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Abstract

Restless multi-armed bandits (RMAB) have been widely used
to model sequential decision making problems with con-
straints. The decision maker (DM) aims to maximize the ex-
pected total reward over an infinite horizon under an “instan-
taneous activation constraint” that at most B arms can be ac-
tivated at any decision epoch, where the state of each arm
evolves stochastically according to a Markov decision pro-
cess (MDP). However, this basic model fails to provide any
fairness guarantee among arms. In this paper, we introduce
RMAB-F, a new RMAB model with “long-term fairness con-
straints”, where the objective now is to maximize the long-
term reward while a minimum long-term activation fraction
for each arm must be satisfied. For the online RMAB-F set-
ting (i.e., the underlying MDPs associated with each arm
are unknown to the DM), we develop a novel reinforcement
learning (RL) algorithm named Fair-UCRL. We prove that
Fair-UCRL ensures probabilistic sublinear bounds on both
the reward regret and the fairness violation regret. Compared
with off-the-shelf RL methods, our Fair-UCRL is much
more computationally efficient since it contains a novel ex-
ploitation that leverages a low-complexity index policy for
making decisions. Experimental results further demonstrate
the effectiveness of our Fair-UCRL.

Introduction

The restless multi-armed bandits (RMAB) model (Whittle
1988) has been widely used to study sequential decision
making problems with constraints, ranging from wireless
scheduling (Sheng, Liu, and Saigal 2014; Cohen, Zhao,
and Scaglione 2014), resource allocation in general (Glaze-
brook, Hodge, and Kirkbride 2011; Larrañaga, Ayesta, and
Verloop 2014; Borkar, Ravikumar, and Saboo 2017), to
healthcare (Bhattacharya 2018; Mate, Perrault, and Tambe
2021; Killian, Perrault, and Tambe 2021). In a basic RMAB
setting, there is a collection of N “restless” arms, each of
which is endowed with a state that evolves independently
according to a Markov decision process (MDP) (Puterman
1994). If the arm is activated at a decision epoch, then it
evolves stochastically according to one transition kernel,
otherwise according to a different transition kernel. RMAB
generalizes the Markovian multi-armed bandits (Lattimore
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and Szepesvári 2020) by allowing arms that are not activated
to change state, which leads to “restless” arms, and hence
extends its applicability. For simplicity, we refer to a restless
arm as an arm in the rest of the paper. Rewards are gener-
ated with each transition depending on whether the arm is
activated or not. The goal of the decision maker (DM) is to
maximize the expected total reward over an infinite horizon
under an “instantaneous activation constraint” that at most
B arms can be activated at any decision epoch.

However, the basic RMABmodel fails to provide any guar-
antee on how activation will be distributed among arms. This
is also a salient design and ethical concern in practice, in-
cluding mitigating data bias for healthcare (Mate, Perrault,
and Tambe 2021; Li and Varakantham 2022a) and societal
impacts (Yin et al. 2023; Biswas et al. 2023), providing qual-
ity of service guarantees to clients in network resource al-
location (Li, Liu, and Ji 2019), just to name a few. In this
paper, we introduce a new RMAB model with fairness con-
straints, dubbed as RMAB-F to address fairness concerns in
the basic RMAB model. Specifically, we impose “long-term
fairness constraints” into RMAB problems such that the DM
must ensure a minimum long-term activation fraction for
each arm (Li, Liu, and Ji 2019; Chen et al. 2020; D’Amour
et al. 2020; Li and Varakantham 2022a), as motivated by
aforementioned resource allocation and healthcare applica-
tions. The DM’s goal now is to maximize the long-term
reward while satisfying not only “instantaneous activation
constraint” in each decision epoch but also “long-term fair-
ness constraint” for each arm. Our objective is to develop
low-complexity reinforcement learning (RL) algorithms with
order-of-optimal regret guarantees to solve RMAB-F with-
out knowing the underlying MDPs associated with each arm.

