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Abstract: Peer-to-peer (P2P) botnets have recently become serious security threats on the 
internet. It is difficult to detect the propagation of P2P botnets by isolated monitoring on 
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traced and tracing chains are established to correlate contacts among peers with their abnormal 
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1 Introduction 

In recent years, botnets have been frequently utilised by 
attackers to launch malicious attacks on the internet. A 
botnet is a network of compromised peers (bots), which are 
controlled by an attacker to launch DDOS attacks, distribute 
spam e-mails, etc. Using botnets, attackers can launch 
attacks from thousands or even millions of distributed  
bots. Early botnets adopted the client-server-based system 
architecture. All bots in a botnet connect to some command 
and control (C&C) servers. Bots receive commands from 
C&C servers using protocols like Internet Relay Chat (IRC). 
One drawback of this client-server architecture is that, due 
to the heavy traffic between servers and bots, the C&C 
servers can be easily detected by defenders. And the entire 
botnet will be shut down once the C&C servers are blocked. 
More recent botnets employ the peer-to-peer (P2P) system 
architecture. In a P2P architecture, there is no fixed C&C 
servers. Every bot in the botnet acts as both client and 
server. Bots communicate and exchange information with 
each other using existing or customised P2P protocols. 
Attackers disguise themselves as normal peers and 
disseminate their commands to all peers in the same P2P 
botnets. Due to the distributed nature of P2P botnets, it is 
very challenging to detect and block them. In this paper, we 
propose a novel contact tracing chain-based approach to the 
detection and blocking of P2P botnets. 

The main challenges in botnet detection are: 

1 P2P botnet are now under widespread development. 
Some P2P botnets use existing P2P protocols, while 
others develop customised protocols (Grizzard et al., 
2007). For example, Phatbot (Stewart, 2004) uses code 
from the WASTE project to implement P2P, but 
Nugache (Lemos, 2006) and SpamThru (Stewart, 2004) 
use their own P2P protocols for communication 
between peers. Most of the customised protocols are 
encrypted. It is very difficult to detect the signalling 
among bots in P2P botnets through protocol analysis. 

2 To escape from traffic analysis-based detection, some 
intelligent P2P botnets deliberately changed their 
infection tactics [e.g., reducing the size of their network 
(Higgins, 2007)]. It is hard to distinguish a P2P botnet 
from a normal P2P network by looking into the traffic 
volume and contacts between peers. 

3 Since there is no centralised C&C servers, P2P botnets 
are very ‘resilient’. A bot can receive C&C signal from 
any of its peering neighbours. When the number of 
peering contacts of each peer is reasonably large, the 
whole P2P botnet has very robust connectivity and can 
remain connected even after a large portion of bots are 
detected and removed from the botnet. 

To address the previously described challenges, we develop 
a contact tracing chain-based P2P botnet detection and 
immunisation approach. Contact tracing has been 
successfully applied in disease control (Huerta and 
Tsimring, 2002; Hymana et al., 2003; Eames and Keeling, 

2003). In our paper, we attempt to use contact tracing chains 
to detect bots. 

The contributions of our work are summarised as 
follows: 

1 We apply the concepts of contact tracing and 
transmission chain to the detection and immunisation of 
P2P botnets. We developed a tracing-chain-based 
framework that can efficiently identify and block P2P 
botnets. 

2 Simple threshold-based contact detection scheme 
cannot detect intelligent botnets. We develop a novel 
entropy-based detection approach to distinguish botnets 
from normal P2P networks. 

3 We propose several tracing-chain algorithms to strike 
the right balance between the efficiency and the 
accuracy of contact tracing. 

4 We implement a discrete time simulator and conduct 
extensive simulations to study the efficiency and 
robustness of the proposed contact tracing framework 
under different network and system settings. 

2 Background and related works 

2.1 P2P botnets 

P2P botnets are quickly becoming one of the most 
significant threats on the internet today. P2P botnets are 
networks of compromised peers controlled by attackers 
through P2P communication protocols. P2P botnets  
have robust network connectivity. They hide their  
activities through signal encryption and traffic dispersion. 
Consequently, it is very difficult to trace and shut down P2P 
botnets. 

Grizzard et al. (2007) described the development of P2P 
botnet and introduced several P2P control architectures, 
such as Slapper, Sinit, Phatbot and Nugache. Many P2P 
networks are becoming the favourite places for malware to 
spread (Dhungel et al., 2007; Liang et al., 2005). Worm is 
widely adopted by P2P botnet in the wild due to its 
automatic propagation characteristics. 

