmed with infections when the length of contact tracing chain that they
belong to reaches a preset threshold. Under this framework, we develop different detection,
tracing and immunisation strategies. Through numerical simulations, we demonstrate that the
proposed contact tracing framework can quickly detect and block the propagation of P2P botnets.

Keywords: botnet; P2P; worm; contact tracing; transmission chain; entropy; threshold; detection;
blocking; immunisation; simulation; protocol.

Reference to this paper should be made as follows: Huang, Z., Zeng, X. and Liu, Y. (2010)
‘Detecting and blocking P2P botnets through contact tracing chains’, Int. J. Internet Protocol
Technology, Vol. 5, Nos. 1/2, pp.44–54.

Biographical notes: Zhiyong Huang is currently a PhD candidate in the College of
Communication Engineering, Chongqing University. He received his MS from Chongqing
University in 2004. In 2007, he was a Visitor Researcher at the Department of Electrical and
Computer Engineering, Polytechnic Institute of NYU. He currently works at the College of
Communication Engineering at Chongqing University. His research interests include network
security and network modelling, simulation and analysis.

Xiaoping Zeng received his BS, MS and PhD from Chongqing University in 1982, 1987 and
1996, respectively. He is currently a Professor of College of Communication Engineering at
Chongqing University. His research interests include network security, control and systems
methods in communication networks. Until now, he has published more than 70 technical papers
on relevant field.

Yong Liu has been an Assistant Professor at the Electrical and Computer Engineering
Department of Polytechnic Institute of NYU since 2005. He received his PhD from Electrical and
Computer Engineering Department at the University of Massachusetts, Amherst in 2002. He
received his Masters and Bachelors in the field of Automatic Control from the University of
Science and Technology of China in 1997 and 1994, respectively. His general research interests
lie in modelling, design and analysis of communication networks. His current research directions
include robust network routing, peer-to-peer IPTV systems, overlay networks and network
measurement. He is a member of IEEE and ACM.

 Detecting and blocking P2P botnets through contact tracing chains 45

1 Introduction

In recent years, botnets have been frequently utilised by
attackers to launch malicious attacks on the internet. A
botnet is a network of compromised peers (bots), which are
controlled by an attacker to launch DDOS attacks, distribute
spam e-mails, etc. Using botnets, attackers can launch
attacks from thousands or even millions of distributed
bots. Early botnets adopted the client-server-based system
architecture. All bots in a botnet connect to some command
and control (C&C) servers. Bots receive commands from
C&C servers using protocols like Internet Relay Chat (IRC).
One drawback of this client-server architecture is that, due
to the heavy traffic between servers and bots, the C&C
servers can be easily detected by defenders. And the entire
botnet will be shut down once the C&C servers are blocked.
More recent botnets employ the peer-to-peer (P2P) system
architecture. In a P2P architecture, there is no fixed C&C
servers. Every bot in the botnet acts as both client and
server. Bots communicate and exchange information with
each other using existing or customised P2P protocols.
Attackers disguise themselves as normal peers and
disseminate their commands to all peers in the same P2P
botnets. Due to the distributed nature of P2P botnets, it is
very challenging to detect and block them. In this paper, we
propose a novel contact tracing chain-based approach to the
detection and blocking of P2P botnets.

The main challenges in botnet detection are:

1 P2P botnet are now under widespread development.
Some P2P botnets use existing P2P protocols, while
others develop customised protocols (Grizzard et al.,
2007). For example, Phatbot (Stewart, 2004) uses code
from the WASTE project to implement P2P, but
Nugache (Lemos, 2006) and SpamThru (Stewart, 2004)
use their own P2P protocols for communication
between peers. Most of the customised protocols are
encrypted. It is very difficult to detect the signalling
among bots in P2P botnets through protocol analysis.

2 To escape from traffic analysis-based detection, some
intelligent P2P botnets deliberately changed their
infection tactics [e.g., reducing the size of their network
(Higgins, 2007)]. It is hard to distinguish a P2P botnet
from a normal P2P network by looking into the traffic
volume and contacts between peers.

3 Since there is no centralised C&C servers, P2P botnets
are very ‘resilient’. A bot can receive C&C signal from
any of its peering neighbours. When the number of
peering contacts of each peer is reasonably large, the
whole P2P botnet has very robust connectivity and can
remain connected even after a large portion of bots are
detected and removed from the botnet.

To address the previously described challenges, we develop
a contact tracing chain-based P2P botnet detection and
immunisation approach. Contact tracing has been
successfully applied in disease control (Huerta and
Tsimring, 2002; Hymana et al., 2003; Eames and Keeling,

2003). In our paper, we attempt to use contact tracing chains
to detect bots.

The contributions of our work are summarised as
follows:

1 We apply the concepts of contact tracing and
transmission chain to the detection and immunisation of
P2P botnets. We developed a tracing-chain-based
framework that can efficiently identify and block P2P
botnets.

2 Simple threshold-based contact detection scheme
cannot detect intelligent botnets. We develop a novel
entropy-based detection approach to distinguish botnets
from normal P2P networks.

3 We propose several tracing-chain algorithms to strike
the right balance between the efficiency and the
accuracy of contact tracing.