Though online RMAB has been gaining attentions, ex-
isting solutions cannot be directly applied to our online
RMAB-F. First, existing RL algorithms including state-of-
the-art colored-UCRL2 (Ortner et al. 2012) and Thompson
sampling methods (Jung and Tewari 2019; Akbarzadeh and
Mahajan 2022), suffer from an exponential computational
complexity and regret bounds grow exponentially with the
size of state space. This is because those need to repeat-
edly solve Bellman equations with an exponentially large
state space for making decisions. Second, though much ef-
fort has been devoted to developing low-complexity RL
algorithms with order-of-optimal regret for online RMAB,



many challenges remain unsolved. For example, multi-
timescale stochastic approximation algorithms (Fu et al.
2019; Avrachenkov and Borkar 2022) suffer from slow con-
vergence and have no regret guarantee. Adding to these lim-
itations is the fact that none of them were designed with fair-
ness constraints in mind, e.g., (Wang, Huang, and Lui 2020;
Xiong, Li, and Singh 2022; Xiong, Wang, and Li 2022;
Xiong et al. 2022; Xiong and Li 2023) only focused on mini-
mizing costs in RMAB, while the DM in our RMAB-F faces a
new dilemma on how to manage the balance between max-
imizing the long-term reward and satisfying both instanta-
neous activation constraint and long-term fairness require-
ments. This adds a new layer of difficulty to designing low-
complexity RL algorithms with order-of-optimal regret for
RMAB that is already quite challenging.

To tackle this new dilemma, we develop Fair-UCRL,
a novel RL algorithm for online RMAB-F. On one hand,
we provide the first-ever regret analysis for online RMAB-F,
and prove that Fair-UCRL ensures sublinear bounds (i.e.,
Õ(

p
T )) for both the reward regret (suboptimality of long-

term rewards) and the fairness violation regret (suboptimal-
ity of long-term fairness violation) with high probability. On
the other hand, Fair-UCRL is computationally efficient.
This is due to the fact that Fair-UCRL contains a novel
exploitation that leverages a low-complexity index policy
for making decisions, which differs dramatically from afore-
mentioned off-the-shelf RL algorithms that make decisions
via solving complicated Bellman equations. Such an index
policy in turn guarantees that the instantaneous activation
constraint can be always satisfied in each decision epoch. To
the best of our knowledge, Fair-UCRL is the first model-
based RL algorithm that simultaneously provides (i) order-
of-optimal regret guarantees on both the reward and fairness
constraints; and (ii) a low computational complexity, for
RMAB-F in the online setting. Finally, experimental results
on real-world applications (resource allocation and health-
care) show that Fair-UCRL effectively guarantees fairness
for each arm while ensures good regret performance.

Model and Problem Formulation

In this section, we provide a brief overview of the conven-
tional RMAB, and then formally define our RMAB-F as well
as the online settings considered in this paper.

Restless Multi-Armed Bandits

A RMAB problem consists of a DM and N arms (Whit-
tle 1988). Each arm n 2 N = {1, ..., N} is described
by a unichain MDP Mn (Puterman 1994). Without loss of
generality (W.l.o.g.), all MDPs {Mn, 8n 2 N} share the
same finite state space S and action space A := {0, 1}, but
may have different transition kernels Pn(s0|s, a) and reward
functions rn(s, a), 8s, s0 2 S, a 2 A. Denote the cardi-
nalities of S and A as S and A, respectively. The initial
state is chosen according to the initial state distribution s0
and T is the time horizon. At each time/decision epoch t,
the DM observes the state of each arm n, denoted by sn(t),
and activates a subset of B arms. Arm n is called active
when being activated, i.e., an(t) = 1, and otherwise passive,

i.e., an(t) = 0. Each arm n generates a stochastic reward
rn(t) := rn(sn(t), an(t)), depending on its state sn(t) and
action an(t). W.l.o.g., we assume that rn 2 [0, 1] with mean
r̄n(s, a), 8n, s, a, and only active arms generate reward, i.e.,
rn(s, 0) = 0, 8n, s. Denote the sigma-algebra generated by
random variables {(sn(⌧), an(⌧)), 8n, ⌧ < t} as Ft. The
goal of the DM is to design a control policy ⇡ : Ft 7! A

N to
maximize the total expected reward, which can be expressed
as lim infT!1

1
T
E
P

T

t=1

P
N

n=1 rn(t), under the “instanta-
neous activation constraint”, i.e.,

P
N

n=1 an(t)  B, 8t.