As an example, Storm Worm botnet is the first major 
botnet to use P2P network for C&C (Porras et al., 2007). 
Similar to other e-mail worms (e.g., Loveletter/ILOVEYOU 
and Bagle) (Holz et al., 2008), the e-mail body contains an 
embedded link or an attachment with names such as 
‘FullVideo.exe’, ‘Video.exe’ and ‘FullClip.exe’. Attackers 
use social engineering techniques to pretend to be a 
legitimate e-mail and trick the recipient into opening the 
attachment or clicking on the embedded link. Once a victim 
attempts to open the attached file or click the baleful link, it 
will become an infected peer. After the Trojan installs the 
initial infection files, the victim will attempt to connect 
peers in the Storm Worm botnet. Subsequently, it will 
download the full payload and become a real bot under the 
control of the botmaster. 
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Within the propagation stage, the number of some  
net-packets (e.g., ICMP, UDP and SMTP) sharply increased 
(Kang et al., 2009), the high contact rate is the most 
important characteristic for worm detection we considered 
in this paper; it will be introduced in Section 4. 

Some works have been done by researchers on P2P 
botnets defences. Zhou et al. (2005) gave a ‘first look’ at 
P2P worm defence. They proposed a framework where a 
small fraction of guardian nodes are employed to detect 
control flow hijacks of vulnerable programs using  
schemes similar to those in Crandall and Chong (2004), 
Newsome and Song (2005) and Suh et al. (2004), the 
approach which deployed the same P2P network as P2P 
worm to propagate alerts is similar to our strategy for 
building tracing chain. Gu et al. (2008) presented a general 
detection framework (BotMiner prototype system) that is 
independent of botnet C&C protocol and structure, and 
requires no a priori knowledge of botnets, the key of this 
approach is focused on the net-behaviour detection; Holz et 
al. (2008) estimated the total number of the bots through 
infiltrating and analysing in-depth the Storm Worm botnet 
and mitigates this botnet through disrupting the 
communication channel, such as eclipsing content, 
polluting; this paper described the typical characteristic of 
Storm Worm. Our system adopted contact tracing scheme 
based on the net-behaviour detection of single node to 
identify the infected nodes. 

2.2 Contact tracing 

Contact tracing is a classic epidemic control method. It is 
frequently used to combat many infectious diseases (such as 
TB and AIDS) and new invading pathogens (such as 
SARS). When an individual is identified as having a 
communicable disease, any one has contacted with the 
individual has a high probability to be infected. Tracing 
based on contact history can quickly identify and block the 
propagation of infections. Eames and Keeling (2003) used 
the pairwise approach and full stochastic simulations to 
investigate the efficiency of contact tracing in disease 
control. Hymana et al. (2003) used random screening and 
contact tracing to reduce the spread of HIV. Huerta and 
Tsimring (2002) developed the mean-field model of contact 
tracing for the case of random graphs. The idea of contact 
tracing has recently been applied to network security field. 
Xiong (2004) brought the concepts of contact tracing and 
transmission chain into e-mail network worm and virus 
control. In our paper, this approach is applied to detect and 
block P2P botnets. 

3 Contact tracing framework 

In this section, we present the overall framework of contact 
tracing for P2P botnets detection and control. 

Similar to epidemic disease control, we classify peers 
into different states according to their contact records and 
symptoms. In P2P botnets, a contact is defined as the 
establishment of a connection between a pair of peers. The 

infectious symptom on a peer is defined as contacts at a rate 
higher than a preset threshold. We classify peers into the 
following five possible states: 

1 Normal: A peer that has no infectious symptom is in 
the normal state. 

2 Connected: A peer that has been contacted by a 
probable peer or a suspicious peer is in the connected 
state. 

3 Suspicious: A peer that has infectious symptom is in 
the suspicious state. 

4 Probable: A suspicious peer is confirmed with 
infection and declared as probable if it is on an 
established contact tracing chain (see details below). 

5 Immunised: A probable peer that has been cleaned and 
patched will change to the immunised state. 

Figure 1 Diagram of peer state transitions 
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Figure 1 shows the peer state transition: 

1 Normal ⇒ suspicious: A normal peer changes to a 
suspicious peer when it first has the infectious 
symptom. 

2 Normal ⇒ connected: A normal peer changes to a 
connected peer when it is first contacted by a 
suspicious peer or a probable peer. 