4 We implement a discrete time simulator and conduct
extensive simulations to study the efficiency and
robustness of the proposed contact tracing framework
under different network and system settings.

2 Background and related works

2.1 P2P botnets

P2P botnets are quickly becoming one of the most
significant threats on the internet today. P2P botnets are
networks of compromised peers controlled by attackers
through P2P communication protocols. P2P botnets
have robust network connectivity. They hide their
activities through signal encryption and traffic dispersion.
Consequently, it is very difficult to trace and shut down P2P
botnets.

Grizzard et al. (2007) described the development of P2P
botnet and introduced several P2P control architectures,
such as Slapper, Sinit, Phatbot and Nugache. Many P2P
networks are becoming the favourite places for malware to
spread (Dhungel et al., 2007; Liang et al., 2005). Worm is
widely adopted by P2P botnet in the wild due to its
automatic propagation characteristics.

As an example, Storm Worm botnet is the first major
botnet to use P2P network for C&C (Porras et al., 2007).
Similar to other e-mail worms (e.g., Loveletter/ILOVEYOU
and Bagle) (Holz et al., 2008), the e-mail body contains an
embedded link or an attachment with names such as
‘FullVideo.exe’, ‘Video.exe’ and ‘FullClip.exe’. Attackers
use social engineering techniques to pretend to be a
legitimate e-mail and trick the recipient into opening the
attachment or clicking on the embedded link. Once a victim
attempts to open the attached file or click the baleful link, it
will become an infected peer. After the Trojan installs the
initial infection files, the victim will attempt to connect
peers in the Storm Worm botnet. Subsequently, it will
download the full payload and become a real bot under the
control of the botmaster.

46 Z. Huang et al.

Within the propagation stage, the number of some
net-packets (e.g., ICMP, UDP and SMTP) sharply increased
(Kang et al., 2009), the high contact rate is the most
important characteristic for worm detection we considered
in this paper; it will be introduced in Section 4.

Some works have been done by researchers on P2P
botnets defences. Zhou et al. (2005) gave a ‘first look’ at
P2P worm defence. They proposed a framework where a
small fraction of guardian nodes are employed to detect
control flow hijacks of vulnerable programs using
schemes similar to those in Crandall and Chong (2004),
Newsome and Song (2005) and Suh et al. (2004), the
approach which deployed the same P2P network as P2P
worm to propagate alerts is similar to our strategy for
building tracing chain. Gu et al. (2008) presented a general
detection framework (BotMiner prototype system) that is
independent of botnet C&C protocol and structure, and
requires no a priori knowledge of botnets, the key of this
approach is focused on the net-behaviour detection; Holz et
al. (2008) estimated the total number of the bots through
infiltrating and analysing in-depth the Storm Worm botnet
and mitigates this botnet through disrupting the
communication channel, such as eclipsing content,
polluting; this paper described the typical characteristic of
Storm Worm. Our system adopted contact tracing scheme
based on the net-behaviour detection of single node to
identify the infected nodes.

2.2 Contact tracing

Contact tracing is a classic epidemic control method. It is
frequently used to combat many infectious diseases (such as
TB and AIDS) and new invading pathogens (such as
SARS). When an individual is identified as having a
communicable disease, any one has contacted with the
individual has a high probability to be infected. Tracing
based on contact history can quickly identify and block the
propagation of infections. Eames and Keeling (2003) used
the pairwise approach and full stochastic simulations to
investigate the efficiency of contact tracing in disease
control. Hymana et al. (2003) used random screening and
contact tracing to reduce the spread of HIV. Huerta and
Tsimring (2002) developed the mean-field model of contact
tracing for the case of random graphs. The idea of contact
tracing has recently been applied to network security field.
Xiong (2004) brought the concepts of contact tracing and
transmission chain into e-mail network worm and virus
control. In our paper, this approach is applied to detect and
block P2P botnets.

3 Contact tracing framework

In this section, we present the overall framework of contact
tracing for P2P botnets detection and control.

Similar to epidemic disease control, we classify peers
into different states according to their contact records and
symptoms. In P2P botnets, a contact is defined as the
establishment of a connection between a pair of peers. The

infectious symptom on a peer is defined as contacts at a rate
higher than a preset threshold. We classify peers into the
following five possible states:

1 Normal: A peer that has no infectious symptom is in
the normal state.

2 Connected: A peer that has been contacted by a
probable peer or a suspicious peer is in the connected
state.

3 Suspicious: A peer that has infectious symptom is in
the suspicious state.

4 Probable: A suspicious peer is confirmed with
infection and declared as probable if it is on an
established contact tracing chain (see details below).

5 Immunised: A probable peer that has been cleaned and
patched will change to the immunised state.

Figure 1 Diagram of peer state transitions

Infectious
symptom

Chain is
established

Bot is
immunized

Linked

Figure 1 shows the peer state transition:

1 Normal ⇒ suspicious: A normal peer changes to a
suspicious peer when it first has the infectious
symptom.

2 Normal ⇒ connected: A normal peer changes to a
connected peer when it is first contacted by a
suspicious peer or a probable peer.