RMAB with Long-Term Fairness Constraints

In addition to maximizing the long-term reward, ensur-
ing long-term fairness among arms is also important for
real-world applications (Yin et al. 2023). As motivated
by applications in network resource allocation and health-
care (Li, Liu, and Ji 2019; Li and Varakantham 2022a),
we impose a “long-term fairness constraint” on a min-
imum long-term activation fraction for each arm, i.e.,
lim infT!1

1
T
E
P

T

t=1 an(t) � ⌘n, 8n 2 N , where ⌘n 2

(0, 1) indicates the minimum fraction of time that arm n

should be activated. To this end, the objective of RMAB-F
is now to maximize the total expected reward while ensur-
ing that both “instantaneous activation constraint” at each
epoch and “long-term fairness constraint” for each arm are
satisfied. Specifically, RMAB-F(Pn, rn, 8n) is defined as:

max
⇡

lim inf
T!1

1

T
E
"

TX

t=1

NX

n=1

rn(t)

#
(1)

s.t.
NX

n=1

an(t)  B, 8t, (2)

lim inf
T!1

1

T
E
"

TX

t=1

an(t)

#
� ⌘n, 8n. (3)

Assumption 1. We assume that the RMAB-F problem of (1)-
(3) is feasible, i.e., there exists a policy ⇡ such that con-
straints (2) and (3) are satisfied.

Note that in this paper, we only consider learning feasible
RMAB-F by this assumption. When the underlying MDPs
(i.e., Pn and rn) associated with each arm n 2 N are known
to the DM, we can compute the offline optimal policy ⇡

opt

by treating the offline RMAB-F as an infinite-horizon av-
erage cost per stage problem using relative value iteration
(Puterman 1994). However, it is well known that this ap-
proach suffers from the curse of dimensionality due to the
explosion of state space (Papadimitriou and Tsitsiklis 1994).

Online Settings

We focus on online RMAB-F, where the DM repeatedly in-
teracts with N arms {Mn = {S,A, Pn, rn}, 8n 2 N} in an
episodic manner. Specifically, the time horizon T is divided
into K episodes and each episode consists of H consecutive
frames, i.e., T = KH . The DM is not aware of the values
of the transition kernel Pn and reward function rn, 8n 2 N .
Instead, the DM estimates the transition kernels and reward



Algorithm 1: Fair-UCRL

1: Require: Initialize C
0
n
(s, a) = 0, and P̂

0
n
(s0|s, a) =

1/S, 8n 2 N , s, s
0
2 S, a 2 A.

2: for k = 1, 2, · · · ,K do

3: // ⇤ ⇤Optimistic Planning⇤ ⇤ //
4: Construct the set of plausible MDPs Mk as in (6);
5: Relaxed the instantaneous activation constraint in

RMAB-F (P̃ k

n
, r̃

k

n
, 8n) to be “long-term activation con-

straint”, and transform it into ELP(Mk
, z

k) in (7);
6: // ⇤ ⇤Policy Execution⇤ ⇤ //
7: Establish the FairRMAB index policy ⇡

k,⇤ on top
of the solutions to the ELP and execute it.

8: end for

functions in an online manner by observing the trajectories
over episodes. As a result, it is not possible for a learning al-
gorithm to unconditionally guarantee constraint satisfaction
in (2) and (3) over a finite number of episodes. To this end,
we measure the performance of a learning algorithm with
policy ⇡ using two types of regret.

First, the regret of a policy ⇡ with respect to the long-term
reward against the offline optimal policy ⇡

opt is defined as

�R

T
:= TV

⇡
opt

� E⇡

"
TX

t=1

NX

n=1

rn(t)

#
, (4)

where V
⇡
opt

is the long-term reward obtained under the of-
fline optimal policy ⇡

opt. Note that since finding ⇡
opt for

RMAB-F is intractable, we characterize the regret with re-
spect to a feasible, asymptotically optimal index policy (see
Theorem 3 in supplementary materials), similar to the re-
gret definitions for online RMAB (Akbarzadeh and Mahajan
2022; Xiong, Wang, and Li 2022).

Second, the regret of a policy ⇡ with respect to the long-
term fairness against the minimum long-term activation frac-
tion ⌘n for each arm n, or simply the fairness violation is

�n,F

T
:= T⌘n � E⇡

"
TX

t=1

an(t)

#
, 8n 2 N . (5)

Fair-UCRL and Regret Analysis

We first show that it is possible to develop an RL algorithm
for the computationally intractable RMAB-F problem of (1)-
(3). Specifically, we leverage the popular UCRL (Jaksch,
Ortner, and Auer 2010) to online RMAB-F, and develop an
episodic RL algorithm named Fair-UCRL. On one hand,
Fair-UCRL strictly meets the “instantaneous activation
constraint” (2) at each decision epoch since it leverages a
low-complexity index policy for making decisions at each
decision epoch, and hence Fair-UCRL is computationally
efficient. On the other hand, we prove that Fair-UCRL
provides probabilistic sublinear bounds for both reward re-
gret and fairness violation regret. To our best knowledge,
Fair-UCRL is the first model-based RL algorithm to pro-
vide such guarantees for online RMAB-F.