3 Connected ⇒ suspicious: A connected peer changes to 
a suspicious peer when it has infectious symptom. 
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4 Suspicious ⇒ probable: A suspicious peer changes to a 
probable peer when the tracing chain which it belongs 
to is established. 

5 Probable ⇒ immunised: A probable peer changes to an 
immunised peer when it is cleaned and patched. 

The key of contact tracing-based detection is to monitor and 
control peer state transitions. It consists of three 
components: detection process, tracing process and 
immunisation process. The detection process is to detect 
peer infectious symptoms. The tracing process is to track 
the contact history of suspicious peers and establish contact 
tracing chains to confirm peer infections. The immunisation 
process is to clean and patch the infected peers. At first, the 
detection process monitors the contact rate of peers. If a 
peer sends out more than a preset threshold M  connections 
within an interval ,δ  it will be identified as an abnormal 
peer and its state will be converted from normal to 
suspicious. Secondly, the tracing process tracks the contacts 
of all suspicious peers through recording links between a 
suspicious peer and any peer that it contacts with. If a 
normal peer is contacted by a suspicious peer, its state will 
be converted to connected. Consequently, if any of those 
contacted peers is detected with infectious symptom, that 
peer will be also classified as suspicious and the new 
contact links will be recorded by the tracing process. If 
indeed the infection propagates through peer contacts, the 
tracing process will identify a chain of contact links. A 
complete tracing chain is established when the length of 
contact tracing chain reaches a preset threshold K  and the 
tracing process can declare confirmed infections for all 
peers on the tracing chain. The peers on the chain will 
convert their state from suspicious to probable. 
Immunisation will then be applied to the newly identified 
probable peers. 

In the following sections, we present the detailed 
designs of detection, tracing and immunisation processes. 

4 Symptom detection process 

In the previous section, we talked about a simple  
threshold-based symptom detection algorithm. However, the 
network conditions are so complex that we cannot always 
use a single fixed threshold to distinguish between legal 
traffic and illegal traffic. Many worms adopted new  
tactics to escape from simple threshold-based detection 
(e.g., low-rate contact strategy). It will lead to a high false 
alarm rate in the detection process (e.g., some peers running 
normal P2P software are mistakenly considered as 
suspicious bots by the simple threshold-based detection with 
a low threshold, whereas some bots adopted low-rate 
contact strategies are mistakenly missed by the simple 
threshold-based detection with a high threshold). Even 
though the transmission chain approach can tolerate some 
false alarms on individual contact tracing links1, we still 
want to improve the detection process to bring down the 
false alarm rate of the detection process. In this paper, we 

propose to distinguish P2P botnets from legitimate P2P 
systems by investigating major contact-level characteristics. 

If we have a long observation period of ,T  we divide 
T  into n  time slots. ( )V k  denotes the number of 

connected peers in the time slot .k  We record ( ) ,p k  the 
ratio of the number of newly connected peers within time 
slot k  to the total number of connected peers in the whole 
observation period .T  For P2P botnets, ( )p k  takes large 
values only for the infection time slots. For legitimate P2P 
system, ( )p k  is more uniformly distributed across all time 
slots in the observation period. More specifically, we can 
calculate the entropy (Shanon, 1948) of ( ):p k  

( ) ( ) ( )2
1

log .
=

= − ∑
n

k

H p n p k p k  (1) 

We can distinguish P2P bots from normal P2P systems by 
computing their entropy values of ( )p k  in the observation 
period. Normal P2P systems have uniformly low contact 
rate and thus they have a high entropy value. Bots usually 
have a similar structure of worm propagation. The entropy 
value of ( )p k  is low. 

To further improve the detection accuracy, we augment 
the entropy-based detection by investigating additional peer 
information, such as the contact ports, the arrival time, the 
active time, the frequency and content length of contact 
(Husna et al., 2008). 

5 Contact tracing chain establishment 

The core of the proposed contact tracing framework is to 
track the contacting behaviours of suspicious peers and 
establish contact tracing chains to confirm infections. The 
algorithms used to build tracing chains determine the 
efficiency and the accuracy of botnet detection and 
blocking. On one hand, the algorithms should be efficient 
and can quickly identify and block ongoing botnet 
propagation. On the other hand, the algorithms should be 
accurate and raise as few false alarms as possible. In this 
section, we present three tracing chain algorithms to trade 
off the efficiency and accuracy. 