3 Connected ⇒ suspicious: A connected peer changes to
a suspicious peer when it has infectious symptom.

 Detecting and blocking P2P botnets through contact tracing chains 47

4 Suspicious ⇒ probable: A suspicious peer changes to a
probable peer when the tracing chain which it belongs
to is established.

5 Probable ⇒ immunised: A probable peer changes to an
immunised peer when it is cleaned and patched.

The key of contact tracing-based detection is to monitor and
control peer state transitions. It consists of three
components: detection process, tracing process and
immunisation process. The detection process is to detect
peer infectious symptoms. The tracing process is to track
the contact history of suspicious peers and establish contact
tracing chains to confirm peer infections. The immunisation
process is to clean and patch the infected peers. At first, the
detection process monitors the contact rate of peers. If a
peer sends out more than a preset threshold M connections
within an interval ,δ it will be identified as an abnormal
peer and its state will be converted from normal to
suspicious. Secondly, the tracing process tracks the contacts
of all suspicious peers through recording links between a
suspicious peer and any peer that it contacts with. If a
normal peer is contacted by a suspicious peer, its state will
be converted to connected. Consequently, if any of those
contacted peers is detected with infectious symptom, that
peer will be also classified as suspicious and the new
contact links will be recorded by the tracing process. If
indeed the infection propagates through peer contacts, the
tracing process will identify a chain of contact links. A
complete tracing chain is established when the length of
contact tracing chain reaches a preset threshold K and the
tracing process can declare confirmed infections for all
peers on the tracing chain. The peers on the chain will
convert their state from suspicious to probable.
Immunisation will then be applied to the newly identified
probable peers.

In the following sections, we present the detailed
designs of detection, tracing and immunisation processes.

4 Symptom detection process

In the previous section, we talked about a simple
threshold-based symptom detection algorithm. However, the
network conditions are so complex that we cannot always
use a single fixed threshold to distinguish between legal
traffic and illegal traffic. Many worms adopted new
tactics to escape from simple threshold-based detection
(e.g., low-rate contact strategy). It will lead to a high false
alarm rate in the detection process (e.g., some peers running
normal P2P software are mistakenly considered as
suspicious bots by the simple threshold-based detection with
a low threshold, whereas some bots adopted low-rate
contact strategies are mistakenly missed by the simple
threshold-based detection with a high threshold). Even
though the transmission chain approach can tolerate some
false alarms on individual contact tracing links1, we still
want to improve the detection process to bring down the
false alarm rate of the detection process. In this paper, we

propose to distinguish P2P botnets from legitimate P2P
systems by investigating major contact-level characteristics.

If we have a long observation period of ,T we divide
T into n time slots. ()V k denotes the number of

connected peers in the time slot .k We record () ,p k the
ratio of the number of newly connected peers within time
slot k to the total number of connected peers in the whole
observation period .T For P2P botnets, ()p k takes large
values only for the infection time slots. For legitimate P2P
system, ()p k is more uniformly distributed across all time
slots in the observation period. More specifically, we can
calculate the entropy (Shanon, 1948) of ():p k

() () ()2
1

log .
=

= − ∑
n

k

H p n p k p k (1)

We can distinguish P2P bots from normal P2P systems by
computing their entropy values of ()p k in the observation
period. Normal P2P systems have uniformly low contact
rate and thus they have a high entropy value. Bots usually
have a similar structure of worm propagation. The entropy
value of ()p k is low.

To further improve the detection accuracy, we augment
the entropy-based detection by investigating additional peer
information, such as the contact ports, the arrival time, the
active time, the frequency and content length of contact
(Husna et al., 2008).

5 Contact tracing chain establishment

The core of the proposed contact tracing framework is to
track the contacting behaviours of suspicious peers and
establish contact tracing chains to confirm infections. The
algorithms used to build tracing chains determine the
efficiency and the accuracy of botnet detection and
blocking. On one hand, the algorithms should be efficient
and can quickly identify and block ongoing botnet
propagation. On the other hand, the algorithms should be
accurate and raise as few false alarms as possible. In this
section, we present three tracing chain algorithms to trade
off the efficiency and accuracy.

5.1 Basic chain algorithm

We first introduce a basic algorithm. In this basic algorithm,
each node is initially assigned with layer ID 0. For the first
time a peer is contacted by a peer with suspicious symptom,
it changes its layer ID from 0 to one plus the layer ID of the
suspicious peer. A peer’s layer ID will not be changed for
later contacts from other suspicious peers. A trace chain is
established if some peer’s layer ID reaches the chain length
threshold .K This algorithm can be easily implemented.
However, it can only identify simple contact tracing chains
consisting of contact links discovered sequentially.

48 Z. Huang et al.

For the network in Figure 2, the contact threshold is
1=M and the tracing chain threshold is 3.=K At time 1,

node B and C are contacted by node A, A is root node
whose layer ID is 0. At time 2, node B contacts node D,
node B changes its layer ID to 1. At time 3, node B is
contacted by node C, but B will keep its layer ID of 1. At
time 4, node E contacts node A. Node A will not change its
ID and this infection will be ignored. No tracing chain is
detected by this algorithm with threshold 3=K even
though we do have a chain of five peers and four of them
have suspicious symptoms.