The Fair-UCRL Algorithm

Fair-UCRL proceeds in episodes as summarized in Algo-
rithm 1. Let ⌧k be the start time of episode k. Fair-UCRL
maintains two counts for each arm n. Let C

k�1
n

(s, a) be
the number of visits to state-action pairs (s, a) until ⌧k, and
C

k�1
n

(s, a, s0) be the number of transitions from s to s
0 un-

der action a until ⌧k. Each episode consists of two phases:

Optimistic planning. At the beginning of each episode,
Fair-UCRL constructs a confidence ball that contains a
set of plausible MDPs (Xiong, Wang, and Li 2022) for
each arm 8n 2 N with high probability. The “center”
of the confidence ball has the transition kernel and reward
function that are computed by the corresponding empirical
averages as: P̂

k

n
(s0|s, a) = C

k�1
n

(s,a,s0)

max{Ck�1
n (s,a),1} , r̂

k

n
(s, a) =

k�1P
l=1

HP
h=1

r
l

n
(s,a)1(sl

n
(h)=s,a

l

n
(h)=a)

max{Ck�1
n (s,a),1} .

The “radius” of the confidence ball is set to be �
k

n
(s, a)

according to the Hoeffding inequality. Hence the set of plau-
sible MDPs in episode k is:

M
k =

�
M

k

n
= (S,A, P̃

k

n
, r̃

k

n
) : |P̃ k

n
(s0|s, a)� P̂

k

n
(s0|s, a)|

 �
k

n
(s, a), r̃k

n
(s, a) = r̂

k

n
(s, a) + �

k

n
(s, a)

 
, (6)

Fair-UCRL then selects an optimistic MDP M
k

n
, 8n and

an optimistic policy with respect to RMAB-F (P̃ k

n
, r̃

k

n
, 8n).

Since solving RMAB-F (P̃ k

n
, r̃

k

n
, 8n) is intractable, we first

relax the instantaneous activation constraint so as to achieve
a “long-term activation constraint”, i.e., the activation. It
turns out that this relaxed problem can be equivalently
transformed into a linear programming (LP) via replacing
all random variables in the relaxed RMAB-F (P̃ k

n
, r̃

k

n
, 8n)

with the occupancy measure corresponding to each arm
n (Altman 1999). Due to lack of knowledge of transi-
tion kernels and rewards, we further rewrite it as an ex-
tended LP (ELP) by leveraging state-action-state occu-
pancy measure z

k

n
(s, a, s0) to express confidence intervals

of transition probabilities: given a policy ⇡ and transi-
tion functions P̃

k

n
, the occupancy measure z

k

n
(s, a, s0) in-

duced by ⇡ and P̃
k

n
is that 8n, s, s

0
, a, k: z

k

n
(s, a, s0) :=

limH!1
1
H
E⇡[
P

H�1
h=1 1(sn(h)=s, an(h)=a, sn(h+1) =

s
0)]. The goal is to solve the extended LP as

z
k,⇤ = argmin

zk

ELP(Mk
, z

k), (7)

with z
k,⇤ := {z

k,⇤
n

(s, a, s0), 8n 2 N}. We present more
details on ELP in supplementary materials.

Policy execution. We construct an index policy, which is
feasible for the online RMAB-F (P̃ k

n
, r̃

k

n
, 8n) as inspired by

Xiong, Wang, and Li (2022). Specifically, we derive our in-
dex policy on top of the optimal solution z

k,⇤ = {z
k,⇤
n

, 8n 2

N}. Since A = {0, 1}, i.e, an arm can be either active or
passive at time t, we define the index assigned to arm n in
state sn(t) = s at time t to be as

!
k,⇤
n

(s) :=

P
s0 z

k,⇤
n

(s, 1, s0)
P

a,s0 z
k,⇤
n (s, a, s0)

, 8n 2 N . (8)



We call this the fair index and rank all arms according to
their indices in (22) in a non-increasing order, and activate
the set of B highest indexed arms, denoted as N (t) ⇢ N

such that
P

n2N (t) a
⇤
n
(t)  B. All remaining arms are kept

passive at time t. We denote the resultant index-based pol-
icy, which we call the FairRMAB index policy as ⇡