5.1 Basic chain algorithm 

We first introduce a basic algorithm. In this basic algorithm, 
each node is initially assigned with layer ID 0. For the first 
time a peer is contacted by a peer with suspicious symptom, 
it changes its layer ID from 0 to one plus the layer ID of the 
suspicious peer. A peer’s layer ID will not be changed for 
later contacts from other suspicious peers. A trace chain is 
established if some peer’s layer ID reaches the chain length 
threshold .K  This algorithm can be easily implemented. 
However, it can only identify simple contact tracing chains 
consisting of contact links discovered sequentially. 
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For the network in Figure 2, the contact threshold is 
1=M  and the tracing chain threshold is 3.=K  At time 1, 

node B and C are contacted by node A, A is root node 
whose layer ID is 0. At time 2, node B contacts node D, 
node B changes its layer ID to 1. At time 3, node B is 
contacted by node C, but B will keep its layer ID of 1. At 
time 4, node E contacts node A. Node A will not change its 
ID and this infection will be ignored. No tracing chain is 
detected by this algorithm with threshold 3=K  even 
though we do have a chain of five peers and four of them 
have suspicious symptoms. 

This will largely slow down the botnet detection speed. 

Figure 2 Establishment of tracing chains in a simple network 

 

5.2 Longest-chain algorithm 

To address this problem, we present another algorithm that 
improves the detection speed by identifying the longest 
contact tracing chain for each peer. We build the contact 
graph with nodes being peers and links being contacts 
initiated by suspicious peers. A contact tracing chain then 
corresponds to a path in the contact graph. When a node is 
contacted by multiple suspicious nodes, this node is placed 
simultaneously on multiple paths/chains in the contact 
graph. The longest-chain algorithm declares confirmed 
infection for a peer if the length of the longest contact 
path/chain that the peer is on reaches the chain length 
threshold .K  

To implement this algorithm using peer layer ID, the 
layer ID of each peer is no longer fixed after the first 
contact from a suspicious peer. When peer A is contacted by 
a suspicious peer B, peer layer IDs are updated as follows: 
if B’s ID is larger than or equal to A’s ID, set A’s ID to one 
plus B’s ID, also update the layer IDs of A’s downstream 
peers in contact chains. More specifically, each node i  has 
two state variables: ( ), ,i iP L  where iP  denotes the parent 

node of ,i  in other words, iP  infected ,i  iL  is the layer of 
node .i  Initialising 0=iL  and .=iP i  Assuming K  is the 
preset chain length threshold, S  is the set of nodes. When 
node m  is contacted by a suspicious node ,n S∈  the 
longest-chain algorithm updates node states as in Table 1. 

Table 1 Longest-chain tracing algorithm 

Algorithm Node m  is infected by node n  

Procedure: Updating the Tracing Chain 

if ( )n mL L  then 

  .=mP n  

  1.= +m nL L  

  Updating the other nodes on this chain. 
end if 
Procedure: Confirming the Tracing Chain. 

for (all nodes ,r  )r S∈  do 

 if ( )rL K  then 

 The suspicious nodes on this chain are confirmed bots. 
 end if 
end for 

Now we go back to the example in Figure 2. The algorithm 
works the same as the basic algorithm up to time 2. At  
time 3, node B is infected by node C, they all have layer  
ID 1, so node B’s ID is changed to 2 according to our 
algorithm, node D’s layer ID remains 0 because it has no 
suspicious symptom. At time 4, root node A is infected by 
node E, node E replaces node A to become the root node, 
correspondingly, node A’s layer ID is set to 1, node C and 
B’s layer IDs are set to 2 and 3, respectively. The length of 
this tracing chain reaches 3.=K  Thus, a complete tracing 
chain is established and peer E, A, C and B are all 
confirmed with infections. 

5.3 Causal chain algorithm 

The longest-chain algorithm has a good tracing speed, but it 
has a weakness. It ignored the temporal order of contact 
links. As a result, the actual infections among peers do not 
necessarily follow the order that peers appear in a tracing 
chain. For the previous example, E is the root node, but 
since A, B and C all have symptom before E does. There is 
no causal relation between E’s symptom and symptoms on 
the other four nodes. 

Basic algorithm has considered the causal relations 
between infections. However, for each peer, it only 
considers its first infection link. Its detection speed is too 
slow. To improve the detection efficiency while keep the 
causal relation along tracing chains, we propose a causal 
chain algorithm that combines the advantages of the basic 
algorithm and the longest-chain algorithm. 