This will largely slow down the botnet detection speed.

Figure 2 Establishment of tracing chains in a simple network

5.2 Longest-chain algorithm

To address this problem, we present another algorithm that
improves the detection speed by identifying the longest
contact tracing chain for each peer. We build the contact
graph with nodes being peers and links being contacts
initiated by suspicious peers. A contact tracing chain then
corresponds to a path in the contact graph. When a node is
contacted by multiple suspicious nodes, this node is placed
simultaneously on multiple paths/chains in the contact
graph. The longest-chain algorithm declares confirmed
infection for a peer if the length of the longest contact
path/chain that the peer is on reaches the chain length
threshold .K

To implement this algorithm using peer layer ID, the
layer ID of each peer is no longer fixed after the first
contact from a suspicious peer. When peer A is contacted by
a suspicious peer B, peer layer IDs are updated as follows:
if B’s ID is larger than or equal to A’s ID, set A’s ID to one
plus B’s ID, also update the layer IDs of A’s downstream
peers in contact chains. More specifically, each node i has
two state variables: (), ,i iP L where iP denotes the parent

node of ,i in other words, iP infected ,i iL is the layer of
node .i Initialising 0=iL and .=iP i Assuming K is the
preset chain length threshold, S is the set of nodes. When
node m is contacted by a suspicious node ,n S∈ the
longest-chain algorithm updates node states as in Table 1.

Table 1 Longest-chain tracing algorithm

Algorithm Node m is infected by node n

Procedure: Updating the Tracing Chain

if ()n mL L then

 .=mP n

 1.= +m nL L

 Updating the other nodes on this chain.
end if
Procedure: Confirming the Tracing Chain.

for (all nodes ,r)r S∈ do

 if ()rL K then

 The suspicious nodes on this chain are confirmed bots.
 end if
end for

Now we go back to the example in Figure 2. The algorithm
works the same as the basic algorithm up to time 2. At
time 3, node B is infected by node C, they all have layer
ID 1, so node B’s ID is changed to 2 according to our
algorithm, node D’s layer ID remains 0 because it has no
suspicious symptom. At time 4, root node A is infected by
node E, node E replaces node A to become the root node,
correspondingly, node A’s layer ID is set to 1, node C and
B’s layer IDs are set to 2 and 3, respectively. The length of
this tracing chain reaches 3.=K Thus, a complete tracing
chain is established and peer E, A, C and B are all
confirmed with infections.

5.3 Causal chain algorithm

The longest-chain algorithm has a good tracing speed, but it
has a weakness. It ignored the temporal order of contact
links. As a result, the actual infections among peers do not
necessarily follow the order that peers appear in a tracing
chain. For the previous example, E is the root node, but
since A, B and C all have symptom before E does. There is
no causal relation between E’s symptom and symptoms on
the other four nodes.

Basic algorithm has considered the causal relations
between infections. However, for each peer, it only
considers its first infection link. Its detection speed is too
slow. To improve the detection efficiency while keep the
causal relation along tracing chains, we propose a causal
chain algorithm that combines the advantages of the basic
algorithm and the longest-chain algorithm.

Each node r S∈ can potentially initiate the infection
and be the root for a tracing chain. At the same time, each

 Detecting and blocking P2P botnets through contact tracing chains 49

node ,i S∈ ≠i r can potentially be infected by the
infection originated at r and be placed on the tracing chain
rooted at .r Therefore, each node should keep S layer
IDs, one for each chain rooted at any .r S∈ The state of
each node i can be described by a tuple vector

() ()(){ }, , ,i iL r P r r S∈ where ()iL r denotes the layer of

node i relative to root node ,r and ()iP r denotes the
parent node of node i relative to root node .r The peer
states are initialised as follows:

() ()
1 if

;
0 if
− ≠⎧

= =⎨ =⎩
i i

i r
L r P r i

i r
 (2)

() 1= −iL r denotes node i has not been infected by any
nodes on the tracing chain rooted at .r When ,=i r

() 0=iL r denotes every node is at layer 0 relative to itself;

and () =iP r i denotes node i is the root node.

Table 2 Causal chain algorithm

Algorithm Node i is infected by node j

Procedure: Updating the Tracing Chain.

 () .=iP j j

for (all nodes ,r)r S∈ do

 if ()(≠jP r j and ())1= −iL r then

 () () () 1.= +
jj P rL r L r

 () .=iP r j

 end if

end for

Procedure: Confirming the Tracing Chain.

if ()(jL r reaches the preset)K then

 while (j is not root node) do

 node j and ()jP r are confirmed bots.

 node ’statej is initialised.

 ().= jj P r

end if

When node i is infected by node ,j the algorithm can be
described as:

1 node i obtains all the layer information of node j and
makes node j as its parent node relative to root node j

2 for any root node r that j connects to, if node i has
not been added to the tracing chain rooted at () ,≠r r j
update the layer information of node j and make
node j as ’parenti node relative to root node r

3 when ()iL r reaches the preset threshold ,K the nodes
on the tracing chain rooted at node r are confirmed
with infections.