k,⇤ :=
{⇡

k,⇤
n

, 8n 2 N}, and execute this policy in this episode.
More discussions on the property of the FairRMAB index
policy are provided in supplementary materials.
Remark 1. Although Fair-UCRL draws inspiration from
the infinite-horizon UCRL (Jaksch, Ortner, and Auer 2010;
Xiong, Wang, and Li 2022), there exist a major difference.
Fair-UCRL modifies the principle of optimism in the face
of uncertainty for making decisions which is utilized by
UCRL based algorithms, to not only maximize the long-term
rewards but also to satisfy the long-term fairness constraint
in our RMAB-F. This difference is further exacerbated since
the objective of conventional regret analysis, e.g., colored-
UCRL2 (Ortner et al. 2012; Xiong, Wang, and Li 2022) for
RMAB is to bound the reward regret, while due to the long-
term fairness constraint, we also need to bound the fairness
violation regret for each arm for Fair-UCRL, which will be
discussed in details in Theorem 1. We note that the designs
of our Fair-UCRL and the FairRMAB index policy are
largely inspired by the LP based approach in Xiong, Wang,
and Li (2022) for online RMAB. However, Xiong, Wang, and
Li (2022) only considered the instantaneous activation con-
straint, and hence is not able to address the new dilemma
faced by our online RMAB-F, which also needs to ensure the
long-term fairness constraints. Finally, our G-Fair-UCRL
with no fairness violation further distinguishes our work.

Regret Analysis of Fair-UCRL
We now present our main theoretical results on bounding the
regrets defined in (4) and (5), realizable by Fair-UCRL.
Theorem 1. When the size of the confidence intervals
�
k

n
(s, a) is built for ✏ 2 (0, 1) as

�
k

n
(s, a) =

s
1

2Ck
n
(s, a)

log

✓
SAN(k � 1)H

✏

◆
,

with probability at least 1 � ( ✏

SANT
)

1
2 , Fair-UCRL

achieves the reward regret as:

�R

T
= Õ

 
B✏ log T + (

p
2 + 2)

p

SANT

r
log

SANT

✏

!
,

and with probability at least (1�( ✏

SANT
)

1
2 )2, Fair-UCRL

achieves the fairness violation regret for each arm 8n 2 N

as:

�n,F

T
= Õ

 
⌘n✏ log T + C0T

n

Mix

p

SANT log
SANT

✏

!
,

where B is the activation budget, ✏ is the constant defined to
build confidence interval, Tn

mix is the mixing time of the true
MDP associated with arm n, C0 = 4(

p
2 + 1)

�
n̂ + C⇢

n̂

1�⇢

�

and n̂ = dlog
⇢
C

�1
e with ⇢ and C being constants (see

Corollary 1 in supplementary materials).

As discussed in Remark 1, the design of Fair-UCRL dif-
fers from UCRL type algorithms in several aspects. These
differences further necessitate different proof techniques for
regret analysis. First, we leverage the relative value function
of Bellman equation for long-term average MDPs, which en-
ables us to transfer the regret to the difference of relative
value functions. Thus, only the first moment behavior of the
transition kernels are needed to track the regret, while state-
of-the-art (Wang, Huang, and Lui 2020) leveraged the higher
order moment behavior of transition kernels for a specific
MDP, which is hard for general MDPs. Closest to ours is
Xiong, Wang, and Li (2022), which however bounded the re-
ward regret under the assumption that the diameter D of the
underlying MDP associated with each arm is known. Unfor-
tunately, this knowledge is often unavailable in practice and
there is no easy way to characterize the dependence of D

on the number of arms N (Akbarzadeh and Mahajan 2022).
Finally, in conventional regret analysis of RL algorithms for
RMAB, e.g., Akbarzadeh and Mahajan (2022); Xiong, Li, and
Singh (2022); Xiong, Wang, and Li (2022); Wang, Huang,
and Lui (2020), only the reward regret is bounded. However,
for our RMAB-F with long-term fairness among each arm,
we also need to characterize the fairness violation regret, for
which, we leverage the mixing time of the underlying MDP
associated with each arm. This is one of our main theoretical
contributions that differentiates our work.

We note that another line of works on constrained MDPs
(CMDPs) either considered a similar extended LP approach
(Kalagarla, Jain, and Nuzzo 2021; Efroni, Mannor, and
Pirotta 2020) in a finite-horizon setting, which differ from
our infinite-horizon setting, or are only with a long-term cost
constraint (Singh, Gupta, and Shroff 2020; Chen, Jain, and
Luo 2022), while our RMAB problem not only has a long-
term fairness constraint, but also an instantaneous activation
constraint that must be satisfied at each decision epoch. This
makes their approach not directly applicable to ours.