Each node r S∈  can potentially initiate the infection 
and be the root for a tracing chain. At the same time, each 
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node ,i S∈  ≠i r  can potentially be infected by the 
infection originated at r  and be placed on the tracing chain 
rooted at .r  Therefore, each node should keep S  layer 
IDs, one for each chain rooted at any .r S∈  The state of 
each node i  can be described by a tuple vector 

( ) ( )( ){ }, , ,i iL r P r r S∈  where ( )iL r  denotes the layer of 

node i  relative to root node ,r  and ( )iP r  denotes the 
parent node of node i  relative to root node .r  The peer 
states are initialised as follows: 

( ) ( )
1 if 

;
0 if 
− ≠⎧

= =⎨ =⎩
i i

i r
L r P r i

i r
 (2) 

( ) 1= −iL r  denotes node i  has not been infected by any 
nodes on the tracing chain rooted at .r  When ,=i r  

( ) 0=iL r  denotes every node is at layer 0 relative to itself; 

and ( ) =iP r i  denotes node i  is the root node. 

Table 2 Causal chain algorithm 

Algorithm Node i  is infected by node j  

Procedure: Updating the Tracing Chain. 

 ( ) .=iP j j  

for (all nodes ,r  )r S∈  do 

 if ( )( ≠jP r j  and ( ) )1= −iL r  then 

  ( ) ( ) ( ) 1.= +
jj P rL r L r  

  ( ) .=iP r j  

 end if 

end for 

Procedure: Confirming the Tracing Chain. 

if ( )( jL r  reaches the preset )K  then 

 while (j  is not root node) do 

  node j  and ( )jP r  are confirmed bots. 

  node ’statej  is initialised. 

  ( ).= jj P r  

end if 

When node i  is infected by node ,j  the algorithm can be 
described as: 

1 node i  obtains all the layer information of node j  and 
makes node j  as its parent node relative to root node j  

2 for any root node r  that j  connects to, if node i  has 
not been added to the tracing chain rooted at ( ) ,≠r r j  
update the layer information of node j  and make  
node j  as ’parenti  node relative to root node r  

3 when ( )iL r  reaches the preset threshold ,K  the nodes 
on the tracing chain rooted at node r  are confirmed 
with infections. 

Note the state of each confirmed node must be initialised 
immediately because they have probability to be contacted 
through another tracing chain rooted at the same node .r  
The detailed algorithm is described in Table 2. 

Figure 3 illustrates an example of the causal chain 
algorithm. In the example, there are seven nodes. The 
contact links between nodes are labelled with the time that 
contact happened, with 1 2 3 4 5 6 7 .< < < < < <t t t t t t t  Each 
node is labelled with non-trivial state variables. 

Figure 3 Causal chain information passing among peers 
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There are three potential tracing chains. Chain 1 consists of 
nodes 1, 2, 3, 4 and 7. Chain 2 consists of nodes 1, 2, 3, 6 
and 4. Chain 3 consists of nodes 5, 3, 6 and 4. If the chain 
length threshold is 3,=K  chain 1 and chain 2 have reached 
the threshold. Thus, nodes 1, 2, 3, 4 and 6 are confirmed 
bots, note that because 6 7 ,<t t  there is no causal relation 
between node 4’s symptom and node 6’s symptom, node 4 
is confirmed through chain 1. Node 7 cannot be confirmed 
bot because it does not have infectious symptom. It should 
be noted that node 6 was infected by node 3 at 5.t  Since 
node 3 has been infected twice by two different nodes at 2t  
and 4 ,t  and 2 4 5 ,< <t t t  thus, node 3 passes two sets of 
layer information of chains 2 and 3 to node 6, and node 6 is 
confirmed with infection through chain 2. 

5.4 Dynamic chain length threshold 

In the tracing chain framework, the chain length threshold 
K  is a very important parameter. To reduce false alarms, 
we should use a large ;K  and to increase the discovery 
speed, we can use a small .K  In this section, we propose to 
dynamically adjust K  at different stages of botnet 
propagation to strike the right balance between the detection 
speed and false alarm rate. 

The typical botnet propagation period can be divided 
into three stages: early, middle and late. Let I  be the 
number of already infected nodes, IΔ  be the new infection 
rate, which is defined as the number of newly infected peers 
within unit time. Each period can be characterised as 
follows: 
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1 Early stage: The number of infected peers I  is small 
and the new infection rate IΔ  is low. 