Note the state of each confirmed node must be initialised
immediately because they have probability to be contacted
through another tracing chain rooted at the same node .r
The detailed algorithm is described in Table 2.

Figure 3 illustrates an example of the causal chain
algorithm. In the example, there are seven nodes. The
contact links between nodes are labelled with the time that
contact happened, with 1 2 3 4 5 6 7 .< < < < < <t t t t t t t Each
node is labelled with non-trivial state variables.

Figure 3 Causal chain information passing among peers

3 3 3

3

5 5

1 1

2 2 2

4 4 4

4 4

3 3 3

6 6 6

6

6 6 6

6 64 4 4

4 4

4 4 4

4 4 4

7 7 7

7 7 7

There are three potential tracing chains. Chain 1 consists of
nodes 1, 2, 3, 4 and 7. Chain 2 consists of nodes 1, 2, 3, 6
and 4. Chain 3 consists of nodes 5, 3, 6 and 4. If the chain
length threshold is 3,=K chain 1 and chain 2 have reached
the threshold. Thus, nodes 1, 2, 3, 4 and 6 are confirmed
bots, note that because 6 7 ,<t t there is no causal relation
between node 4’s symptom and node 6’s symptom, node 4
is confirmed through chain 1. Node 7 cannot be confirmed
bot because it does not have infectious symptom. It should
be noted that node 6 was infected by node 3 at 5.t Since
node 3 has been infected twice by two different nodes at 2t
and 4 ,t and 2 4 5 ,< <t t t thus, node 3 passes two sets of
layer information of chains 2 and 3 to node 6, and node 6 is
confirmed with infection through chain 2.

5.4 Dynamic chain length threshold

In the tracing chain framework, the chain length threshold
K is a very important parameter. To reduce false alarms,
we should use a large ;K and to increase the discovery
speed, we can use a small .K In this section, we propose to
dynamically adjust K at different stages of botnet
propagation to strike the right balance between the detection
speed and false alarm rate.

The typical botnet propagation period can be divided
into three stages: early, middle and late. Let I be the
number of already infected nodes, IΔ be the new infection
rate, which is defined as the number of newly infected peers
within unit time. Each period can be characterised as
follows:

50 Z. Huang et al.

1 Early stage: The number of infected peers I is small
and the new infection rate IΔ is low.

2 Middle stage: The number of infected peers I is
medium and the new infection rate IΔ is high.

3 Late stage: The number of infected peers I is large
and the new infection rate IΔ is low.

Our strategy is to use different K at different stages. We
use large K when the infection degree is low for accuracy.
And we use small K when the infection degree is high for
speed.

6 Immunisation strategies

Immunisation is to use antivirus software to clean and patch
the confirmed bots. Our focus is not on developing bot
cleaning and patching tools. Our goal is to investigate
different immunisation strategies and their effectiveness.

We consider two immunisation strategies against P2P
botnets. When bots are discovered, the immunisation should
be conducted as soon as possible. Due to resource
constraints, not all bots can be immunised at the same time.
The order that bots are immunised affect the effectiveness
of the immunisation.

The simplest strategy is random immunisation. All
discovered bots are treated equally and have the same
probability to be immunised. Each bot is selected at random
to be immunised. This method does not differentiated nodes
and is easy to be implemented.

A more effective strategy is preferential immunisation,
which includes two steps. At first, the probable nodes
confirmed by contact tracing chain are picked out. Xiong
(2004) has pointed out the probable node has larger
probability to infect other nodes. Secondly, we can choose
the most-connected nodes from these identified probable
nodes to immunise. This is because nodes with better
network connections are typically connected to more nodes;
they are more dangerous in infecting other nodes. This
method is different from the random immunisation. It
differentiates bots based on their infection potentials. We
will give priority to bots with larger probability and
apply immunisation to them first. Similar preferential
immunisation approach has been proposed by Wang et al.
(2000) in the context of immunisation of computer virus.
They have shown that preferential immunisation can
significantly slow down virus propagation. We will study
the performance of preferential immunisation of botnets
using simulations in Section 7.

7 Experiments

We developed a time-stepped simulator to study the
performance of contact chain tracing algorithm. It simulates
botnet propagation and the establishment of contact tracing
chains by implementing algorithms described in the
previous sections.

To clearly monitor the propagation of botnet, we only
consider one botnet in a simulated network with 6,400=S
nodes. We define iP as the probability that node i is
infected by other nodes. We assume each node’s behaviour
is independent of others. Similar to Zou et al. (2007), when
the peer population S is large, we can approximate iP by a

Gaussian random variable with distribution ()2, .P PN μ σ In

our experiments, ()0.07,0.0004 .iP N∼ For most
simulation experiments, we perform 50 simulation runs and
report the average values.

We ignore network delays and assume immediate
detection of high rate contact symptom of an infected node.
Therefore, an infected node will be traced immediately.
Initially, the only infected node is suspicious and all other
nodes are in the normal state. At each consequent time step,
infected nodes infect other nodes with probability .iP Once
a node is contacted by a suspicious node, it will be added to
contact tracing chain according to the algorithms introduced
in Section 5. When a complete tracing chain is established,
all nodes on the chain will be confirmed with infection.
Then the immunisation strategies in Section 6 will be
applied to clean and immunise confirmed bots.