Proof Sketch of Theorem 1

We present some lemmas that are essential to prove Theo-
rem 1. Our proof consists of three steps: regret decomposi-
tion and regret characterization when the true MDPs are in
the confidence ball or not. A key challenge lies in bounding
the fairness violation regret, for which the decision variable
is the action a in our Fair-UCRL, while most recent works,
e.g., Efroni, Mannor, and Pirotta (2020); Xiong, Wang, and
Li (2022); Akbarzadeh and Mahajan (2022) focused on the
reward function of the proposed policy. This challenge dif-
ferentiates the proof, especially on bounding the fairness vi-
olation regret when the true MDP belongs to the confidence
ball. To start with, we first introduce a lemma for the decom-
position of reward and fairness violation regrets:
Lemma 1. The reward and fairness violation regrets of
Fair-UCRL can be decomposed into the summation of k
episodic regrets with a constant term with probability at
least 1� ( ✏

SANT
)

1
2 ., i.e.

�R

T
{⇡

⇤,k
, 8k} 

KX

k=1

�R

k
{⇡

⇤,k
}+

r
1

4
T log

SANT

✏
,



�n,F

T
{⇡

⇤,k
, 8k} 

KX

k=1

�n,F

k
{⇡

⇤,k
}+

r
1

4
T log

SANT

✏
,

where �R

k
and �n,F

k
are the reward/ fairness violation re-

gret in episode k under policy ⇡
⇤,k.

Proof Sketch: With probability of at least 1 � ( ✏

SANT
)

1
2 ,

the difference between reward until time T and the episodic
reward for all K episodes can be bounded with a constant
term

q
1
4T log SANT

✏
via Chernoff-Hoeffding’s inequality.

This is in parallel with several previous works, e.g. Ak-
barzadeh and Mahajan (2022); Xiong, Wang, and Li (2022);
Efroni, Mannor, and Pirotta (2020).
Proof Sketch of Fairness Violation Regret. The proof of
fairness violation regret is one of our main theoretical con-
tributions in this paper. To our best knowledge, this is the
first result for online RMAB-F, i.e. with both instantaneous
activation constraint and long-term fairness constraint. We
now present two key lemmas which are essential to bound
the fairness violation regret when combining with Lemma 1.

First, we show that the fairness violation regret can be
bounded when the transition and reward function of true
MDP (denoted by M ) does not belong to the confidence ball,
i.e. M /2 Mk.
Lemma 2. The fairness violation regret for failing confi-
dence ball for all K episodes is bounded by

KX

k=1

�n,F

k
{⇡

⇤,k
, 8k}1(M /2 Mk) 

1

2
⌘n✏ log T.

Proof Sketch: With the probability of failing event
P (M /2 Mk) 

✏

kH
, one can bound the fairness violation

term since ⌘n � an(t)  ⌘n. The final bound is obtained by
summing over all episodes.

Now, we present the dominated term in bounding the fair-
ness violation regret when the true MDP belongs to the con-
fidence ball.
Lemma 3. The fairness violation regret when the true MDP
belongs to the confidence ball in each episode k is bounded
by

KX

k=1

�n,F

k
{⇡

⇤,k
, 8k}1(M /2 Mk)

C0T
n

Mix

✓
(
p
2 + 1)

p

SANT

r
log

SANT

✏

+
1

2

p

T log
SANT

✏

◆
+
p

T
C

1� ⇢
.

Proof Sketch: We first define a new variable Fn(⇡k
, p) =

1
T
limT!1(

P
T

t=1 an(t)|⇡
k
, p) as the long term average

fairness variable under policy ⇡
k for arm n with MDP that

has the true transition probability matrix p. We show that the
fairness violation regret when the true MDP belongs to con-
fidence ball can be upper bounded by E

⇥
H⌘n � Fn(⇡k

n
, p)
⇤

with a constant term.

Next we introduce another variable close to Fn(⇡k
, p),

that is Fn(⇡k
, ✓) = 1

T
limT!1(

P
T

t=1 an(t)|⇡
k
, ✓) as the

fairness variable under policy ⇡ in episode k for arm n with
MDP whose transition matrix ✓ belongs to the confidence
ball. By comparing the total variance norm of Fn(⇡k

, p) and
Fn(⇡k

, ✓), we can upper bound E
⇥
H⌘n � Fn(⇡k

n
, p)
⇤
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⇡k(s, a)�kn(s, a), where

⇡k is the policy in episode k. In order to bound �
k

n
(⇡k) with

the expected number of counts of (s, a) pair in episode k

E[ck
n
(s, a)], we leverage the mixing time T

n

mix
.