2 Middle stage: The number of infected peers I  is 
medium and the new infection rate IΔ  is high. 

3 Late stage: The number of infected peers I  is large 
and the new infection rate IΔ  is low. 

Our strategy is to use different K  at different stages. We 
use large K  when the infection degree is low for accuracy. 
And we use small K  when the infection degree is high for 
speed. 

6 Immunisation strategies 

Immunisation is to use antivirus software to clean and patch 
the confirmed bots. Our focus is not on developing bot 
cleaning and patching tools. Our goal is to investigate 
different immunisation strategies and their effectiveness. 

We consider two immunisation strategies against P2P 
botnets. When bots are discovered, the immunisation should 
be conducted as soon as possible. Due to resource 
constraints, not all bots can be immunised at the same time. 
The order that bots are immunised affect the effectiveness 
of the immunisation. 

The simplest strategy is random immunisation. All 
discovered bots are treated equally and have the same 
probability to be immunised. Each bot is selected at random 
to be immunised. This method does not differentiated nodes 
and is easy to be implemented. 

A more effective strategy is preferential immunisation, 
which includes two steps. At first, the probable nodes 
confirmed by contact tracing chain are picked out. Xiong 
(2004) has pointed out the probable node has larger 
probability to infect other nodes. Secondly, we can choose 
the most-connected nodes from these identified probable 
nodes to immunise. This is because nodes with better 
network connections are typically connected to more nodes; 
they are more dangerous in infecting other nodes. This 
method is different from the random immunisation. It 
differentiates bots based on their infection potentials. We 
will give priority to bots with larger probability and  
apply immunisation to them first. Similar preferential 
immunisation approach has been proposed by Wang et al. 
(2000) in the context of immunisation of computer virus. 
They have shown that preferential immunisation can 
significantly slow down virus propagation. We will study 
the performance of preferential immunisation of botnets 
using simulations in Section 7. 

7 Experiments 

We developed a time-stepped simulator to study the 
performance of contact chain tracing algorithm. It simulates 
botnet propagation and the establishment of contact tracing 
chains by implementing algorithms described in the 
previous sections. 

To clearly monitor the propagation of botnet, we only 
consider one botnet in a simulated network with 6,400=S  
nodes. We define iP  as the probability that node i  is 
infected by other nodes. We assume each node’s behaviour 
is independent of others. Similar to Zou et al. (2007), when 
the peer population S  is large, we can approximate iP  by a 

Gaussian random variable with distribution ( )2, .P PN μ σ  In 

our experiments, ( )0.07,0.0004 .iP N∼  For most 
simulation experiments, we perform 50 simulation runs and 
report the average values. 

We ignore network delays and assume immediate 
detection of high rate contact symptom of an infected node. 
Therefore, an infected node will be traced immediately. 
Initially, the only infected node is suspicious and all other 
nodes are in the normal state. At each consequent time step, 
infected nodes infect other nodes with probability .iP  Once 
a node is contacted by a suspicious node, it will be added to 
contact tracing chain according to the algorithms introduced 
in Section 5. When a complete tracing chain is established, 
all nodes on the chain will be confirmed with infection. 
Then the immunisation strategies in Section 6 will be 
applied to clean and immunise confirmed bots. 

7.1 Tracing chain efficiency 

We first study the efficiency of tracing chain algorithms 
using simulations. We compare the bot detection speed of 
three chain algorithms introduced in Section 5. We then 
study how the tracing chain efficiency depends on three 
important factors in practice: chain length threshold ,K  
node coverage ratio of the tracing chain scheme and botnet 
node degree. 

7.1.1 Comparison of chain algorithms 

Figure 4 shows the performance comparison of three 
algorithms: basic algorithm, longest-chain algorithm and 
causal chain algorithm. The number of infected nodes in the 
system and the numbers of bots detected by each algorithm 
are plotted as time evolves. There is not much difference 
among the three algorithms in the initial stage of the botnet 
propagation. Once the propagation accelerates, it is found 
that the number of detected bots with the longest-chain 
algorithm and causal chain algorithm are much more than 
the basic algorithm. Eventually, all bots can be detected by 
all three algorithms. Thus, the longest-chain algorithm and 
causal chain algorithm have much higher bot detection 
speed than the basic algorithm. Since the causal chain 
algorithm considers the causal relations between contacts 
and infections, its accuracy is better than the longest-chain 
algorithm. From the simulation results, we can conclude 
that causal chain algorithm has the best overall efficiency 
and accuracy among the three algorithms; unless, all 
simulations in the remaining of this section use the causal 
chain algorithm. 
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Figure 4 Comparison of three tracing chain algorithms (see 
online version for colours) 