7.1 Tracing chain efficiency

We first study the efficiency of tracing chain algorithms
using simulations. We compare the bot detection speed of
three chain algorithms introduced in Section 5. We then
study how the tracing chain efficiency depends on three
important factors in practice: chain length threshold ,K
node coverage ratio of the tracing chain scheme and botnet
node degree.

7.1.1 Comparison of chain algorithms

Figure 4 shows the performance comparison of three
algorithms: basic algorithm, longest-chain algorithm and
causal chain algorithm. The number of infected nodes in the
system and the numbers of bots detected by each algorithm
are plotted as time evolves. There is not much difference
among the three algorithms in the initial stage of the botnet
propagation. Once the propagation accelerates, it is found
that the number of detected bots with the longest-chain
algorithm and causal chain algorithm are much more than
the basic algorithm. Eventually, all bots can be detected by
all three algorithms. Thus, the longest-chain algorithm and
causal chain algorithm have much higher bot detection
speed than the basic algorithm. Since the causal chain
algorithm considers the causal relations between contacts
and infections, its accuracy is better than the longest-chain
algorithm. From the simulation results, we can conclude
that causal chain algorithm has the best overall efficiency
and accuracy among the three algorithms; unless, all
simulations in the remaining of this section use the causal
chain algorithm.

 Detecting and blocking P2P botnets through contact tracing chains 51

Figure 4 Comparison of three tracing chain algorithms (see
online version for colours)

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

Time:t

N
um

be
r

of
 B

ot
s

Infected Bots
Basic Algorithm
Largest−Chain Algorithm
Causal Chain Algorithm

7.1.2 Chain length threshold

The chain length threshold trade-offs the detection speed
and accuracy. We have introduced a dynamic chain length
threshold algorithm in Section 5.4. In our simulation, as
listed in Table 3, the threshold K is dynamically chosen
from [3, 9] as a function of the current infection degree .IΔ

Table 3 Dynamic chain length table

 3=K 4=K 5=K 6=K

IΔ [50, ∞) [35, 50) [24, 35) [14, 24)

 7=K 8=K 9=K

IΔ [9, 14) [4, 9) [0, 4)

Figure 5 Comparison of discovery simulation with different K
(see online version for colours)

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

Time:t

N
um

be
r

of
 B

ot
s

Infected Bots
Discovered Bots(K=4)
Discovered Bots(K=10)
Discovered Bots(Dynamic K)

Figure 5 compares the performance of dynamic chain length
threshold with fixed length threshold at different 4=K and

10.=K Obviously, we see that the dynamic threshold has
the best performance among three cases. When the infection

degree is low, it has a lower tracing speed; when the
infection degree is high, its tracing speed accelerates
dramatically.

7.1.3 Node coverage of tracing chain scheme

As discussed above, we assumed that every peer has
installed the detection software. In reality, only a subset of
users will install the detection software. We call users who
installed the software registered peers and users who did not
install the software unregistered peers. Obviously, only the
registered peers can be detected and traced by our system.
We must take into account this factor when using tracing
chain. It is clear that the number of registered peers affects
the efficiency of bot detection. The ratio of registered peers
is a ratio of the registered peers to the total number of peers
in the system:

=
number of registered peers

q
total number of peers

 (3)

We define the detection ratio as:

=
number of detected bots

R
number of registered bots

 (4)

We conduct simulations using the causal chain algorithm
with 4.=K Simulations are conducted for 100%,=q

80%,=q 50%=q and 20%,=q respectively. Figure 6
shows that the number of registered bots can affect the
efficiency of bots detection. For the case of 100%,=q all
the peers are registered and all the bots can be detected by
the tracing chain algorithm. For the case of 20%,=q there
are about 60 registered bots that cannot be detected because
in this case, there are about 80% peers are not registered.
This leads to the situation that a few nodes are isolated and
cannot be traced. But the number of isolated nodes is
insignificant relative to the detected bots. The detection
ratio is still high. In conclusion, the tracing chain algorithm
is pretty robust against low node coverage.

Figure 6 Efficiency of discovery simulation with different ratio
of register (see online version for colours)

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

Time:t

N
u
m

b
e
r

o
f
B

o
ts

Number of Registered Bots(q=100%)
Number of Recovered Bots(q=100%)
Number of Registered Bots(q=80%)
Number of Recovered Bots(q=80%)
Number of Registered Bots(q=50%)
Number of Recovered Bots(q=50%)
Number of Registered Bots(q=20%)
Number of Recovered Bots(q=20%)

52 Z. Huang et al.

7.1.4 Node degree of bots

The establishments of tracing chains are driven by contacts
among peers. The node degree of bots in a botnet directly
affects the efficiency of tracing chain algorithm. We
generate random P2P botnets with the average node degree
of 100, 40, 30 and 10, respectively. For each average node
degree, we generate a group of 25 random network
instances and run the simulation on each instance. For each
simulation, we gradually vary the ratio of registered peer q
from 1 to 0.04. At each q value, we obtain the bots
detection ratio R in each instance. We then calculate the
average detection ratio R for the group of botnets with the
same average node degree.