The regret is further split into two terms, one of which
P

K

k=1

P
(s,a)

P
n

c
k

n
(s,a)

C
k�1
n (s,a)

can be bounded as (
p
2 +

1)
p
SANT through the induction of sequence summa-

tion, while the other term
P

K

k=1

P
(s,a)

E[ck
n
(s,a)]�c

k

n
(s,a)

p
2Ck�1

n (s,a)

can be upper bounded by
p
T

q
1
4 log

SANT

✏
via Azuma-

Hoeffding’s inequality, as it can be considered as a martin-
gale difference sequence.
Proof Sketch of Reward Regret. Similar to the fairness
violation regret, we first bound the reward regret when the
MDP does not belong to the confidence ball.
Lemma 4. The reward regret for failing the confidence ball
for all K episodes is bounded by

KX

k=1

�R

k
{⇡

⇤,k
, 8k}1(M /2 Mk)  B✏ log T.

Proof Sketch: Similar to Lemma 2, the probability of fail-
ing confidence ball is bounded by P (M /2 Mk) 

✏

kH
.

Summing over all episodes yields the bound.
We then present the dominated term in the reward regret.

Lemma 5. The reward regret when the true MDP belongs
to the confidence ball in each episode k is bounded by

KX

k=1

�R

k
{⇡

⇤,k
, 8k}1(M 2 Mk)

 (
p
2 + 2)

p

SANT

r
log

SANT

✏
.

Proof Sketch: We split the reward regret into two
terms,

P
(s,a)

P
n
c
k

n
(s, a)(µ⇤

/B � r̃n(s, a)) and
P

(s,a)

P
n
c
k

n
(s, a)2

q
1

2Ck�1
n (s,a)

log SANkH

✏
. The first

term is upper bounded by 0 due to the fact that for any
episode k, the optimistic average reward r̃n(s, a) of the
optimistically chosen policy ⇡̃k within the confidence ball
is equal or larger than the true optimal average reward µ

⇤,
provided that the true MDP belongs to confidence ball.
Similar to Lemma 3, the second term can be bounded with
(
p
2 + 1)

p
SANT .

Experiments

In this section, we first evaluate the performance of
Fair-UCRL in simulated environments, and then demon-
strate the utility of Fair-UCRL by evaluating it under three
real-world applications of RMAB.



Figure 1: Reward regret in
simulated environments.

Figure 2: Fairness constraint
violation for arm 1.

Figure 3: Fairness constraint
violation for arm 2.

Figure 4: Fairness constraint
violation for arm 3.

(a) Reward regret. (b) Fairness constraint violation for arm 1. (c) Fairness constraint violation for arm 2.

Figure 5: Continuous positive airway pressure therapy.

Evaluation in Simulated Environments

Settings. We consider 3 classes of arms, each including 100
duplicates with state space S 2 {0, 1, 2, 3, 4, 5}. Class-n
arm arrives with rate �n = 3n for n = 1, 2, 3, and de-
parts with a fixed rate of µ = 5. We consider a controlled
Markov chain in which states evolve as a specific birth-and-
death process, i.e., state s only transits to s + 1 or s � 1
with probability P (s, s+ 1) = �/(�+ µ) or P (s, s� 1) =
µ/(�+ µ), respectively. Class-n arm generates a random re-
ward rn(s) ⇠ Ber(spn), with pn uniformly sampled from
[0.01, 0.1]. The activation budget is set to 100. The minimum
activation fraction ⌘ is set to be 0.1, 0.2 and 0.3 for the three
classes of arms, respectively. We set K = H = 160. We use
Monte Carlo simulations with 1, 000 independent trials.
Baselines. We compare Fair-UCRL with three baselines:
(1) FaWT-U (Li and Varakantham 2022a) activates arms
based on their Whittle indices. If the fairness constraint is
not met for an arm after a certain time, FaWT-U always
activates that arm regardless of its Whittle index. (2) Soft
Fairness (Li and Varakantham 2022b) incorporates soft-
max based value iteration method into the RMAB setting.
Since both algorithms are designed for infinite-horizon dis-
counted reward settings, we choose the discounted factor to
be 0.999 for fair comparisons with our Fair-UCRL, which
is designed for infinite-horizon average-reward settings. (3)
G-Fair-UCRL: We modify our proposed Fair-UCRL
by greedily enforcing the fairness constraint satisfaction
in each episode. Specifically, at the beginning of each
episode, G-Fair-UCRL randomly pulls an arm to force
each arm n to be pulled H⌘n times. This greedy explo-