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

Time:t

N
um

be
r 

of
 B

ot
s

 

 

Infected Bots
Basic Algorithm
Largest−Chain Algorithm
Causal Chain Algorithm

 

7.1.2 Chain length threshold 

The chain length threshold trade-offs the detection speed 
and accuracy. We have introduced a dynamic chain length 
threshold algorithm in Section 5.4. In our simulation, as 
listed in Table 3, the threshold K  is dynamically chosen 
from [3, 9] as a function of the current infection degree .IΔ  

Table 3 Dynamic chain length table 

 3=K  4=K  5=K  6=K  

IΔ  [50, ∞) [35, 50) [24, 35) [14, 24) 

     

 7=K  8=K  9=K   

IΔ  [9, 14) [4, 9) [0, 4)  

Figure 5 Comparison of discovery simulation with different K  
(see online version for colours) 
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Figure 5 compares the performance of dynamic chain length 
threshold with fixed length threshold at different 4=K  and 

10.=K  Obviously, we see that the dynamic threshold has 
the best performance among three cases. When the infection 

degree is low, it has a lower tracing speed; when the 
infection degree is high, its tracing speed accelerates 
dramatically. 

7.1.3 Node coverage of tracing chain scheme 

As discussed above, we assumed that every peer has 
installed the detection software. In reality, only a subset of 
users will install the detection software. We call users who 
installed the software registered peers and users who did not 
install the software unregistered peers. Obviously, only the 
registered peers can be detected and traced by our system. 
We must take into account this factor when using tracing 
chain. It is clear that the number of registered peers affects 
the efficiency of bot detection. The ratio of registered peers 
is a ratio of the registered peers to the total number of peers 
in the system: 

=
number of registered peers

q
total number of peers

 (3) 

We define the detection ratio as: 

=
number of detected bots

R
number of registered bots

 (4) 

We conduct simulations using the causal chain algorithm 
with 4.=K  Simulations are conducted for 100%,=q  

80%,=q  50%=q  and 20%,=q  respectively. Figure 6 
shows that the number of registered bots can affect the 
efficiency of bots detection. For the case of 100%,=q  all 
the peers are registered and all the bots can be detected by 
the tracing chain algorithm. For the case of 20%,=q  there 
are about 60 registered bots that cannot be detected because 
in this case, there are about 80% peers are not registered. 
This leads to the situation that a few nodes are isolated and 
cannot be traced. But the number of isolated nodes is 
insignificant relative to the detected bots. The detection 
ratio is still high. In conclusion, the tracing chain algorithm 
is pretty robust against low node coverage. 

Figure 6 Efficiency of discovery simulation with different ratio 
of register (see online version for colours) 
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7.1.4 Node degree of bots 

The establishments of tracing chains are driven by contacts 
among peers. The node degree of bots in a botnet directly 
affects the efficiency of tracing chain algorithm. We 
generate random P2P botnets with the average node degree 
of 100, 40, 30 and 10, respectively. For each average node 
degree, we generate a group of 25 random network 
instances and run the simulation on each instance. For each 
simulation, we gradually vary the ratio of registered peer q  
from 1 to 0.04. At each q  value, we obtain the bots 
detection ratio R  in each instance. We then calculate the 
average detection ratio R  for the group of botnets with the 
same average node degree. 

Figure 7 shows the average detection ratio at different 
average degrees. Botnet group 1 has an average degree of 

10,=E  botnet group 2 has an average degree of 30,=E  
botnet group 3 has an average degree of 40=E  and botnet 
group 4 has an average degree of 100.=E  For group 4, 
when q  decreases gradually, the detection ratio stays at a 
high level ( )90%>R  as long as 0.1.>q  Botnet group 1 
has a low average degree. The detection ratio is high 
( )90%>R  if 0.7.>q  But the detection ratio decreases 
quickly when q  gets smaller and reaches 0 when 0.2.>q  
The performance for groups 2 and 3 lie in-between groups 1 
and 4. We can see that the average node degree of botnet 
can affect the efficiency of detection. The higher node 
degree, the higher the detection efficiency. From the 
attacker point of view, higher bot degree increases the 
resilience of botnets to the removals of individual bots. 
However, our tracing chain algorithm can also exploit high 
bot degree for efficient and robust detection. 