Figure 7 shows the average detection ratio at different
average degrees. Botnet group 1 has an average degree of

10,=E botnet group 2 has an average degree of 30,=E
botnet group 3 has an average degree of 40=E and botnet
group 4 has an average degree of 100.=E For group 4,
when q decreases gradually, the detection ratio stays at a
high level ()90%>R as long as 0.1.>q Botnet group 1
has a low average degree. The detection ratio is high
()90%>R if 0.7.>q But the detection ratio decreases
quickly when q gets smaller and reaches 0 when 0.2.>q
The performance for groups 2 and 3 lie in-between groups 1
and 4. We can see that the average node degree of botnet
can affect the efficiency of detection. The higher node
degree, the higher the detection efficiency. From the
attacker point of view, higher bot degree increases the
resilience of botnets to the removals of individual bots.
However, our tracing chain algorithm can also exploit high
bot degree for efficient and robust detection.

Figure 7 Detection efficiency at different node degrees
(see online version for colours)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of Unregistered Peers:(1−q)

D
et

ec
tio

n
R

at
io

:R

q
Botnet 1(E=10)
Botnet 2(E=30)
Botnet 3(E=40)
Botnet 4(E=100)

7.2 Immunisation simulation

To study the performance of immunisation strategies, we
simulate a static botnet with all nodes join the system at
time 0 and only one node is infected initially. No node
leaves the system during the simulation. We simulate two

different immunisation strategies: in the first case, at each
time step, we randomly choose infected nodes to immunise
with a homogeneous probability ;p in the second case, we
use preferential strategy to immunise the top p fraction of
probable peers with the highest connectivity.

Figure 8 Comparison of immunisation strategies in static botnets
(see online version for colours)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Time:t

N
um

be
r

of
 B

ot
s

p=0.1:Random Immunization
p=0.2:Random Immunization
p=0.2:Preferential Immunization

Figure 8 shows that both strategies can completely break
the botnet. Comparing two strategies, the preferential
immunisation is much more effective than the random
immunisation. It can always control the size of botnet at a
very low level. We vary p to simulate the effect of
immunisation with different immunisation ratio. The result
is that, with 0.1,=p the botnet reaches a larger size than
the botnet with 0.2.=p Therefore, we can conclude that the
high immunisation ratio and good immunisation strategy
lead to efficient immunisation.

8 Implementation issues

A tracing chain mechanism includes three key steps:

1 identify the individual peer with symptoms

2 establish the transmission chain through contact tracing

3 immunise the infected peers.

In this section, we discuss the scheme to implement those
steps.

ISPs are in a unique position to monitor and trace
contact behaviours of users in their networks, on which can
install servers to detect abnormal traffic patterns of users
and establish tracing chains among users. The drawback of
this approach is that ISP servers have to monitor a large
number of users and the workload can be very high. In
addition, to trace connection traffic across different ISPs,
servers under different administrations have to cooperate
each other (Xiong, 2004). In our paper, we adopt another
architecture called distributed sensor architecture.

In this architecture, each computer is installed with a
symptom detection software, called sensor. Distributed

 Detecting and blocking P2P botnets through contact tracing chains 53

sensors continuously monitor traffic on their host computers
and record connection level information (such as destination
IP addresses and durations of outgoing connections) in
every time interval. When a peer behaves normally, the
sensor only keeps the monitored information locally. Once a
sensor detects suspicious activities, it will fire and report the
monitored abnormal information to a central server. The
central server acts as a tracker which can be configured on
the ISP servers. It collects abnormal information from all
sensors in the network and applies contact tracing
algorithms to establish infection chains. Once a chain is
established, all the peers on the chain will receive infection
confirmation messages from the server. Infected peers will
be cleaned and immunised by the immunisation software.

Figure 9 shows a distributed sensors-based detection
system, which consists of a central server and distributed
sensors A, B, …, F. Each sensor must install detection
software and become a registered user. All registered users
communicate with the central server. As shown in Figure 9,
when the contacts number of peer A and D reaches 4=M
in a time interval, sensors on A and D connect with the
server and the tracing process starts.

This approach reduces the workload of central server
because the server only needs to process a very limited
amount of data from distributed sensors.

Figure 9 Distributed sensors architecture (see online version for
colours)

9 Conclusions

In this paper, we proposed a novel contact tracing
chain-based framework to detect and block the propagation
of P2P botnets. Our framework consists of three
components: detection, tracing and immunisation. We
developed new symptom detection algorithms to distinguish
P2P Bots from legitimate P2P systems and studied three
contact tracing chain algorithms to trade off the tracing
speed and false alarm rate. The performance of the proposed
algorithms was evaluated using discrete-time simulations.
We demonstrated that the proposed contact tracing

framework can quickly detect and block the propagation of
bots in dynamic P2P network environment.

Of course, contact-tracing chain system is not perfect.
As the bots are confirmed by establishing contact-tracing
chain, once the tracing chain is attacked by botmasters, such
as a DOS attack occurs in the middle of a chain, the number
of detected bots will decrease greatly although our tracing
algorithm can maintain a high bots detection ratio as
discussed in Section 7.