ration will take d
P

N

n=1 H⌘n

B
e decision epochs in total in each

episode. G-Fair-UCRL then operates in the same manner
as Fair-UCRL in the rest of this episode. More details on
G-Fair-UCRL are provided in supplementary materials.
Reward Regret. The accumulated reward regrets are pre-
sented in Figure 1, where we use Monte Carlo simulations
with 1, 000 independent trials. Fair-UCRL achieves the
lowest accumulated reward regret. More importantly, this
is consistent with our theoretical analysis (see Theorem 1),
while neither FaWT-U nor Soft Fairness provides a finite-
time analysis, i.e., nor provable regret bound guarantees.
Fairness Constraint Violation. The activation fraction for
each arm over time under different policies are presented in
Figures 2, 3 and 4, respectively. After a certain amount of
time, the minimum activation fraction for each arm under
Fair-UCRL is always satisfied, and a randomized initial-
ization may cause short term fairness violation, for example,
after 6, 500 time steps for arm 2, even though the constraint
needs to be satisfied on average. Similar observations hold
for Soft Fairness, while for FaWT-U, fairness constraint vi-
olation repeatedly occurs over time for arm 1 and arm 2.

Continuous Positive Airway Pressure Therapy

We study the continuous positive airway pressure therapy
(CPAP) as in Herlihy et al. (2023); Li and Varakantham
(2022b), which is a highly effective treatment when it is used
consistently during the sleeping for adults with obstructive
sleep apnea. Similar non-adherence to CPAP in patients hin-
ders the effectiveness, we adapt the Markov model of CPAP
adherence behavior (Kang et al. 2013) to a two-state system



(a) Reward regret. (b) Fairness constraint violation for arm 1. (c) Fairness constraint violation for arm 2.

Figure 6: PASCAL recognizing textual entailment task.

(a) Reward regret. (b) Fairness constraint violation for arm 1. (c) Fairness constraint violation for arm 2.

Figure 7: Land mobile satellite system.

with the clinical adherence criteria. Specifically, there are 3
states, representing low, intermediate and acceptable adher-
ence levels. Patients are clustered into two groups, “Adher-
ence” and “Non-Adherence”. The first group has a higher
probability of staying in a good adherence level. There are
20 arms/patients with 10 in each group. The transition ma-
trix of arms in each group contains a randomized, small
noise from the original data. The intervention, which is the
action applied to each arm, results in a 5% to 50% increase in
adherence level. The budget is B = 5 and the fairness con-
straint is set to be a random number between [0.1, 0.7]. The
objective is to maximize the total adherence level. The accu-
mulated reward regret and the activation fraction for two ran-
domly selected arms are presented in Figures 5a, 5b and 5c,
respectively. Again, we observe that Fair-UCRL achieves
a much smaller reward regret and the fairness constraint is
always satisfied after a certain amount of time.

PASCAL Recognizing Textual Entailment

We study the PASCAL recognizing textual entailment task
as in Snow et al. (2008). Workers are assigned with tasks
that determine if hypothesis can be inferred from text. There
are 10 workers. Due to lack of background information, a
worker may not be able to correctly annotate a task. We as-
sign a “successful annotation probability” to each worker,
which is based on the average success rate over 800 tasks in

the dataset. Each worker is a MDP with state 1 (correctly an-
notated) and 0 (otherwise). The transition probability from
state 0 to 1 with a = 1 is the same as that of staying at state
1 with a = 1, which is set as the successful annotation prob-
ability. Reward is 1 if a selected worker successfully anno-
tates the task, and 0 otherwise. At each time, 3 tasks are gen-
erated (i.e., B = 3) and distributed to workers. Fairness con-
straints for all workers are set to be ⌘ = 0.05. Again, both
proposed algorithms outperform two baselines and maintain
higher selection fraction as shown in Figures 6a, 6b and 6c
for two randomly selected arms, respectively.

Land Mobile Satellite System

We study the land mobile satellite system problem as in
Prieto-Cerdeira et al. (2010), in which the land mobile
satellite broadcasts a signal carrying multimedia services
to handheld devices. There are 4 arms with different eleva-
tion angles (40�, 60�, 70�, 80�) of the antenna in urban area.
Only two states (Good and bad) are considered and we lever-
age the same transition matrix as in Prieto-Cerdeira et al.
(2010). Similar, we use the average direct signal mean as
the reward function. The budget is B = 2. We apply the fair-
ness constraint ⌘ = 0.03 to all angles. Again, Fair-UCRL
outperforms the considered baselines in reward regret (Fig-
ure 7a), while satisfies long term average fairness constraint
(Figures 7b and 7c for two randomly selected arms).
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