Figure 7 Detection efficiency at different node degrees  
(see online version for colours) 
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7.2 Immunisation simulation 

To study the performance of immunisation strategies, we 
simulate a static botnet with all nodes join the system at 
time 0 and only one node is infected initially. No node 
leaves the system during the simulation. We simulate two 

different immunisation strategies: in the first case, at each 
time step, we randomly choose infected nodes to immunise 
with a homogeneous probability ;p  in the second case, we 
use preferential strategy to immunise the top p  fraction of 
probable peers with the highest connectivity. 

Figure 8 Comparison of immunisation strategies in static botnets 
(see online version for colours) 
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Figure 8 shows that both strategies can completely break  
the botnet. Comparing two strategies, the preferential 
immunisation is much more effective than the random 
immunisation. It can always control the size of botnet at a 
very low level. We vary p  to simulate the effect of 
immunisation with different immunisation ratio. The result 
is that, with 0.1,=p  the botnet reaches a larger size than 
the botnet with 0.2.=p  Therefore, we can conclude that the 
high immunisation ratio and good immunisation strategy 
lead to efficient immunisation. 

8 Implementation issues 

A tracing chain mechanism includes three key steps: 

1 identify the individual peer with symptoms 

2 establish the transmission chain through contact tracing 

3 immunise the infected peers. 

In this section, we discuss the scheme to implement those 
steps. 

ISPs are in a unique position to monitor and trace 
contact behaviours of users in their networks, on which can 
install servers to detect abnormal traffic patterns of users 
and establish tracing chains among users. The drawback of 
this approach is that ISP servers have to monitor a large 
number of users and the workload can be very high. In 
addition, to trace connection traffic across different ISPs, 
servers under different administrations have to cooperate 
each other (Xiong, 2004). In our paper, we adopt another 
architecture called distributed sensor architecture. 

In this architecture, each computer is installed with a 
symptom detection software, called sensor. Distributed 
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sensors continuously monitor traffic on their host computers 
and record connection level information (such as destination 
IP addresses and durations of outgoing connections) in 
every time interval. When a peer behaves normally, the 
sensor only keeps the monitored information locally. Once a 
sensor detects suspicious activities, it will fire and report the 
monitored abnormal information to a central server. The 
central server acts as a tracker which can be configured on 
the ISP servers. It collects abnormal information from all 
sensors in the network and applies contact tracing 
algorithms to establish infection chains. Once a chain is 
established, all the peers on the chain will receive infection 
confirmation messages from the server. Infected peers will 
be cleaned and immunised by the immunisation software. 

Figure 9 shows a distributed sensors-based detection 
system, which consists of a central server and distributed 
sensors A, B, …, F. Each sensor must install detection 
software and become a registered user. All registered users 
communicate with the central server. As shown in Figure 9, 
when the contacts number of peer A and D reaches 4=M  
in a time interval, sensors on A and D connect with the 
server and the tracing process starts. 

This approach reduces the workload of central server 
because the server only needs to process a very limited 
amount of data from distributed sensors. 

Figure 9 Distributed sensors architecture (see online version for 
colours) 

 

9 Conclusions 

In this paper, we proposed a novel contact tracing  
chain-based framework to detect and block the propagation 
of P2P botnets. Our framework consists of three 
components: detection, tracing and immunisation. We 
developed new symptom detection algorithms to distinguish 
P2P Bots from legitimate P2P systems and studied three 
contact tracing chain algorithms to trade off the tracing 
speed and false alarm rate. The performance of the proposed 
algorithms was evaluated using discrete-time simulations. 
We demonstrated that the proposed contact tracing 

framework can quickly detect and block the propagation of 
bots in dynamic P2P network environment. 

Of course, contact-tracing chain system is not perfect. 
As the bots are confirmed by establishing contact-tracing 
chain, once the tracing chain is attacked by botmasters, such 
as a DOS attack occurs in the middle of a chain, the number 
of detected bots will decrease greatly although our tracing 
algorithm can maintain a high bots detection ratio as 
discussed in Section 7. 

In our future work, we will refine the proposed detection 
and tracing algorithms to improve the detection efficiency, 
and develop new chain length threshold adjustment rules to 
adaptively achieve the balance between detection speed and 
accuracy. The P2P contact tracing architecture looks 
promising, but it needs to be designed robust against 
unexpected peer failures and resilient to malicious attacks 
by compromised detection and tracing agents on individual 
peers. 
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Notes 
1 A complete tracing chain will be established mistakenly only 

if all links along the chain are detected mistakenly. 