In our future work, we will refine the proposed detection
and tracing algorithms to improve the detection efficiency,
and develop new chain length threshold adjustment rules to
adaptively achieve the balance between detection speed and
accuracy. The P2P contact tracing architecture looks
promising, but it needs to be designed robust against
unexpected peer failures and resilient to malicious attacks
by compromised detection and tracing agents on individual
peers.

Acknowledgements

This work is supported in part by CSTC Contract
2009AB2147 and by CSTC Contract 2009DA0001-A.

References
Crandall, J.R. and Chong, F.T. (2004)’Minos: control data attack

prevention orthogonal to memory model’, Proceedings of the
37th Annual IEEE/ACM International Symposium on
Microarchitecture, IEEE/ACM, December.

Dhungel, P., Hei, X., Ross, K.W. and Saxena, N. (2007) ‘The
pollution attack in P2P live video streaming: measurement
results and defenses’, Proceedings of the 2007 Workshop on
Peer-to-Peer Streaming and IP-TV, Japan, August.

Eames, K.T.D. and Keeling, M.J. (2003) ‘Contact tracing and
disease control’, Proceedings of the Royal Society, London,
December.

Grizzard, J. and Sharma, V., Nunnery, C. and Dagon, D. (2007)
‘Peer-to-Peer botnets: overview and case study’, Proceedings
of the First Conference on First Workshop on Hot Topics in
Understanding Botnets, USA.

Gu, G., Perdisci, R., Zhang, J. and Lee, W. (2008) ‘BotMiner:
clustering analysis of network traffic for protocol- and
structure-independent botnet detection’, Proceedings of the
17th USENIX Security Symposium (Security ‘08).

Higgins, K.J. (2007) ‘The world’s biggest botnets’, November,
available at http://www.darkreading.com.

Holz, T., Steiner, M., Dahl, F., Biersacky, E. and Freiling, F.
(2008) ‘Measurements and mitigation of peer-to-peer-based
botnets: a case study on Storm Worm’, First USENIX
Workshop on Large-Scale Exploits and Emergent Threats.

Huerta, R. and Tsimring, L.S. (2002) ‘Contact tracing and
epidemics control in social networks’, Physical Review E,
November, Vol. 66.

Husna, H., Phithakkitnukoon, S. and Dantu, R. (2008) ‘Traffic
shaping of spam botnets’, ICCNC 2008. 5th IEEE.

Hymana, J.M., Li, J. and Stanley, E.A. (2003) ‘Modeling the
impact of random screening and contact tracing in reducing
the spread of HIV’, Mathematical Biosciences, January,
Vol. 181, pp.1–16.

54 Z. Huang et al.

Kang, J., Zhang, J., Li, Q. and Li, Z. (2009) ‘Detecting new P2P
botnet with multi-chart CUSUM’, International Conference
on Networks Security, Wireless Communications and Trusted
Computing.

Lemos, R. (2006) ‘Bot software looks to improve peerage’,
available at http://www.securityfocus.com/news/11390/.

Liang, J., Kumar, R., Xi, Y. and Ross, K.W. (2005) ‘Pollution in
P2P file sharing systems’, INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE.

Newsome, J. and Song, D. (2005) ‘Dynamic taint analysis:
automatic detection and generation of software exploit
attacks’, Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS 2005),
February.

Porras, P., Saidi, H. and Yegneswaran, V. (2007) ‘A
multi-perspective analysis of the Storm (Peacomm) Worm’,
SRI International, October.

Shanon, C.E. (1948) ‘A mathematical theory of communication’,
Bell System Technical Journal, July, pp.379–423.

Stewart, J. (2004) ‘Phatbot Trojan analysis’, available at
http://www.lurhq.com/phatbot.html.

Stewart, J. (2004) ‘Spamthru Trojan analysis’, available at
http://www.secureworks.com/research/threats/spamthru/.

Suh, G.E., Lee, J. and Devadas, S. (2004) ‘Secure program
execution via dynamic information flow tracking’,
Proceedings of ASPLOS XI, October, pp.85–96.

Wang, C., Knight, J.C. and Elder, M.C. (2000) ‘On computer viral
infection and the effect of immunization’, 16th Annual
Computer Security Applications Conference (ACSAC ‘00),
December.

Xiong, J. (2004) ‘ACT: attachment chain tracing scheme for
e-mail virus detection and control’, Proceedings of the 2004
ACM Workshop on Rapid Malcode, pp.11–22.

Zhou, L., Zhang, L., McSherry, F., Immorlica, N., Costa, M. and
Chien, S. (2005) ‘A first look at peer-to-peer worms: threats
and defenses’, Proc. 4th International Workshop on
Peer-to-Peer System.

Zou, C.C., Towsley, D. and Gong, W. (2007) ‘Modeling and
simulation study of the propagation and defense of internet
e-mail worm’, IEEE Transactions on Dependable and Secure
Computing, April, pp.105–118.

Notes
1 A complete tracing chain will be established mistakenly only

if all links along the chain are detected mistakenly.

